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INTRODUCTION 

mlemlemlemle is a simple programming language for building and estimating parameters of likelihood models.  The language 

was originally intended for building and estimating the parameters of survival models, but the language has evolved to be 

general enough to estimate parameters for many other types of likelihood models.  Indeed, the language attempts to be a 

general purpose tool for likelihood estimation.   

This chapter provides an overview of mlemlemlemle.  The basic concepts of the programming language are introduced and some 

examples are given.  Details, and more formal descriptions of the mlemlemlemle programming language, are saved for later chapters.  

Examples of mlemlemlemle programs and program fragments are sprinkled throughout this manual.  A later chapter is devoted to 

examples of different type of likelihood models. 

This manual gives only a superficial treatment of topics like probability theory, probability models, and maximum 

likelihood methods.  In order to write mlemlemlemle programs, you will need a basic understanding of these topics.  Some helpful, 

generally applied, introductions to maximum likelihood estimation can be found in Edwards (1972), Hilborn and Mangel 

(1997), Holman and Jones (1998), Nelson (1982), Pickles (1985), Wood et al. (1992). 

Programs written in mlemlemlemle are, in many respects, similar to those written in SAS, S+, SPSS, BMDP, or many other 

statistical programming languages.  The language consists of keywords like MODEL, END, DATA, and so on.  Like all 

languages, mlemlemlemle has rules of syntax that must be strictly followed to produce a valid program.  The resulting mlemlemlemle program is 

translated into actions (like parameter estimation) by the mlemlemlemle interpreter.1 

The mlemlemlemle interpreter typically works with three files: the mlemlemlemle program file, the data file, and the output file. 

The program file. This is the program that you have written in the mlemlemlemle programming language.  The first line of this 

file begins with the word MLE and the program ends with a matching END.  In between these two comes the program, which 

includes naming the data file and the output file, describing how to read in and transform data into a series of observations, 

and specifications of one or more likelihood models along with parameters to find.  Parameter estimates are then found by an 

iterative search that maximizes the likelihood given a set of observations.  The resulting parameter estimates are then written 

to an output file. 

The mlemlemlemle program is created as an ordinary text file using almost any editor.  You can create and edit the mlemlemlemle program 

using the EDIT command (in DOS), vi, pico, or emacs (in Unix), or any other editor that will read and write a file as ASCII 

text.  Word processors, such as Microsoft Word, can be used as well, but you must remember to save your work using the 

"text (with line breaks)" option. 

The data file. This file contains lines of observations.  The observations are read, and perhaps transformed, when the 

mlemlemlemle program is run.  The observations are then used with the likelihood function (specified in the mlemlemlemle program file) to find 

parameter estimates.  Data files are standard ASCII text files.  Typically, one line in the file represents one observation 

(although a single observation can span more than one line, and one line can represent multiple identical observations).  

                                                           
1 Notice that mlemlemlemle has two distinct meanings in this document.  First, it is a programming language for building likelihoods.  Second, it is the 

name of the computer program that interprets the language and finds maximum likelihood estimates of model parameters. 
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Within each observation is a series of fields that are separated by spaces, tabs, commas, or some other user-specified 

delimiter.  One or more of these fields are read into variables. 

The output file. This is where results are written.  The name of the output file is specified in the mlemlemlemle program file.  

The program file also specifies what kind of result will be written to the output file, and how much of the details will be 

included. 

You can also specify that mlemlemlemle write partial results and messages to the screen (or standard output as it is called).  This 

is helpful for monitoring progress while estimation is taking place. 

An Example 

Figure 1 is a simple mlemlemlemle program that illustrates the most important parts of the mlemlemlemle programming language.  The 

problem at hand is to estimate the distribution of gestational ages at birth given the observations shown in Figure 2.  These 

observations are counts of gestational ages at birth that were recorded at a resolution of one week for all but the first and last 

rows of observations.  We will use survival analysis to estimate the parameters (µ and σ) of the normal distribution that best 

describes these data. 

This is an example of survival analysis with interval censored observations.  In this example, observations are given 

as frequencies within each interval; that is, each line in the data file represents many observations. 

MLE 
  TITLE = "Distribution of gestational age" {Data are from Hammes 
                                             and Treloar(1970) Am J Pub 
                                             Health 60:1496-1505} 
  MAXITER = 50             {Maximum number of iterations allowed} 
  EPSILON = 0.0000001      {Criterion for convergence of the model} 
  DATAFILE("hammes.dat")   {Opens the input data file} 
  OUTFILE("hammes.out")    {Opens the output file} 
 
  DATA     
       {Data are interval censored and are  
        in units of days as per Table 2 of Hammes and Treloar} 
    topen     FIELD 1            {time at opening the interval} 
    tclose    FIELD 2            {time at closing the interval} 
    frequency FIELD 3            {Frequency from Menstrual History Program} 
  END {data} 
 
  MODEL 
    DATA                        {function to loop through all observations} 
      PDF NORMAL(topen, tclose) {Define the parametric distribution} 
        PARAM    mean      LOW = 100  HIGH = 400 START = 270 END 
        PARAM    stdev     LOW = 0.1  HIGH = 100 START = 20  END 
      END {pdf} 
    END {data} 
  RUN 
    FULL    {run the model with both parameters free}  
  END {model} 
 
END  {of program} 

Figure 1.  Program to estimate parameters for the distribution of gestational ages at birth. 
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Structure. There are four basic constructs in a typical mlemlemlemle program.  They are assignment statements, procedure 

statements, the DATA statement and one or more MODEL statements.  Assignment statements allow you to define and change 

program variables, some that affect the behavior of the DATA and MODEL statements.  The DATA statement describes the format 

of the input data file, and provides simple data transformations and mechanisms to drop observations.  The MODEL statement 

defines the likelihood function along with the parameters to be estimated.  A second part of each MODEL statement is the RUN 

statement that specifies how the model is to be estimated. 

Program constants and variables. A number of variables (e.g. MAXITER) are pre-defined in mlemlemlemle.  Frequently, you 

will want to change the value of these variables in order to fine tune the behavior of the program, how the language is 

interpreted, the type of output produced, etc.  In the example program, the value of MAXITER is changed from the default 

value of 100 to a maximum of 50.  MAXITER is the maximum number of iterations allowed for finding the parameters.  Notice 

the TITLE variable is also assigned to a string variable (i.e. a series of characters).  The TITLE variable is simply written to 

the output file.  The variable EPSILON is assigned a value as well.  This variable determines how precisely the parameters are 

to be found: normal convergence occurs when the change in the log-likelihood from one iteration to the next falls below this 

value. 

Comments. These can be placed throughout the body of a program by enclosing the text in curly brackets, { and }.   

Likewise, the curly brackets can be used to effectively remove large sections of code.  A second way to comment out all or 

part of a single line is to put a pound sign # at the point where you want the comment to begin.  mlemlemlemle  ignores all text that 

follows the pound-sign through the end of the line. 

Reading data. The data file specified in Figure 1, called hammes.dat, is shown in Figure 2.  Data files are standard 

ASCII text files of numbers.  The numbers are organized into a series of fields.  Each filed is usually delimited by white space 

(tabs or spaces as used in Figure 2) or commas.  You can specify your own list of delimiters by changing the value of the 

variable called DELIMITERS (see the DATA chapter for details). 

The data in Figure 2 are structured as three columns of 

numbers.  The first field is the last observed gestational age 

prior to birth.  The second field is the observed gestational age 

after a birth was observed.  These two times form an interval 

within which the birth occurred (i.e. the birth occurred at some 

unknown time within this interval).  The third field is the 

number of births that were observed within the interval.   

The way in which the data file is read is specified by 

the DATA statement in Figure 1.  The three variables, TOPEN, 

TCLOSE, and FREQUENCY, that come between DATA and its 

matching END, are read in for each observation (i.e. each line 

in Figure 2).  In fact, each of these variables will be created as 

an array, each having twenty elements.  Each element 

corresponds to a line read in from the data file. 

The variable called frequency  is a special name 

because mlemlemlemle will treat variables with the name  frequency (and 

0   141 0 
141 196 9 
197 217 11 
218 224 2 
225 231 12 
232 238 17 
239 245 22 
246 252 40 
253 259 69 
260 266 134 
267 273 324 
274 280 653 
281 287 724 
288 294 382 
295 301 125 
302 308 47 
309 315 26 
316 322 10 
323 329 1 
329 -1  6 

Figure 2.  Data file read by the program in Figure 1.  The first 
two columns define an interval within which a birth occurred.  
Note the last row has -1 to denote an opened (right censored) 
observation.  The third column is the number of pregnancies that 
terminated within each interval. 
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freq as well) as a count of repeated observations.  Thus, the contribution to the likelihood from each observation will be the 

same as if the number of observations specified by frequency had been read in from the file. 

Likelihood model. The next part of the program is the MODEL statement.  The MODEL statement consists of two parts: 

an expression that comes between the MODEL and RUN part that defines the likelihood, and a list of one or more run 

specifications that come between the RUN and END part of the statement. 

Within the MODEL...RUN part of the statement is a single function that defines the likelihood.  In this example, we 

are specifying the likelihood: 

(1) L S t S topen close
frequency

i

N

i i

i= −
=

∏ ( | , ) ( | , )µ σ µ σ
1

 

where N is the number of age categories (i.e. the number of lines of observations), frequency is the frequency of observations 

per age category, S() is a survival density function for the normal distribution, topen and tclose are the two times read from the 

data file into the variables topen and tclose, and µ and σ are the parameters that will be explored to maximize the 

likelihood. 

Notice that the first part of the likelihood expression is a DATA...END function.  This function specifies that 

observations are to be "fed" to the likelihood one at a time, corresponding to the product (∏) shown in the likelihood above.  

It is very important that you do not confuse the DATA function, found within the MODEL statement, with the DATA statement 

discussed above.  The DATA function loops through all observations that were previously read in by the DATA statement.  

Within the DATA...END function comes the rest of the likelihood, which is shown to the right of the ∏ in likelihood (1) given 

above.  The likelihood within the data function is called for each observation in turn.  The resulting individual likelihood is 

computed, the log of that likelihood is taken, multiplied by the FREQUENCY for the current observation, and added to the total 

likelihood.  In other words, the DATA...END function returns the total log-loglikelihood, given a series of observations and 

an expression for an individual likelihood. 

Nested within the DATA function is the PDF function, which makes up the parametric model for the likelihood 

function.  A NORMAL distribution is specified, and we pass it two arguments (topen, tclose).  These two arguments (which 

were read from column 1 and 2 of the data file) different from each other, so the PDF function returns the area under a normal 

PDF between the two points.  The area corresponds to the probability of observing an birth within the interval.  If we had only 

specified a single argument or if both arguments had been equal to each other, the PDF function would have returned the 

probability density at that point.  Within the PDF NORMAL function call are two PARAM functions.  These functions define 

parameters that will be changed in order to maximize the likelihood.  Naturally, you are able to specify limits, starting values, 

etc. for these parameters. 

Between the RUN and the END part of a MODEL statement comes a list specifying how to run the model.  The full 

model is run by specifying FULL.  Various reduced forms of the model can be run by specifying a REDUCE command. More 

details on this are given below and in a later chapter. 
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Running. The mlemlemlemle program is run by typing the line mle hammes.mle at the command line prompt (see Chapter 2 

for details).  The output that results from the example program and data file is given in Figure 3.  The first section of the 

output provides summary statistics for each of the variables read from the input data file.  The parameter estimates are given 

in two ways: once with estimated standard errors, and once with likelihood confidence intervals.  The standard error report 

also shows a t-test of the hypothesis that the mean parameter estimate is zero. 

Basic Outline of an mlemlemlemle Program 

The easiest way to write an mlemlemlemle program is to begin with a working program like that given in Figure 1, or at least an 

outline like that given in Figure 4.  Every program begins with the word MLE and ends with the matching word END.2  Any text 

                                                           
2 Throughout this manual, mlemlemlemle programs are shown with indentation to show, for example, the matching MODEL and END.  This so-called 

pretty-printing is not necessary; mlemlemlemle is a free-format language.  Nevertheless, the use of  indentation and copious commenting will greatly 
aid in proper program development and debugging.  This manual uses two spaces to indent each natural "level".  Key words that are a 
part of mlemlemlemle are always upper-case letters and user-defined words are lower-case (again, this is not required since mlemlemlemle is not case sensitive).  
Finally, a matching END is usually followed by a comment denoting what key-word the end matches.  This last convention is 
particularly useful for complex programs that involve many nested functions. 

Distribution of gestational age 
Parameter file: hammes.mle 
Input data file name: hammes.dat 
Output file name: hammes.out 
    3 variables read. 
 
18 lines read from file hammes.dat 
18 Observations kept and 0 observations dropped for each variable. 
 
ROW         topen      tclose   frequency 
MEAN   258.722222  253.555556  144.111111 
VAR    5338.56536  6032.37908  51267.3987 
STDEV  73.0654868  77.6683918  226.423052 
MIN    0.00000000  -1.0000000  0.00000000 
MAX    329.000000  329.000000  724.000000 
New model:  Distribution of gestational age 
 
METHOD = DIRECT 
Maximum Iterations MAXITER = 50 
Convergence at EPSILON = 0.0000001000 
 
Results with estimated standard errors: 
  Log Likelihood = -5915.1352 after 4 iterations.  Delta(LL)=0.00000000 
PDF NORMAL with 2 free parameters 
      Name Form       Estimate         Std Error          t        against 
      mean          279.7654969512   0.267153495349    1047.20882123   0.0 
     stdev          13.04605798312   0.126880990969    102.821217611   0.0 
 
Variance/covariance matrix:  
0.07137099008  0.00860300945 
0.00860300945  0.01609878587 
 
Likelihood CI Results: 
  Log Likelihood = -5915.1352 after 4 iterations.  Delta(LL)=0.00000000 
PDF NORMAL with 2 free parameters 
         Name Form       Estimate          Lower CI          Upper CI 
         mean          279.7654969512   279.1863052702    280.3447034638 
        stdev          13.04605798312   12.64289497881    13.47052893809 

Figure 3.  Output generated by the program in Figure 1. 
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after the final END is ignored.  Between the MLE and its matching END comes the body of an mlemlemlemle program.  Four types of 

statements occur within the body: the DATA statement, one or more MODEL statements, procedure calls, and assignment 

statements.  Each type of statement is briefly discussed below. 

Assignment Statement  

Assignment statements may be placed anywhere within the body of the mlemlemlemle program—that is, within the MLE and its 

matching END.3  A great number of pre-defined variables are available in mlemlemlemle that change or fine-tune the behavior of the 

program.  Assignment statements are used to change the value of these variables.  Some brief examples are: 
MAXITER = 100         {Set the maximum number of iterations} 
EPSILON = 0.0000001   {Set the criterion for convergence} 
PRINT_OBS = TRUE      {prints all observations after transformations} 

The assignment statement is generically defined as <variable name> = <expression>.  The <variable name> name can be a 

preexisting variable (e.g. MAXITER, EPSILON), or is a user-defined variable.   

The <expression> that follows the equal sign can be a simple constant, 

another variable, or a complex mathematical expression.  The details of the 

syntax and the many functions that can be used to make up expressions are given 

in a later chapter.  The following are some example of assignment statements 

using expressions: 
pie      = PI 
bmi_max  = weight_max/height_max^2 
total    = e1_count + e2_count + e3_count + e4_count 
last_sge = IF linear THEN max_age ELSE SQRT(max_age) END 
area     = PDF NORMAL(-2, 2) 1, 3 END        {gives area 

from -2 to 2 for N(1, 3)} 
one      = SIN(total)^2 + COS(total)^2 

These are all examples of assignments that return real number results.  

There are, in fact, five different types supported by mlemlemlemle: real, integer, boolean, 

string, and character.  Variables can be defined for each type.  Additionally, 

expressions can be created for each of these types. 

Real.  Variables of this type represent the continuous real number line.4  Many mathematical functions like SIN(), 

EXP(), and BESSELI() return real values, and so the variable to which these functions are assigned must be type REAL as 

well.  Real variables can always take on integer values, but integer variables must use the ROUND() or TRUNC() functions to 

convert a real number to an integer value. 

Integer. Variables of this type can only take on whole number values over a machine-dependent range of numbers.  

For example, on DOS computers this range is [-2,147,483,648,  2,147,483,647].  Arguments of some functions require 

                                                           
3 Normally assignment statements do not occur within the DATA...END and MODEL...END statements.  Assignment-like statements 

occur within the DATA statement for transformations.  Additionally, the PREASSIGN and POSTASSIGN functions allow a list of one or 
more assignment (or other) statements to be used.  Finally, within the MODEL statement, there are several other uses for assignment-like 
statements, like to define start, highest, and lowest values of parameters. 

4 Be aware, however, that the computer representation for real numbers is not strictly continuous.  Occasionally this leads to difficulties 
with round-off errors. 

MLE 
  DATAFILE("...") 
  OUTFILE("...") 
  TITLE = "... 
  MAXITER = 100 
 
 
  DATA 
    <Data specification> 
  END 
 
  MODEL 
    <Expression> 
  RUN 
    <Run specification> 
  END 
 <Additional MODELs> 
END 

Figure 4.  The structure of an mlemlemlemle program 
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INTEGER type variables.  For example, the INC(x) function requires that x is an integer type.  A number of functions 

(ROUND, TRUNC) can convert real types into integer types. 

Boolean. Variables of this type take on one of two states: TRUE or FALSE.  No other value is allowed or recognized.  

Boolean expressions are frequently used to test conditions.  For example, the IF...THEN...ELSE...END function evaluates 

the first expression (between the IF and THEN) to either TRUE or FALSE and decides which of the remaining two expressions 

will be evaluated and returned. 

String.  Variables of this type hold a sequence of character constants.   When written as a constant in a program, 

these constants consist of a sequence of characters, enclosed within double-quotes (").  String variables are typically used to 

assign file names, titles, etc.  A few functions take on string (or character) variables and return a string.  For example, the 

CONCAT(s1, s2) function will add together two string variables and return it as a longer string. 

Character. Variables of this type take on the value of a single character.  When written as a constant in a program, 

character constants consist of a single character enclosed within single quotes (').  Character constants are not typically used 

within a user's program, but are available if needed.  Usually, character constants and variables can be used anywhere a string 

variable is allowed. 

When a variable is first used in an assignment statement, its type is determined based on the type returned from the 

expression on the right-hand side of the assignment.  Here are some examples to illustrate the point: 
large_data = N_OBS > 5000                     {large_data will be type BOOLEAN} 
subtitle   = "Analysis: " + DEFAULTOUTNAME    {subtitle will be type STRING} 
nine       = 3 * 3.0                          {nine will be REAL} 
five       = 2 + 3                            {five will be INTEGER} 

You can explicitly define the type for a variable when it is first referenced in an assignment statement.  Here are some 

examples: 

c:STRING  = 'x'      {c would default to CHAR, but will be a STRING variable} 
nine:REAL = 3 * 3    {nine would default to INTEGER, but will be a REAL variable} 
t:BOOLEAN = TRUE     {t is explicitly declared as boolean, although this is the default} 
ang:REAL = SIN(2*pi) {ang is explicitly declared as real, although this is the default} 

Multidimensional arrays and matrices of all types are supported by mlemlemlemle.  Arrayed variables must be explicitly defined 

the first time the variable is mentioned in the program.  The format is <var> : <type>[min1 TO max1, min2 TO max2, . . . 

].  Some examples of declarations are:  
s : STRING[1 TO 5]                      {Defines a one-dimensional array of strings} 
r : REAL[1 TO 10, 1 TO 10]              {Defines a 10 x 10 matrix} 
b : BOOLEAN[0 TO 1, 0 TO 1, 0 TO 1]     {Defines a 3 dimensional BOOLEAN array} 

An entire array can be initialized to a single value in an assignment statements.  Examples are: 

s : STRING[1 TO 5] = ""        {Defines s and initializes all values to an empty string} 
r : REAL[1 TO 10, 1 TO 10] = 0 {Defines a 10 x 10 matrix and initializes everything to 0} 

Arrayed variables are accessed by using brackets to denote subscrips.  The following example creates an array of radian 

angles for integral degree angles, and prints out a table of sine values: 

r : REAL[0 TO 359] 
FOR i = 0 TO 359 DO 
  r[i] = DTOR(i) 
  writeln("Sin(" i ") = " SIN(r[i]) ) 
END 
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Data Statement  

A single DATA...END statement is usually used in a program.  The purpose of the statement is to read in an input file 

and transform the data in the file into a set of observations.  The DATA statement defines the format of the data file and 

provides declarations for each variable that is to be read in from the file.  Variables declared within a DATA statement are a 

special array of real number.  After the matching END is read, the DATA statement immediately reads in the file and performs 

any of the transformations specified.  Details on the DATA...END statement are given in a later chapter. 

The ultimate purpose of a DATA statement is to create a series of observations.  The observations will typically be 

used to compute likelihoods.  Within a MODEL statement, you can use the DATA function to evaluate the likelihood, one 

observation at a time.  Do not be confused by the fact that there is both a DATA statement and a DATA function.  They 

complement each other.  Simply remember that a DATA statement is used as a statement, and there is typically one such 

statement per mlemlemlemle program.  The DATA function can only be used as part of an expression—typically only within the likelihood 

expression of a MODEL statement.  Each MODEL statement will usually have one DATA function included as part of the 

likelihood specification.  The DATA function corresponds to the product (∏) over all observations in the likelihood [e.g.(1)] or 

the summation overall all observations (Σ) in a log-likelihood. 

Model Statement  

The MODEL...RUN...END statement defines the underlying probability model used by mlemlemlemle and also defines 

constraints on which parameters are to be estimated.  Between MODEL and RUN is a single expression that is the likelihood.  

Within the likelihood is one or more PARAM...END functions.  These define the parameters, whose values will be found to so 

that the likelihood is maximized.  One of the most important aspects of learning mlemlemlemle  is the design and construction of the 

expression for the likelihood.  A later chapter gives a number of examples for different types of likelihoods.   

A list of run specifications is given between the RUN and the END part of the MODEL statement, this provides a way of 

evaluating the full model as well as a series of nested or reduced models.  If all of the parameters (defined by PARAM...END 

functions) are to be found, a simple FULL command is placed between the RUN and its matching END.  Reduced models, where 

one or more parameters are constrained to a constant or another parameter, are specified as REDUCE followed with a list of 

one or more "reductions".  For example, you might constrain a parameter called mean to be zero and only allow the parameter 

called stdev to be found.  Then you would put REDUCE mean = 0 between the RUN and the END.  Any number of REDUCE 

commands (along with one FULL) can be used in a single model.  The various forms of the model will be evaluated in turn.  

Additional details are given in a later chapter. 

Procedure Statements 

mlemlemlemle has a number of pre-defined intrinsic procedure statements.  These are pre-defined procedures that perform some 

specific task.  Unlike a function call, procedures do not return some value as part of an expression.  Hence, procedures are 

called in the same context as an assignment statement.  Here are some common examples of procedure statements: 
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DATAFILE("hammes.dat")                 {Tells mle to use the file hammes.dat as the data file} 
OUTFILE("hammes.out")                  {Defines the output file for mle to use} 
SEED(9734)                             {Seeds the random number generator} 

Other Statements 

mlemlemlemle provides a number of standard programming statements.  The statements should be familiar to anyone with 

computer programming experience in BASIC, FORTRAN, C, or Pascal.  You will not ordinarily need to use these statements, 

but they are provided in the event you do need them.  The statements are illustrated below without any details.  The full 

details are given in a later chapter: 
FOR x = 1 TO 10 DO 
  y = x^2 
  PRINTLN("x is ", x, " and x^2 is ", y)    {PRINTLN() writes to the log file} 
END {for} 
 
i = 2 
WHILE i < 1000 DO 
  i = i^2 
  WRITELN(i) 
END {while} 
 
SEED(234) 
REPEAT 
  PRINTLN("Still working") 
  IF RAND <= 0.2 THEN 
    DONE = TRUE 
  ELSEIF IRAND(1, 100) = 100 THEN 
    DONE = TRUE 
  ELSE 
    DONE = FALSE 
  END {if} 
UNTIL done 

A Note About Parameters 

The ultimate goal of putting together a likelihood model is to estimate one or more parameters of the model. The 

PARAM...END function (described later) provides a method to define the parameters that are to be estimated.  This use of the 

word "parameter" can be confusing, so lets clear it up right from the start.  In any mathematical language, we can refer to a 

function's arguments as "parameters".  For example, in the statement a = sin(b), sin() is a function with one "parameter".  This 

manual will avoid the word "parameter" in this general sense.  Instead, the word argument will be used to refer to the 

arguments of a function in a general sense.  So, the sin() function has one argument. 

As used in this manual, the word parameter in mlemlemlemle refers to an unknown quantity of a probability model whose value 

is to be estimated.  Parameters, in this sense, are frequently arguments to functions, but not all arguments are parameters.  

Parameters are sometimes the constants defined within a function.  For example, in the well-known equation for the slope of a 

line, y = mx + b, we would call m and b the parameters of the equation, and x the argument.  This is clearer when we rewrite 

the equation for a slope as f(x | m, b) = mx + b, which is read, "f  of x given m and b. . . ."  This function has a single argument 

x, and the parameters are m and b.  Typically a series of x values are known, and the goal is to find the best values for 

parameters m, and b.  By "best", of course, we mean the best in some statistical sense.  In mlemlemlemle, m and b would be called 

parameters if and only if they were quantities to be estimated. 
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The one exception to the usage of the word parameter is for the built-in probability density functions in mlemlemlemle , where 

we refer to the intrinsic parameters.  For example, the normal distribution, f(t|µ, σ), has two intrinsic parameters, µ and σ.  

Typically we wish to estimate these intrinsic parameters.  If so, the intrinsic parameters µ and σ are also parameters. 

As described later, most probability density functions take four arguments for the argument t so that the cumulative 

density, survival density, area under the probability density, probability density, hazard function, and all of the above with 

right and left truncation may be specified.  Thus, in the syntax of mlemlemlemle , there is a natural delineation between arguments and 

intrinsic parameters.  Consider the following function call: PDF NORMAL(0, 4, 0, 40) 10, 20 END.  This function call 

has the four "time" arguments 0, 4, 0, and 40, which specifies a normal distribution truncated over the range 0 and 40, and the 

area between 0 and 4 is returned.  The two intrinsic parameters of the normal are passed as µ = 10 and σ = 20.  There are no 

"parameters" in this example, simply because there is no PARAM function specified. 

Differences between Version 1 and Version 2 

Changes and new features in version 2 

There are a number of syntax differences and other changes between mlemlemlemle version 1 and version 2.  Here is a summary 

of the most important changes: 

• General algebraic expressions are now recognized.  Standard operators include: +, -, *, /, ^, and, or, xor, not, 

mod, div, shl, shr, >, <, <>, =, ==, >=, <=.  These operators can be used to build algebraic and boolean expressions 

of nearly unlimited complexity.  Both = and == are allowed for specifying boolean relationships.  The standard 

operator precedence, common to most programming languages, is recognized by mlemlemlemle: 

Operator(s) Precedence Category 
- + not high Uniary operators 
^  Exponent operator 
* / div mod and shl shr  Multiplying operators 
+ - or xor  Adding operators 
= (or ==)  <> < > <= >= low Relational operators 

The expression -23+4*-2^3 is equivalent to ADD(NEGATE(23), MULTIPLY(4, POWER(NEGATE(2), 3))) 
which returns -55.  Parenthesis can be used to override operator precedence.  For example, 2*5 + 3*7 will evaluate 
each multiplication before the addition.  Addition can be forced to occur first with parenthesis as in 2*(5 + 3)*7. 

• The DATA statement has been rewritten to have a more intuitive transformation mechanism.  The transformation 

looks like an assignment statement following the FIELD and LINE specification (if any).  A list of DROPIF <expr> 

and KEEPIF <expr> statements can then be specified (replacing the old DROP and KEEP statements).  Here are some 

examples: 

DATA 
  age     FIELD 1 = age*365.25 + 270  {convert to days since conception} 
  weight  FIELD 2 = weight * 1000  DROPIF weight <= 0 
  height  FIELD 3   KEEPIF height > 0 
  bmi             = height/weight^2 
END {data} 
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The formal specification for each variable is this 

        <var>  [FIELD x [LINE y]] [= <expr>] [DROPIF <expr> | KEEPIF <expr> ...] 

The first example above reads a value in the first field of the data file and assigns the value to the variable age.  
After that, the expression age*365.25 + 270 is evaluated and the result assigned to the variable age.  The second 
example reads the second field and assigns the value to the variable weight.  Following that, the expression 
weight*1000 is evaluated and assigned to the variable weight.  Then the expression weight <= 0 is evaluated.  
If TRUE, the observation is dropped.  If not, the observation is kept. 

• Observations can now be simulated or otherwise created within mlemlemlemle, without reference to a data file.  This is done by 

setting CREATE_OBS to some positive value.  The following example will create 100 uniform random observations:  

CREATE_OBS = 100 
DATA 
  v1      FIELD 1 = RAND 
END {data} 

• A number of useless functions that were used with the old data transformations have been eliminated, e.g.: ONE, 

SECOND, ONEIF, RESPONSE, etc. 

• A number of new functions have been added, e.g.: DEFAULTOUTNAME, FISHER, ISODD, STRING2REAL, INT2STR.  

A fairly complete set of functions are now available to work with calendar dates.  A full list of simple functions can 

be generated by typing mle -h functions. 

• The PREASSIGN and POSTASSIGN functions have been generalized so that any single statement is allowed in the 

statement part of the function.  By using a BEGIN ... END block, more than one statement can be used in the 

assignment part of the functions.  For example: 

PREASSIGN 
  BEGIN  {This is the statement part} 
    r : REAL[0 TO 359] 
    FOR i = 0 TO 359 DO 
      r[i] = DTOR(i) 
    END {for} 
  END {begin — this is the end of the statement part of the PREASSIGN} 
  PDF NORMAL(a, b) c, d END  {This is the function returned by PREASSIGN} 
END {preassign} 

• The conditional expressions in the IF THEN ELSE END and LEVEL functions take a boolean expression of any 

complexity, e.g., IF (a = b) AND (c^2 + 2 <= 23) OR (d > 1) THEN ... ELSE ... END. 

• The IF...THEN...ELSE...END function has been generalized so that multiple ELSEIF...THEN... conditions 

may be added.  The following assignment is an example: 

status = IF height < 48 THEN  
           -1  
         ELSEIF (height >= 48) and (height <= 60) THEN 
           0 
         ELSE 
           1 
         END {if} 

• Types can be optionally defined for variables when they are first encountered.  Valid types are INTEGER, REAL, 

CHAR, STRING, BOOLEAN.  For example: 

x : REAL = 23   {x would be integer, but is defined to be real} 
c : STRING = '!'   {c would be char, but is defined to be string} 
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• In general, types are handled better.  Adding two integers together, for example, returns an integer.  The 

IF...THEN...ELSE...END function can return any type, but the type after the THEN must match the type after the 

ELSE. 

• Multidimensional arrays are supported for all types.  Subscripted values are accessed as, for example, z[i, j, k].  

Arrays are declared as 

a : REAL[1 TO 5, -1 TO 1]  = 0   {Declare and initialize matrix a} 

• A new DERIVATIVE function numerically finds the value of a derivative at a specified point along some function.  

For example, DERIVATIVE x = 2, 3*x^2 + 2*x + 4 END, which is the derivative of 3x2 + 2x + 4 evaluated at 

x = 2, returns 14.0. 

• The new FINDMIN function finds the value that minimizes a bounded function.  An example is FINDMIN x (0, 

2*PI) COS(x) END, which finds a minimum of the function cosine(x) between 0 and 2π.  It returns 

3.1415925395570 (π is an exact solution).  The accuracy of the solution may be specified as a third argument within 

the parenthesis. 

• The new FINDZERO function finds the value of an argument for which the function goes to zero.  An example is 

FINDZERO x (0, PI) COS(x) END, which finds a value of x for which cosine(x) is zero.  It returns 

1.5707963267949 (which is close to the exact solution of π/2).  The accuracy of the solution may be specified. 

• An important syntactical change is that every PARAM function must have a matching END. 

• The default FORM for the PARAM function is NUMBER if no covariates are specified and LOGLIN if one or more 

covariates are specified. 

• The COVAR specification part of the PARAM function has been generalized to COVAR <expr> <expr>.   A typical 

specification is   

PARAM x  LOW=0  HIGH=100 START=25 
  COVAR z PARAM beta_z LOW=-5 HIGH=5 START=0 END 
END 

Nevertheless, other expressions are legal.  For example 
PARAM x LOW=0 HIGH=100 START=25 
  COVAR z 1 
END {param} 

• The PARAM options HIGH, LOW, START, and TEST are treated like assignment statements which are evaluated just 

prior to maximization.  The right-hand side of the assignment can be any valid expression.  For example, 

PARAM a LOW = IF y > 3 THEN 0 ELSE 3  HIGH = x^2 + 2x - 4  START = y - 1 END 

• The CONST part of the MODEL statement is longer supported. 

• A number of procedures have been added that can be used wherever a statement is allowed, including 
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WRITE()      {writes to standard output} 
WRITELN()    {writes a line to the standard output} 
PRINT()      {writes to the output file} 
PRINTLN()    {writes a line to the output file} 
SEED()       {seeds the random number generator} 
DATAFILE()   {defines the data file} 
OUTFILE()    {defines the output file} 
HALT         {halts the program} 

• A variety of statements have been added that can be used wherever a statement is allowed, including 

IF <bexpr> THEN <statements> ELSEIF . . . ELSE <statements> END  
FOR <v> = <expr> TO <expr> DO <statements> END 
BEGIN <statements> END 
WHILE <bexpr> DO <statements> END 
REPEAT <statements> UNTIL <bexpr> 

Converting version 1 programs to version 2 

Programs written in earlier versions of mlemlemlemle can be converted into later versions without much difficulty.  The most 

important things to change are given below.   

• Change all INFILE = "mydata.dat" statements to DATAFILE("mydata.dat") procedure calls. 

• Change all OUTFILE = "results.out" statements to OUTFILE("results.dat") procedure calls. 

• Change all SEED = 5352 statements to SEED(5352) procedure calls. 

• Eliminate all CONST blocks that may have been used at the beginning of MODEL statements.  Instead, define the 

constant outside of the MODEL statement.  Alternatively, use a PREASSIGN function within the MODEL statement to 

create temporary variables within that statement. 

• Add an END after all PARAM functions. 

• Some older versions of mlemlemlemle did not have or allow the DATA...END function within the MODEL statement.  In more 

recent versions, a DATA...END function is almost always required to cycle through all observations in the data set.  

MODEL statements should usually look like this: 

MODEL 
  DATA 
        {the rest of the likelihood goes here} 
  END   {data} 
RUN 
  FULL 
END     {model} 

• Some older versions of mlemlemlemle  used the keyword FREQ followed by a variable name within a PDF function to denote the 

a frequency variable.  These must be deleted.  The special variable names FREQ and FREQUENCY should be used in 

the DATA statement to denote frequencies of observations.  

• The method of transforming variables within the DATA statement has changed in version 2.  All transformations must 

be re-coded following the new syntax (described earlier in this chapter and in a later chapter).  Additionally, the 

method of dropping or keeping variables within the DATA statement has changed.  An example of the old syntax is 



Introduction 

 22 

DATA 
  v1  FIELD 1  DROP < 0 
  v2  FIELD 2  ADD 10 MULTIPLY 2 
  v3  FIELD 3  KEEP >= 24 
  v4  FIELD 4  SUBTRACT 10 POWER 3 DROP <= 1 
END     {data} 

and the corresponding new syntax is 
DATA 
  v1  FIELD 1  DROPIF v1 < 0 
  v2  FIELD 2  = (v2 + 10)*2 
  v3  FIELD 3  KEEPIF >= 24 
  v4  FIELD 4  = (v4 - 10)^3  DROPIF v4 <= 1 
END     {data} 
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RUNNING AN MLEMLEMLEMLE PROGRAM 

Introduction 

mlemlemlemle programs are usually run by typing mle followed by the name of the program file on the DOS or Unix command 

line.  The mlemlemlemle interpreter will then read in the program file and execute each statement as it is encountered.  If mlemlemlemle encounters 

any errors in the program, an error message is printed and execution terminates.  Warning messages are printed from mlemlemlemle 

without termination. 

If mle is typed at the command line, but without the name of the program file, you will be asked for the name of the 

program file.  Here are some typical examples of how the mle is used: 
c:\test> mle analysis.mle                 Runs mle on the file analysis.mle. 
c:\test> mle -v test.mle                  Runs mle on the file test.mle.  The verbose option is set. 
c:\test> mle -p test.mle                  Parses the file test.mle and reports any syntax errors. 
C:\test> mle                              mle will request the input file name. 
MLE Program file to run? test.mle 

If you type an erroneous command line option, or the file is not recognized by mle the following command line 

synopsis is printed: 
c:\test> mle -z analysis.mle              There is no -z option. 
Error: File "-z" does not exist 
 
Usage: mle [-v] [-p] [-i] [-dd] [-ds] [-dp] [-di] [-dl] [-d #] [mlefile] 
  -v sets verbose on. Iteration histories are printed 
  -p only parses the mle file 
  -i runs mle interactively 
  -dd turns on data debugging 
  -ds turns on symbol table debugging 
  -dp turns on parser debugging 
  -di turns on integration debugging 
  -dl turns on likelihood debugging 
  -d sets debugging to level # 
  mlefile is the name of the file with the program 
 
Usage: mle -h [name1 name2 . . . .] 
  help for PDFs, functions, symbols, parameter transforms 
  -h matches words exactly, -H searches within words 
 
Usage: mle -pn n1 n2 . . . . 
  parses n's and returns values and type 

Command line options 

The behavior of mlemlemlemle can be changed by using command line options.  A list of valid command line options is given in 

Table 1.  A particularly useful command line parameter is -p (parse only) which tell mlemlemlemle to parse the program and report any 

errors in the grammar.  The statements within the program are not executed.  Another very useful option is the -v (verbose) 
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option, which tells mlemlemlemle  to provide periodic status reports while it is running the program and estimating parameters.  Among 

other things, the status report prints out the likelihood and parameter values at each iteration.   

Help options 

mlemlemlemle predefines a large number of functions, variables, constants, and reserved words.  The -h (help) option provides 

short summaries of mlemlemlemle  language parts, PDFs, and concepts.  Typing mle -h yields 

Table 1.  Command line options. 

Option Description 
–v Sets VERBOSE to TRUE so that an iteration history and other information is printed to standard output. 
–h 

–h <name> 

Help. Provides rudimentary information about PDFs, functions, variables, constants, reserved words, and 
parameter transforms.  When <name> is replaced by a PDF name, a transformation name, a function, or a 
predefined variable, a brief help message is given.  If <name> is not a known topic, a list of topics is 
printed. 

–H <name> Help. Provides rudimentary information like –h, but matches anything that contains the string <name>.  If 
<name> is not given, a very long list of all help messages will be given. 

–i Runs mlemlemlemle interactively.  That is, commands are typed directly in from the keyboard.  Using interactive mode 
is particularly useful for using mle mle mle mle as a probability calculator (see text).  Currently, this option only works in 
DOS. 

–p Sets the internal variable PARSE to TRUE.  The program file is parsed for errors. 
–pn # ... mlemlemlemle supports reading numbers in unusual formats (dates, times, Roman, etc.).  This command line option 

provides a way to test the way number strings are parsed and converted into real numbers or integers. 
–dd Sets the internal variable DEBUG_DATA to TRUE, which turns on data debugging.  When set, details are 

printed as each observation is read into a data set. 
–ds Sets the internal variable DEBUG_SYM to TRUE, which turns on symbol table debugging.  Information is 

printed to standard output whenever variables and symbols (including internal variables) are created or 
destroyed. 

–dp Sets the internal variable DEBUG_PARSE to TRUE, which turns on parser debugging. 
–di Sets the internal variable DEBUG_INT to TRUE, which turns on debugging for the integration routines. 
–dl Sets the internal variable DEBUG_LIK to TRUE so that parameter estimates and a likelihood is written to 

standard output for every likelihood evaluation. 
–d # Sets the internal variable DEBUG to the value set by #.  When # is greater than zero, additional information 

is printed out.  At values over 10, an enormous amount of output is generated.  A useful value is 5.  A value 
of 0 turns off debugging. 
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Type mle -h <keyword> to match keywords exactly. 
Type mle -H <keyword> to match partial keywords. 
 
 mle -h MLE gives a program outline. 
 mle -h PROCEDURES lists procedures. 
 mle -h PDFS lists PDF types. 
 mle -h FORMS lists parameter forms. 
 mle -h HAZARD gives an example of a hazard specification. 
 mle -h SYMBOLS lists pre-defined variables. 
 mle -h NUMBERS lists number formats. 
 mle -h FUNCTIONS lists simple functions, 
Help is available for the following types of functions/expressions: 
IDENTIFIER     ARRAY          DATA           DERIVATIVE     FINDMIN 
FINDZERO       FUNCTION       IF             INTEGRATE      LEVEL 
LEVELDELTA     PARAM          PDF            POSTASSIGN     PREASSIGN 
PRODUCT        QUANTILE       SUMMATION 
 
Help is available for the following statements: 
ASSIGNMENT, BEGIN, DATA, FOR, IF, MODEL, PROCEDURE, REPEAT, WHILE 

It is particularly useful for printing out a list of intrinsic parameters for PDFs.  For example, typing  mle -h 

weibull  yields: 
WEIBULL Distribution 
4 Time variables: t(open), t(close), t(left trunc), t(right trunc) 
Exact failure when t(open)=t(close) 
t(open) and t(close) can SHIFT 
Range:   t: (Time)  0 <= t < +oo 
2 intrinsic parameters: 
  a: (Scale)  0 < a < +oo 
  b: (Shape)  0 < b < +oo 
a is the characteristic life ~= 63.2th % in units of a 
f(t) = S(t)h(t);  S(t) = exp[-(t/a)^b];  h(t) = [b*t^(b-1)]/(a^b) 
mean = a*Gamma[(b+r)/b]; var = (a^2)*Gamma[(b+2)/b]-{Gamma[(b+r)/b]}^2 
mode = a(1-1/b)^(1/b) for b>1; mode = 0 for b<=1; median = a*log(2)^0.5 
   Gamma(x) is the gamma function 
Covariate effects may be modeled on the hazard 

which shows that there are two intrinsic parameters.  Note that equations are given for the probability density, survival 

function, or hazard function.  At least one of these is given for other PDFs as well.   

Here is another example:  mle -h pi 
Symbol: PI{REAL CONST} = 3.14159265359 

And, a thrid example: mle -h besseli 

Function BESSELI(x1, x2) 
 returns the modified Bessel fcn I (integer order x1) of real x2 

You get lists of related keywords in mle.  For example,  mle -h FUNCTIONS, will list all of the intrinsic simple 

functions, and mle -h SYMBOLS which lists all variables in the symbol table.  Typing mle -h function | more is a 

useful way to examine all mlemlemlemle intrinsic functions because the more program will stop after each page of output. 

The -H <name> option is similar to the -h option except that any function, variable, constant, or reserve word that 

includes <name> as some part of the reserve word is printed.  The -H option is particular useful when you cannot the exact 

name for some keyword.  Thus, mle -H integra lists all keywords with the string "integra": 
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INTEGRATE v (expr1, expr2) expr3 END 
INTEGRATE v (expr1, expr2, expr4) expr3 END 
 v is the variable of integration. 
 expr1 is evaluated for the lower limit of integration. 
 expr2 is evaluated for the upper limit of integration. 
 expr3 is the integrand, and may reference v. 
 expr4 is an optional convergence criterion 
 
 INTEGRATE_METHOD = I_TRAP_CLOSED uses closed trapazoidal integration 
 INTEGRATE_METHOD = I_TRAP_OPEN uses open trapazoidal integration 
 INTEGRATE_METHOD = I_SIMPSON uses open simpson integration 
 INTEGRATE_METHOD = I_AQUAD (default) uses adaptive quadrature integration 
 INTEGRATE_N is the number of iterations (default: 100) 
 INTEGRATE_TOL is the convergence criterion (default:  1.0E-0006) 
 
INTEGRATE_METHOD{INTEGER} = 3 
INTEGRATE_N{INTEGER} = 100 
INTEGRATE_TOL{REAL} = 0.00000100000 

Other options 

A number of command line options assist in debugging models, data files, program options, numerical methods, and 

the mlemlemlemle program interpreter itself.  The -dl option is useful for examining likelihoods every time a complete likelihood is 

computed.  More advanced debugging options assume some familiarity with the internal workings of parsers, symbol tables, 

and an advanced understanding of likelihood estimation.  The -d # option, in particular, generates a variety of debugging 

messages.  Details down to individual likelihoods (i.e. each observation) are generated with -d 10.  At -d 11, the 

likelihoods produced by each subexpression of a model for each observation is printed.  The -di option offers help with 

debugging problems of numerical integration in mlemlemlemle. 

mlemlemlemle  supports many formats for numbers.  Each number begins with a numeral, but can contain additional symbols to 

specify different meanings.  A full discussion of the number formats is given in the data chapter.  You can test the way in 

which mlemlemlemle  reads numbers by using the -pn option.  The command line mle -pn 8x3017 22'16" 12k returns 
"8x3017" is the integer 1551 
"22'16"" is the real 0.0064771107796 
"12k" is the real 12000.000000000 

The debugging and help options send output to the screen (or standard output device).  The standard DOS and Unix 

redirection symbols ">" and "|" can be used to redirect the output to other devices.  For example, the command mle -d 25 

test.mle > test.dbg will create a (possibly large) file called test.dbg.  The output file specified within the test.mle 

program will not be affected. 

On DOS computers mlemlemlemle  can be run interactively using the -i command line option.  When run interactively, 

commands are typed directly into the command line.  This option is particularly useful when mlemlemlemle  is used as a "calculator", 

which is described in the next chapter. 
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DATA SETS 

Introduction 

As a first step in parameter estimation, a data set must be read in or created.  This chapter discusses aspects of 

creating a data set, including 

• How to read a data set into mlemlemlemle 

• The way data files should be set up 

• How to transform variables 

• How to drop observations 

• The number formats recognized by mlemlemlemle 

• An example of creating a data file 

Data sets are read into mlemlemlemle from an input file.  They consists of at least one, and usually many, observations.  Each 

observation is a collection of one or more variables.  The mlemlemlemle data statement defines how observations are to be read from the 

input file.  The data statement also has mechanisms for doing transformations as the data are being read.  In the current 

implementation of mlemlemlemle the transformations and other data manipulations provided by the data statement are not particularly 

powerful, but they are suitable for most applications.  Other programs (spreadsheets or database managers, for example) can 

be used for complicated data transformations, and the resulting data set can be then used by mlemlemlemle. 

Reading data from a file 

Naming the data file 

Data sets are created using the DATA statement.  The data statement typically works by reading observations from the 

data file.  This file must be named and opened using the procedure DATAFILE().  The value passed to DATAFILE() is 

usually defined near the top of the program, before the DATA statement, as in the example in Chapter 1.  The data statement 

begins with the word DATA and is terminated by an END.  So, if the name of the data file is MYDATA.DAT, you must include the 
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statement DATAFILE("MYDATA.DAT") prior to the DATA statement.  Full path names are permissible: you might call the 

DATAFILE procedure as DATAFILE("C:\STATS\MLE\BONES\DATAFILE.DAT"). 

The DATA statement 

The DATA...END statement reads in the data file.  Within the DATA...END is a sequence of one or more variable 

names.  The grammar used for specifying each variable is: 

 <variable name>  [FIELD x [LINE y]] [= <expr>] [DROPIF <expr> | KEEPIF <expr> ...] 

Variable name: Variables names begin with a letter and can then contain any combination of letters, numbers, the 

underscore, and period characters.  A variable name may be up to 255 characters long and all characters are significant.  

Examples of valid variable names are: LAST_ALIVE, VARIABLE_14 , A_REALLY_LONG_VARIABLE_NAME, and A.  Variable 

names are not case sensitive so that abc is the same as ABC and aBc. 

In the current version of mlemlemlemle,    all variables created in the DATA...END statement are defined to be type real.  This is 

so even if the number format suggests an integer.  Integer values will be read in and converted to real number values.  Text 

strings can exist within a text file, but must not be assigned to a variable. 

mlemlemlemle pre-defines many built in constants and variables, so you should avoid variable names that exist for some other 

purpose such as an mlemlemlemle constant (a list of all variables appears in a later chapter).  Likewise, mlemlemlemle uses the period as an internal 

delimiter for some purposes.  Conflicts might arise if your variable names contain a period; you are free to use periods, but an 

underscore might be a better choice. 

Field: The term field refers to which column within an input file a variable is found in.  In the hammes.dat file used 

in Chapter 1, four fields (or columns) existed in the input file.  The field specifier must be a positive integer constant. 

Line: Sometimes observations are located across multiple lines.  An example might be times to first birth for a 

married couple in which female characteristics appear on the first line and the male characteristics occur on the second line.  

When the LINE keyword is used, e.g. LINE 2, mlemlemlemle keeps track of the maximum number of lines specified this way.  Then, all 

observations are assumed to have the maximum number of lines.  If the observations each take but one line, the statement 

LINE 1 may be dropped—one line per observation is assumed as the default situation.  The line specifier must be a positive 

integer constant.  

The remaining specification provides ways of transforming variables and dropping (or keeping) observations.  The 

next several sections discuss transformations and gives additional examples of declaring variables in the DATA section. 

Dropping or keeping observations 

A series of statements to drop (or keep) individual observations from the input file can be specified as the last items 

in a variable declaration within the DATA statement.  Here are some example of this: 
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DATAFILE("test.dat") 
my_drop_value = 100 
DATA 
  first_time      FIELD 3  DROPIF first_time <= 0 
  missing_data    FIELD 4  DROPIF missing_data <> 1 
  last_time       FIELD 1  KEEPIF last_time > 0   
                           DROPIF (last_time == INFINITY) OR (first_time < last_time) 
  alt_missing     FIELD 5  KEEPIF alt_missing == missing_data 
END 

The DROPIF keyword specifies that a condition will be tested; if the condition is true, then the entire observation 

will be dropped.  The first DROPIF statement here specifies that the entire observation is to be dropped if first_time is less 

then or equal to zero.  The KEEPIF keyword is like DROPIF except that the observation will be kept if the condition is true, 

and dropped otherwise.  The formal grammar is KEEPIF <bexpr> and DROPIF <bexpr>, where <bexpr> is a boolean 

expression.  A boolean expression is one that evaluates to true or false.  Typically, boolean expressions use relational 

operators (>, >=, <, <=, ==, <>) and boolean operators (NOT, AND, OR, XOR).  Functions that return boolean values can be used 

as well.  

Multiple KEEPIF and DROPIF statements can be used for a single variable.  As mlemlemlemle reads in variables, each condition 

is tested in sequence, until the end of the tests are reached or the observation deemed dropped (that is, boolean short-

circuiting will be used to drop variables at the first opportunity).  The third example is a test that keeps the observation if 

last_time is greater then zero; the second test will examine if the value is equal to INFINITY (a built-in constant) or less 

than first_time, and drop the observation if either condition is true.  Then, if the variable is to be dropped, the entire 

observation is dropped.  Note that the value of other variables in the current observation may be used in a DROPIF and 

KEEPIF statement. 

Frequency of observations 

Data variables with either the name FREQUENCY or FREQ are taken as a field of frequencies for each observation.  (If 

both variable names are used, FREQUENCY is taken as the frequency variable).  For example: 
DATAFILE("test.dat") 
DATA 
  frequency       FIELD 1 DROPIF frequency <= 0 
  start_time      FIELD 2 
  last_time       FIELD 3 
END 

will take the first field in "test.dat" as the frequency for each observation.  The maximizer will automatically use the frequency 

variable as a count of repeated observations. 

Transformations 

A number of simple data transformations may be made within mlemlemlemle.  The transformations are done while the data are 

being read from the input file.  Examples of transformations are: 
DATA 
  event_time   FIELD 5 = (event_time - 1900)*365.25  DROPIF event_time < 0 
  direction    FIELD 6 = COS(direction) 
  winglength   FIELD 8 = LN(winglength/2.25) 
  estage               = 3.7 + winglength*12.76 + winglength^2 * 1.14 
END 
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Transformations begin with '=' which is then followed by an expression.  Expressions are discussed in more detail in 

a later chapter.  Basically, expressions in mlemlemlemle are similar or identical to expressions found in other computer languages and 

spreadsheets. 

In the first variable declaration of the example, event_time is read in from the input file.  That initial value of 

event_time is then used in the transformation, and a new value of event_time is computed as (event_time - 

1900)*365.25.  This result is assigned back to event_time.  Following that, the DROPIF statement will conditionally 

decide whether or not the observation is to be dropped. 

Variables are read in the same order in which they are defined.  This is true even if they are read over several lines.  

Once a variable is defined, its value can be used in later transformations.  Then, when reading in the data file, mlemlemlemle will take the 

value of that variable for the current observation for use in the later transformation.  An example might be: 
DATA 
  subject_id   FIELD 1  DROPIF subject_id =1022 DROPIF subject_id = 3308 
  births       FIELD 6  DROPIF births = -1 
  miscarriages FIELD 8  DROPIF miscarriages = -1 
  abortions    FIELD 9  DROPIF abortions = -1 
  pregnancies  = births + miscarriages + abortions  KEEPIF pregnancies > 0 
END 

This data statement will read subject_id, then births, then miscarriages and then abortions.  These variables will 

then be added together and assigned to the variable pregnancies.  An observation will be dropped if any of births, 

miscarriages, or abortions are negative one (in this case, the "missing" code), or if two particular subject_ids are 

found, or if pregnancies = 0. 

Creating dummy variables 

Dummy variables can be easily created.  Suppose you are measuring the length of some study animal.  You want to 

create four dummy variables for the length range short [0 to 30 mm), medium [30 to 40 mm) long [40 to 50 mm) and very 

long [50+ mm): 
DATA 
  length       FIELD 5 DROPIF length <= 0 
  is_short     = IF length < 30 THEN 1 ELSE 0 
  is_medium    = IF (length >= 30) AND (length < 40) THEN 1 ELSE 0 
  is_long      = IF (length >= 40) AND (length < 50) THEN 1 ELSE 0 
  is_verylong  = IF length >= 50 THEN 1 ELSE 0 
END 

Skipping initial lines in the data file 

Data files may have initial descriptive lines at the top that must be skipped.  The INPUT_SKIP controls how many 

lines to skip in a data file.  For example, if the first four lines must be skipped, the line 
INPUT_SKIP = 4 

should appear before the DATA statement.  It will direct mlemlemlemle to discard the first four lines of the data file.  The default value is 

zero so that no lines are skipped. 
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Delimiters in the data file 

Data files consist of a series of text elements separated by one or more delimiters. One or more delimiters must 

appear between each record within a data file.  The delimiters define the fields within each line in which variables reside.  By 

default, the characters space, tab, and comma are treated as delimiters.  You can redefine the delimiters by changing the 

variable DELIMITERS before the DATA statement.  If, for example, you wanted the colon and semicolon character as the only 

valid delimiters, you would add the line: 
DELIMITERS = ":;" 

Creating observations without a file 

Rather than reading observations from a file, observations can be created.  This is useful for simple simulation 

programs using the random number generators in mlemlemlemle.  To create variables, simply set the variable CREATE_OBS to some 

positive number.  That number of observations will be created.  Here is an example: 
CREATE_OBS = 10         {create 10 observations} 
SEED(8936)              {set the random number generator seed} 
DATA 
  var1   = RAND  {random number from 0 to 1} 
  var2   = IRAND(100, 200) 
  var3   = sin(pi*RAND) 
END 

Yields the following set of data: 
var1        var2   var3 
0.46991484  157.0  0.98095861 
0.76562640  117.0  0.24396827 
0.80010137  173.0  0.73070002 
0.92179122  139.0  0.86426399 
0.43740313  197.0  0.88247371 
0.01521996  136.0  0.09665617 
0.46592947  136.0  0.39891672 
0.02549209  198.0  0.78123339 
0.49985020  185.0  0.36516675 
0.83997806  193.0  0.48128269 

Printing observations and statistics    

Some other variables can be used to fine-tune the DATA statement. 

The variable PRINT_DATA_STATS, when set to TRUE, prints summary statistics for each variable, including the 

mean, variance, standard deviation, minimum and maximum.  The default is TRUE, so this report can be suppressed with 

PRINT_DATA_STATS = FALSE. 

When PRINT_OBS is set to TRUE, each observation is printed to the output file.  The report is printed after all 

transformations have been done.  The default value is FALSE, so you must have the statement PRINT_OBS = TRUE to print 

the observations. 
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The variable PRINT_COUNTS, when set to TRUE, prints out how many lines were read from the input file, how many 

observations were kept, and how many observations were dropped.  The default value is TRUE, so these reports can be 

suppressed with PRINT_COUNTS = FALSE. 

Number formats    

The mlemlemlemle language is primarily designed for operations on numbers.  With this in mind, a wide variety of number 

formats, including some with automatic conversions, are supported.  The standard formats for real and integer numbers are 

recognized, so that "3.14159", "-12.14" and "0.001" are read as would be expected.  Real numbers must have a leading zero, 

so ".23" is not valid but "0.23" is.  Real numbers can be in scientific notation so that  "2.1E-23", "0.3E12", "-1e4", "12345e-

67 are valid numbers. 

Table 2. Standard number formats. 

Format Examples Conversion Result 
d 1, 200  integer 
 d.d, d. 3.1415, 3.  real 
ds, -ds, d.ds, -d.ds, 14%, 23.7M, 45.7da, 2n, 2.418E Metric suffix (see Table 3) real 
dEd, dE-d, d.dEd, d.dE-d, 
d.Ed, d.E-d 

3e23, 511E-10, 31.416e-1, 7.0E-10, 
12.e-6, 1.45E-3, 1.0E0 

Standard exponential format. 
xEy ⇒ x × 10y 

real 

0Rv 0RXLVII, 0rMXVI, 0rmdclxvi Roman numerals to integer integer 
dXy 2x1001 (binary), 8X3270 (octal), 

16xA4CC (hex), 32x3vq4h (base 32).  
Converts y from base d (from 
2 to 36) into integer. 

integer 

d:d:d,  d:d:d.d,  d:d, d:d.d  10:42, 14:55:32, 10:40:23.4, 16:53.2 24-hour time into hours.  
Hours must be 0-24. 

real 

d:d:dAM, d:d:dPM, d:d:d.dAM, 
d:d:d.dPM, d:dPM, d:dAM, 
d:d.dAM, d:d.dPM  

10:42AM, 2:55:32pm, 10:40:23.4am 12-hour time with AM and 
PM suffixes into hours.  Hours 
must be 0-12. 

real 

dHd'd", dHd'd.d", dHd', dHd.d'', 
dHd.d'' 

230h16'32", 14H32'6", 100h22', 
30H32.2', 0h12', 0H12'3" 

Degree/hour minute, second 
format.  Converted to real 
angle/time. 

real 

d`d'd", d`d'd.d", d`d', d`d.d'', -
d`d'd", d`, d.d`, d°d'd", d°d'd.d", 
d°d', d°d.d'', d°, d.d° 

230`16'32", 14`32'6", 100`22', 30`32.2', 
14`, 230°16'32", 14°32'6", 270°10'0", 
30°18.2', 3.4° 

Degree, minute, second 
format, converted to radians. 

real 

d'd", d'd.d", d', d.d', d", d.d" 12'32", 166'12.9", 19', 14.7', 12", 607.3" Minute-second and second 
format, converted to radians. 

real 

d_d/d 12_5/16, 3_2/3, 0_1/7 Fraction notation. real 
dDdMdY 16d12m1944y, 1D6M1800Y Date converted to Julian day integer 
dMdDdY 12m16d1944y, 6M1D1800Y Date converted to Julian day integer 
dYdMdD 1944y12m16d, 1800Y6M1D Date converted to Julian day integer 
dmmmy 14Dec1999, 30jun1961, 1MAY1944 Date converted to Julian day integer 
d is a strings of one or more positive digits; s is a one or two character case-sensitive metric or percent suffix (see Table 3), v is a string of 

one or more Roman numeral digits {IVXLCDM}, y is a string of one or more characters, mmm is a 3-character English month name.  
E.g. jan, Feb, MAR, etc. The degree character (°) is available on some hardware platforms as ASCII code 230.  On many Intel platforms, 
holding down the <ALT> key and typing 230 on the numeric keypad gives the degree character. 

The Greek letter micro (µ) is available on some hardware platforms as ASCII code 248.  On many Intel platforms,  holding down the 
<ALT> key and typing 248 on the numeric keypad gives this character. 
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Less common formats include numbers with metric and percent suffixes, numbers interpreted as time, numbers in an 

angle notation (one format that converts degrees to radians), numbers in bases from 2 to 36, Roman numerals, numbers in 

fraction notation, and several date formats.  These formats are supported in data files as well as numeric constants within an 

mlemlemlemle program. Table 2 is a comprehensive list of formats recognized by mlemlemlemle , and Table 3 is a list of suffixes permissible on 

standard integer and real format numbers. 

 

An example of creating a data file 

The format of the data file is ordinary ASCII text, and the file can be created with any text editor.  Word processors 

can be used to create files as well, but the results must be saved as ASCII text.  Nearly all word processors provide an ASCII 

text option.      An example of a typical data file can be seen in Chapter 1, but here we will examine a more complicated data 

file and write the mlemlemlemle program to read and process the file. 

The current version of mlemlemlemle creates variables of type real, and attempts to read real numbers for each variable.  Even 

so, any delimited text can appear in fields that are not assigned to variables.  Consider how we would create a DATA statement 

to read the numeric values for the following file: 
Last   First,MI     Age   Amount     More   Rate  Time 
Smith  James,A      42     12000     TRUE   18%    4.2 
Jones  David,J      38      8000     FALSE  12%    3.1 
Connor Mary         50     11000     TRUE   19%    2.1 

First of all, notice that there is a header on the first line of the file.  This line should be discarded by setting INPUT_SKIP=1.  

From there, the data files has one line per observation, with each variable corresponding to one column.  Some data files place 

one observation across multiple lines, so that the LINE option in the DATA statement must be used.  We will not need to use 

the LINE specification here. 

This file consists of seven fields delimited by space characters.  Since the space character is one of the default 

delimiters, we do need to change the delimiters to recognize the space as such.  But, since we have commas embedded in the 

text that should not to be taken as delimiters, we must redefine delimiters to exclude the comma and include the space (and 

the tab character, if necessary).  The numeric values appear in fields 3, 4, 6, and 7.  We do not need to do anything with fields 

1, 2, and 5.  Let us say that we want to convert time from years into months. Here is the complete mlemlemlemle  code to read and 

process this file (but no analyses are specified): 
MLE 
  DATAFILE("THEDATA.DAT") 
  PRINT_OBS = TRUE     {print out each observation} 
  INPUT_SKIP = 1       {get rid of the header line} 
  DELIMITERS = " "     {spaces only--treat commas as text} 
  DATA 
    age       FIELD 3 
    amount    FIELD 4  DROP <= 0 
    rate      FIELD 6    {% is a legal number suffix in mle} 
    time      FIELD 7  MULTIPLY 12 
  END 
END 
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Running mlemlemlemle on this file produces the output to the screen (or standard output) since no OUTFILE procedure was 

called.  Here are the results: 
3 lines read from file THEDATA.DAT 
3 Observations kept and 0 observations dropped. 
 
NAME          age      amount        rate        time 
    1  42.0000000  12000.0000  0.18000000  50.4000000 
    2  38.0000000  8000.00000  0.12000000  37.2000000 
    3  50.0000000  11000.0000  0.19000000  25.2000000 
 
MEAN   43.3333333  10333.3333  0.16333333  37.6000000 
VAR    37.3333333  4333333.33  0.00143333  158.880000 
STDEV  6.11010093  2081.66600  0.03785939  12.6047610 
MIN    38.0000000  8000.00000  0.12000000  25.2000000 
MAX    50.0000000  12000.0000  0.19000000  50.4000000 

 

Table 3. Standard metric suffixes for integer and real numbers. 

Suffix Name Conversion  Suffix Name Conversion 
da deka ×10  d deci ×10-1 
h hecto ×102  c, % centi, percent ×10-2 
k kilo ×103  m milli ×10-3 
M mega ×106  µ, u micro ×10-6 
G giga ×109  n nano ×10-9 
T tera ×1012  p pico ×10-12 
P peta ×1015  f femto ×10-15 
E exa ×1018  a atto ×10-18 
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THE MODEL STATEMENT 

Introduction 

The model statement is the meat of the mlemlemlemle programming language.  It specifies the likelihood, defines parameters, 

and specifies which parameters are to be estimated.  A complete understanding of how models are built in mlemlemlemle requires an  

understanding of the structure of the MODEL statement, an understanding of parameters and how they are specified, an 

understanding of how expressions are specified and are built into likelihoods, and an understanding of the specification for 

running models. 

This chapter discusses the MODEL statement.  It is assumed that you understand the basics of expressions and data 

types for the mlemlemlemle  language.  Chapter 1 provided much of the necessary background.  This chapter covers several topics that 

are closely related to building typical likelihood models in mlemlemlemle: the PARAM function, the PDF function, and the DATA and 

LEVEL functions. 

Structure of the MODEL statement 

The basic structure of the MODEL statement looks like this: 
MODEL 
  <expression> 
RUN 
  <run list> 
END 

The single <expression> in the MODEL statement defines the likelihood that is to be maximized.  (Expressions are 

described in some detail here, other details are given in other chapters).  Here is an example of a simple model for finding the 

two parameters for a normal PDF from interval censored observations. 
{1} MODEL 
{2}   DATA 
{3}     PDF NORMAL(topen, tclose) 
{4}       PARAM  mu     LOW = 5   HIGH = 14  START = 8   END 
{5}       PARAM  sigma  LOW = 0.1 HIGH = 5   START = 1.2 END 
{6}      END  {pdf} 
{7}   END  {data} 
{8} RUN 
{9}   FULL 
{10} END 

Everything beginning with the DATA function on line 2 to the END on line 7 is a single expression.  That expression 

defines a likelihood.  Values for the parameters mu and sigma will be found that maximize this likelihood.  The likelihood in 

this example is the product of interval censored observations between topen and tclose, and is equivalent to  
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for N observations and with S(t) defined as the survival function for a normal distribution 

The expression that defines the likelihood within a model statement can become much more complicated than this 

example.  A likelihood that is made up of a more complicated expression is given in Example 1. Here the  <expression> 

begins with the DATA function and ends with a matching END just before the RUN.  Within the DATA function, the MIX function 

is immediately called, and the MIX function contains three arguments separated by commas.  Each of these three arguments of 

the MIX function contains an expression.  Here, we see one parameter (a mixing proportion) and two function calls: 

PDF...END.  The likelihood, in symbols, is  

 { }1 1 1 1 2 2 2 2
1

( | , ) ( | , ) (1 ) ( | , ) ( | , )
i i i i

N

open close open close
i

L p S t S t p S t S tµ σ µ σ µ σ µ σ
=

   = − + − −   ∏  

for N observations and with S1(t) defined as the survival functions for a normal distribution. 

Runlist 

Sometimes parameters are constrained for the purpose of hypothesis testing or modifying the model.  Parameters 

may be held constant, or fixed to the value of another parameter.  These are called fixed parameters, and an estimate will not 

be found for them.  The runlist in mlemlemlemle provides the mechanism for fixed parameters primarily to reduce models from more 

complicated to simpler forms.  For example, in a slope function, we may have reason to believe that the slope m is one.  

Perhaps this is because of the nature of the physical system we are modeling.  We could first fit our collection of x values to 

the model with parameter m free, and secondly fit it with m held constant to 1.  Statistical criteria can then be used to 

determine whether m deviates from the value we expected it to be. 

The run list defines which parameters are free and allows the user to test reduced models.  The run list begins with 

the word RUN and ends with a matchin END.  Between the RUN and the END comes a list that specifies how the model is to be 

run.  When FULL is specified, all free model parameters for the model are estimated.  The REDUCE keyword provides a 

mechanism to constrain parameters of the model.  The REDUCE keyword is followed by a list of constraints.  Parameters may 

be constrained to other parameters, to constants or to variables.  More than one REDUCE keyword may occur in a single run 

list.  Generically, a runlist looks like this: 
RUN 
  FULL    
  REDUCE  <reduce list> 
  REDUCE  <reduce list> 
  ... 
END 

The <reduce list> is a set of one or more parameter constraints that look like assignment statements.  Parameters so 

constrained will not be estimated.  The following example includes one full and three reduced runs. 
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MODEL 
  DATA 
    PDF NORMAL(topen, tclose) 
      PARAM mean ...  
        COVAR sex  PARAM b_sex ... END 
      END {param} 
      PARAM stdev ... END 
    END  {pdf normal} 
  END  {data} 
RUN 
  FULL   {Runs the model with no constraints} 
  REDUCE  mean = 4                {One constraint} 
  REDUCE  mean = 4  b_sex = 0     {Constrains 2 parameters} 
  REDUCE  mean = oldmean          {Fixes mean to another param or variable} 
END 

In this example, parameters will be estimated four times.  For the first case (FULL) three parameters will be estimated.  For the 

second case, the mean parameter will be constrained to 4 so that only two parameters will be estimated.  For the third case, 

only on parameter is free to be found, and for the fourth case, two parameters are free. 

mlemlemlemle provides a mechanism for accessing results from previous runs within the same model.  Thus, in the previous 

example, the parameter mean and stdev are really called mean.1 and stdev.1 when the full model is run.  Likewise, the 

parameters are called mean.4 and stdev.4 for the last run.  For a reduce statement like REDUCE mean = stdev, mlemlemlemle will 

assume the parameters refer to the current run.  That is, mlemlemlemle treats them as REDUCE mean.1 = stdev.1 (assuming this is the 

first entry of the run list). 

Expressions used in MODEL statements 

Expressions are used in many ways within mlemlemlemle, so that you should become thoroughly acquainted with expressions 

before attempting to develop mlemlemlemle programs.  For example, the likelihood within a MODEL statement is a single (sometimes 

complicated) expression.  Expressions are used to define limits of integration, summations, and products, they can be used to 

define start, high, low, and test values for parameters, and many other things.  The right-hand side of an assignment is an 

expression, as are data transformations in the DATA statement.  Boolean expressions are used in IF statements, DROPIF and 

KEEPIF and elsewhere. 

A brief summary of the types of functions defined in mlemlemlemle is given in Table 5.  At the simplest level, an expression in 

mle mle mle mle can be a numerical constant or a variable name.  More complex expressions consist of algebraic operators (*,^,+, etc) and 

function calls each with zero or more arguments.  Most functions in mlemlemlemle are simple functions with a fixed number of 

arguments, for example: PERMUTATIONS(x, y), ARCSIN(x), ABS(x), MIX(p, x, y).   

A second class of functions are more complex, and have a more complicated syntax.  These functions begin with a 

keyword, and end with an END.  Examples of some of these functions are the PARAM...END function, DATA...END function 

(not to be confused with the DATA END statement described in a previous chapter), the PDF...END function, the INTEGRATE 

a (b, c)...END  function, and the IF  THEN...ELSE...END function. 

Suppose you want to integrate sin(x2 + 2x) from -√π to √π.  Here is an example of how that could be coded: 

INTEGRATE x (-SQRT(PI), SQRT(PI)) SIN(x^2 + 2*x) END.  (The function evaluates to ≈ -1.525). Here it is with 

comments: 
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INTEGRATE x  (      {x is the variable of integration} 
  -SQRT(PI),        {This is the lower limit of integration} 
   SQRT(PI)         {This is the upper limit of integration} 
             )      {Close of the argument list} 
    SIN(x^2 + 2*x)  {The function to be integrated} 
END                 {End of the integrate function} 

Any of the predefined probability density functions can be used as part of an expression.  For example, if you wanted 

the area between 8 and 12 under a normal distribution with µ=10 and σ=3, you could write that expression as 
PDF NORMAL(8, 12) 10, 3 END 

The PARAM function 

mlemlemlemle has a general method for defining all parameters to be used in a likelihood model.5  The PARAM function defines a 

parameter and its characteristics.  The function should only be used within a MODEL statement.  When models are “solved”, 

free parameters are estimated by iteratively plugging new values in for those parameters until the values that maximize the 

likelihood are found.  In other words, free parameters are values that are to be estimated by mlemlemlemle —they are the unknowns in 

likelihood models.  If the parameter is not constrained to some fixed value in the RUN part of the model statement, mlemlemlemle will 

estimate the value of that parameter.   

In the simplest case, parameters are specified as 
PARAM  <p> HIGH = <expr>.LOW = <expr> START = <expr> TEST = <expr>..FORM = <formspec> END 

where <p> is the name chosen for the parameter.  The keywords HIGH, LOW, START, and TEST specify characteristics for the 

parameter.  HIGH and LOW specifies the minimum and maximum value allowed for the parameter.  mlemlemlemle will not exceed these 

values while trying to maximize the likelihood.  START tells the maximizer what vaule to start with.  TEST denotes the value 

against which to test the parameter for significance.  By default, TEST is zero.  The TEST value does not change anything 

about how the parameter is maximized.  It is only used for a t-test as the parameter is being written to the output file. 

                                                           
5 The word parameter is used in a very specific way, as defined in Chapter 1.  Parameters are the quantities to be estimated in a likelihood 

model 

MODEL     {mixture of two normal distributions} 
  DATA 
    MIX( 
      PARAM   p  LOW = 0  HIGH = 1  START = 0.5 END 
    , 
      PDF NORMAL(topen, tclose) 
        PARAM  mu1     LOW = 5   HIGH = 14  START = 8 END, 
        PARAM  sigma1  LOW = 0.1 HIGH = 5   START = 1.2 END 
      END  {PDF} 
    , 
      PDF NORMAL(topen, tclose) 
        PARAM  mu2     LOW = 0   HIGH = 6  START = 2 END, 
        PARAM  sigma2  LOW = 0.01 HIGH = 5   START = 1.2 END 
      END  {PDF} 
    ) {mix} 
  END {data} 
RUN 
  FULL 
END       {model} 

Example 1.  Model specification for estimating a mixture of two normal distributions with interval censored observations. 
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The PARAM function allows covariate effects (and their associated parameters) to be modeled within the parameter 

statement.  This is done as follows: 
PARAM  x HIGH = <expr> LOW = <expr> START = <expr> TEST = <expr>  FORM = <formspec> 
  COVAR <expr>  PARAM  z .HIGH = ... END 
  ... 
END  {param} 

With covariates, the <expr> following COVAR is a covariate effect.  Typically this is a variable like age, sex, income, etc.  The 

effect of the covariate is multiplied by the value of the PARAM function.  The way in which covariates and parameters are 

modeled is discussed in more detail below. 

Here is an example of a likelihood hand-coded for an exponential PDF for exact failure times.  PARAMs and built-in 

simple functions, and algebraic expressions are all shown in this likelihood: 
MODEL 
  DATA 
    PARAM lambda LOW = 0 HIGH = 1 START = 0.23 END * EXP(-lambda * t) 
  END 
RUN 
  FULL 
END 

Notice that lambda is first defined as a parameter, and thereafter is used as an ordinary variable.  As mlemlemlemle iteratively seeks a 

solution, new values of lambda will be tried.  As the likelihood itself is being computed, the PARAM function will simply 

return the current estimate of lambda. 

An alternative way to code this example is to define the parameter first and assign it to another variable: 
MODEL 
  PREASSIGN 
    lam = PARAM lambda LOW = 0 HIGH = 1 START = 0.23 END 
    DATA 
      lam*EXP(-lam*t) 
    END  {data} 
  END  {preassign} 
RUN 
  FULL 
END {model} 

The PREASSIGN function is described in another chapter. 

In Example 1, five parameters are defined, two each for the two PDF functions and one parameter that was added for 

the first argument to the MIX function call. 

Typically, parameters are defined for the intrinsic parameters of a PDF function.  For example, the normal PDF has 

two intrinsic parameters µ and σ.  The first parameter specified in the parameter list will be treated as µ.  The second will be 

treated as σ.  How can you know the proper order for parameters?  Generally location parameters appear first (and are usually 

denoted a in this manual), scale parameters are second and shape parameters are third.  Even so, you can get a quick synopsis 

of each type of PDF by using the -h option from the command line, e.g.:  mle -h SHIFTWEIBULL 

Parameters are also used to model effects of covariates on other parameters.  Here is an example in which two 

parameters, used in place of some fixed values of µ and σ for a normal distribution, are defined with two covariate 

parameters, each: 
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PDF NORMAL(topen tclose) 
  PARAM mean  LOW = 100  HIGH = 400  START = 270  TEST = 0  FORM = LOGLIN 
    COVAR  sex    PARAM b_sex_mu     LOW = -2  HIGH = 2  START = 0 END 
    COVAR  weight PARAM b_weight_mu  LOW = -2  HIGH = 2  START = 0 END 
  END 
  PARAM stdev     LOW = 0.1  HIGH = 100 START = 20  FORM = LOGLIN 
    COVAR  sex    PARAM b_sex_sig     LOW = -2  HIGH = 2  START = 0 END 
    COVAR  weight PARAM b_weight_sig  LOW = -2  HIGH = 2  START = 0 END 
  END 
END 

In this example, the first parameter of the normal distribution (µ) has two covariates and their corresponding 

parameters modeled on it.  The exact specification of how covariates and their parameters are modeled depend on the FORM of 

the intrinsic parameter.  In the example, the FORM = LOGLIN specifies that a log-linear specification is to be used.   The log-

linear specification is µi = µ’exp(xiββββ), where µ’ is the estimated intrinsic parameter (mean in this case).  Thus, for the ith 

observation, the µ parameter of the normal distribution will be constructed as:  µi=mean×exp(sexi×b_sex + 

weighti×b_weight).  The second parameter, stdev, has the same two covariates modeled on it, but the parameter names 

are (and must be) different from the parameters modeled on mean. 

Table 4.  Forms and transformations for parameters. 

Form Parameter (p’), covariates (xi), covariate 
parameters (ββββ), and the value returned 
by the PARAM function (pi) 

Notes 

NUMBER pi = p’ Default when no COVARs are modeled. 
ADD pi = p’ + xiββββ Must be used with care when the resultant parameter is 

constrained to positive values because pi might take on 
negative values for some combinations of xiββββ 

INVERT pi = 1/(p’ + xiββββ) The denominator must not be zero. 
INVADD pi = 1/p’ + xiββββ p’ must not be zero. 
INVMULTIPLY pi = xiββββ/p’ p’ must not be zero. 
INVLOGLIN pi = exp(xiββββ)/p’ p’ must not be zero. 
DIVIDE pi = p’/xiββββ xiββββ must not be zero. 
POWER i

ip p β′= x   

POWEREXP exp( )i
ip p β′= x   

EXPADD pi = exp(p’ + xiββββ) = exp(p’)exp(xiββββ) Constrains pi to positive values for all p’ and xiββββ. 
MULTIPLY pi = p’× xiββββ A multiplicative specification. 
EXCESS pi = p’exp(1 + xiββββ)  
LOGLIN pi = p’exp(xiββββ) This is a common specification, especially for parameters that 

are interpreted as hazards.  When p’ is constrained positive, 
the pi will also be positive. Like EXPADD but p’expadd = 
exp(p’loglin).  LOGLIN is the default specification whenever a 
COVAR is defined. 

LOGISTIC If ALTERNATE_LOGISTIC = FALSE, 
   pi = 1/[1 + exp(p’ + xiββββ)]. 
If ALTERNATE_LOGISTIC = TRUE, 
   pi = exp(p’ + xiββββ)/[1 + exp(p’ + xiββββ)] 

Frequently used for parameters that are interpreted as 
probabilities because, for all values of p’ + xiββββ, pi will be 
constrained from zero to one.  The alternative forms are 
related to each other as p’form1=1– p’form2 

LOGIT pi = ln[exp(p’ + xiββββ)/(1 + exp(p’ + xiββββ)] This specification is useful when pi can take on any value 
from –∞ to ∞ and p’ + xiββββ is a probability. 
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For some forms, the parameter itself is transformed.  For example, when a parameter is a probability (as it is for the 

MIX function in Example 1) the parameter can be defined as: 
PARAM p  LOW = -999  HIGH = 999  START = 0  FORM = LOGISTIC END 

The logistic transformation permits the parameter p to take on any value from negative infinity to infinity, but the resulting 

value passed used by the likelihood will be constrained to the range (0, 1).  In other words, mle  mle  mle  mle  will estimate a parameter over 

the range –999 to 999, but before that parameter is used in computation, it will undergo a logistic transformation as p = 1/[1 + 

exp(p’)], so that the value of p will be a probability.  mlemlemlemle currently provides a limited number of specifications for how 

parameters and covariates are modeled (Table 4).  Even so, this mechanism for modeling covariates on any parameter is 

extremely general and provides the basis for building unique and highly mechanistic (Box et al. 1978) or etiologic (Wood 

1994) models.   

Setting parameter information 

Four characteristics may be set for each parameter in addition to the FORM.  They are: 1) the highest possible value 

that can be tried for the parameter, 2) the lowest possible value that can be tried for the parameter, 3) the starting guess to help 

mlemlemlemle out from the start, and 4) a test value against which the parameter will be tested when standard errors are computed.  In the 

previous example, the mean parameter was constrained to the range [100, 400] and the initial guess was 270. 

Use care when setting the HIGH and LOW limits.  Most importantly, limits must be constrained to valid ranges for the 

intrinsic parameter.  Thus, for the MIX mixing proportion parameter (the first of the three parameters) then, HIGH = 1 and 

LOW = 0, should be defined as is appropriate for a probability—unless some FORM like FORM = LOGISTIC is used to 

constrain the resulting parameter to between 0 and 1.  Sometimes it is useful to impose narrower limits, perhaps to avoid 

getting hung-up at a local maximum or to solve the model more quickly.  Be careful, though. Limits that are too narrow may 

exclude the global maximum—after all, the best parameter estimates for a set of data are presumably unknown.  Excessively 

narrow limits may cause problems when numerical derivatives for the variance-covariance matrix are computed, as well.  

Also, likelihood confidence intervals will bump up and stop at the limits you set. 

The TEST = xxx part of a PARAM function provides a value against which the parameter will be tested (in some 

reports). In a sense, the TEST value is a null hypothesis value (h0).  The test performed is ˆ ˆ( ) / ( )ot p h SE p= − , where p̂ is 

the maximum likelihood parameter estimate and ˆ( )SE p  is the standard error for the parameter estimate.  The t-test is 

provided for convenience only.  mlemlemlemle does not make use of the test in any way. 

 

The PDF functions 

One of the most frequently used functions in the MODEL statement is the PDF function.  The purpose of the PDF 

function is to specify the component of a pre-defined probability density or distribution functions.  Although the name is PDF, 

the PDF function can return either the probability density function or specified areas under the PDF curve including the 
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cumulative and survival density functions, and the hazard function.  In addition, the PDF function can return areas or densities 

that are left and right truncated.  The structure of the PDF function call is: 
PDF <PDF name> ( <time variable1>, <time variable2>, ... ) 
  <intrinsic parameter 1>, 
  <intrinsic parameter 2>, 
  ... 
  <optional HAZARD> 
END 

The name following PDF is the name of the built-in distribution.  mlemlemlemle predefines over 60 density functions, including 

most well-known ones like the normal, lognormal, weibull, gamma, beta, and exponential distributions.  A complete summary 

of built-in distribution is given in a later chapter. 

Time variable list is a list of the time arguments passed to the PDF.  Most univariate PDFs can take from one to four 

‘time’ arguments.6  In fact, these four times describe a single observation in such a way as to incorporate a number of defects 

in the observation process, including right censoring, left truncation, right truncation, cross-sectional observations.  A 

description of how the four arguments combine to specify a probability are given in the section that follows.  Note that the 

time arguments can be any expression, so that time shifts and transformations can be incorporated in this list. 

                                                           
6 These are called time variables in the context of survival analysis; however, they may represent other measurements (length, dose, height, 

etc.). 

Table 5.  Brief summary of some types of functions in mlemlemlemle. 

function Brief description 
PDF Specifies a pre-defined probability or cumulative density function.  Returns the value of the density or 

distribution function as is appropriate to the arguments with which is was called. 
INTEGRATE Integrates a function and returns the value of the integral. 
IF THEN ELSE Evaluates a condition and returns the appropriate subfunction. 
PREASSIGN Computes a subfunction and assigns the result to a variable.  Then it computes and returns the second 

subfunction. 
POSTASSIGN Computes the first subfunction.  Then it computes the second subfunction, assigns the result to a 

variable, and then returns the value of the first subfunction. 
PRODUCT Iterates over some limits and takes the product of a subfunction. 
SUMMATION Iterates over some limits and sums a subfunction. 

function  calls A number of ordinary mathematical functions.  Example: SQRT(x) and ADD(x, y). 

quick conditionals ZEROIF, ONEIF, NEGONEIF, INFINITYIF, NEGINFINIF, NEGONEIF: return common values 

conditional on simple tests. 

constants, variables Pre-defined and user defined variables can be used as functions. 
PARAM A parameter to be estimated. 
DATA The data function cycles through all observations 
LEVEL, 

LEVELDELTA 
Creates a nested or multilevel likelihood. 



The MODEL statement 

 43 

Intrinsic parameter list provides specifications for the PDF’s intrinsic parameters.  The order that the intrinsic 

parameters are specified is important; it corresponds to how the PDF is defined within mlemlemlemle.. The PDFs chapter lists the order 

for intrinsic parameters; alternatively, the command line mle -h can be used to determine the proper argument order.  Note 

that any expression can be used for an intrinsic parameter.  That is, you do not need to use a PARAM function for the intrinsic 

parameters, although this is the most common use.  Here is an example in which the location parameter is fixed to a constant 

for a shifted lognormal distribution: 
PDF SHIFTLOGNORMAL ( tooth_eruption_age ) 
  9,  {shift the time back to conception} 
  PARAM location LOW = 1 HIGH = 4 START = 2.5 END, 
  PARAM scale LOW = 0.0001 HIGH = 3 START = 0.9 END 
END 

PDF time arguments 

Most PDFs can have as few as one and as many as four time arguments specified.  They are: tu, the last observation 

time before an event; te, the first observed time after the event; tα, the left truncation time for the observation or the PDF; and 

tω, the right truncation time for the observation or the PDF.  Understanding how these four times act on the PDF statement is 

critical to creating the desired and proper likelihood. 

PDFs contribute to likelihoods in a number of ways.  In survival analysis, for example, the likelihood for an exact 

failure is given by the value of the PDF at the exact point of failure.  For a right censored observation, the likelihood is given 

by summing up (integrating) all possible PDF values from the last observation time until the maximum possible time.  The 

likelihood for a cross-sectional “responder” is the integral from zero to the time of first observation.  Table 6 lists the 

likelihoods that result from the four time variables for different conditions.  For example, when tu=te or when only one time 

variable is specified, mlemlemlemle returns the density at tu.  This is the desired likelihood for an exact failure.  Likelihoods for right and 

interval censored observations, with and without left and right truncation are given in Table 6. 

The Hazard parameter 

For most parametric distributions (like the normal or lognormal distributions) the hazard function does not take on a 

simple or closed form.  For this reason, most studies have modeled the covariates as acting on the failure time for these 

distributions.  Nevertheless, there is no inherent reason why hazards models cannot be constructed using distributions without 

a closed form for the hazards functions.  Most of the PDFs included in mlemlemlemle provide a general mechanism for covariates to be 

modeled as affecting the hazard of failure, rather than (or in addition to) affecting intrinsic parameters.  Here is an example: 
PDF NORMAL(topen tclose) 
  PARAM mean   LOW = 100  HIGH = 400  START = 270  TEST = 0  FORM = LOGLIN END, 
  PARAM stdev  LOW = 0.1  HIGH = 100 START = 20 END, 
  HAZARD COVAR  sex     PARAM b_sex     LOW = -2  HIGH = 2  START = 0 END 
         COVAR  weight  PARAM b_weight  LOW = -2  HIGH = 2  START = 0 END 
END 

The covariates sex and weight are modeled to effect on the hazard of failure.  Parameters b_sex and b_weight provide 

estimates of the effect. 
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The HAZARD statement always provides a proportional hazards specification modeled directly on the hazard of the 

PDF.  Usually, the specification is loglinear, so that the hazard for the ith observation including the covariate effects defined 

as hi(ti|xiββββ) = h(ti)exp(xiββββ), where h(t) is the baseline hazard for the specified PDF, and xiββββ is a vector of covariates xi and 

parameters ββββ, so that xiββββ = xi1β1 + xi2β2+ xi3β3 . . . .  Then, the survival function becomes Si(ti|xiββββ) = S(ti)exp(xββββ), and the 

probability density function becomes fi(ti|xiββββ) = f(ti)S(ti)exp(xββββ)–1exp(xiββββ).   

This particular hazards model specification is commonly used.  By exponentiating the xiββββ array, the covariate effects 

will never cause the hazard to go negative (hazards are never negative). 

Table 6.  Likelihoods returned by PDF for one, two, three, and four time variables under different conditions. 

Example When Class Resulting Likelihood 
LNNORMAL(te)  Exact failure at te ( )eL f t=  

LNNORMAL(tu, te) tu=te Exact failure at tu=te ( ) ( )u eL f t f t= =  

LNNORMAL(tu, te) te=oo 
te < tu 

Right censored or cross-sectional 
non-responder at tu ( ) ( )

u

u
t

L f z dz S t
∞

= =∫  

LNNORMAL(tu, te) tu = 0 Cross-sectional responder at te 

0

( ) ( )
et

uL f z dz F t= =∫  

LNNORMAL(tu, te) tu ≠ te Interval censored over the interval 
(tu,  te).  Includes, as a limiting case 
cross-sectional responder and 
right-censored. 

( ) ( ) ( )
e

u

t

u e
t

L f z dz S t S t= = −∫  

LNNORMAL(tu, te, tα) tu = te Left-truncated exact failure ( ) ( )
( )

( )

u u

t

f t f tL
S t

f z dz
α

α
∞= =

∫
 

LNNORMAL(tu, te, tα) tu ≠ te Left-truncated, interval censored 
failure 

( ) ( ) ( ) ( )
( )

( )

u e u e

t

S t S t S t S tL
S t

f z dz
α

α
∞

− −= =
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LNNORMAL(tu, te, tα, tω) tu = te Left- and right-truncated, exact 
failure 

( ) ( )
( ) ( )
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e e
t

t

f t f tL
S t S t
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α ω
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LNNORMAL(tu, te, tα, tω) tu < te 

tα ≤ tu 

tω ≥ te 

Left- and right-truncated, interval 
censored failure 
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A multiplicative form for the proportional hazards specification can also be specified by setting the constant 

EXP_HAZARD = FALSE (it is TRUE by default).  Then, the model is hi(ti|xiββββ) = h(ti)xiββββ, S(ti|xiββββ) = S(ti)xββββ, and f(ti|xiββββ) = 

f(ti)S(ti)xββββ–1xiββββ. You must insure that xiββββ never goes negative. 

The DATA function 

The DATA...END function provides a mechanism to "feed" observations to the likelihood.  This function specifies 

that observations are to be "fed" to the likelihood one at a time, corresponding to the product (∏) over all observations shown 

in likelihoods (or the Σ shown in loglikelihoods).  The DATA function loops through all observations that were previously read 

in by the DATA statement.  In other words, the DATA...END function returns the total logloglikelihood or total likelihood, 

given a series of observations and an expression for an individual likelihood or individual loglikelihood.  The general form 

for the DATA function is:  
DATA <optional_form> 
  <expression> 
END 

where optional_form is one of  

• FORM = SUMLL —  This takes the log of each individual likelihood and sums the loglikelihoods over the data.  A 

likelihood (rather than a loglikelihood) is specified for <expression>.  This is the default value if no <formtype> is 

specified. 

• FORM = SUM or FORM = SUMMATION — Sums loglikelihoods over the data without first taking the log.  This is used 

when a loglikelihood is specified rather than a likelihood for <expression>. 

• FORM = PROD or FORM = PRODUCT —  Takes the product of likelihoods over the data and does not take the log of 

the likelihood.  This is used when a likelihood (rather than a loglikelihood) is specified for <expression> and some 

function appears outside the data function that takes the log. 

Here are three models that yield the same overall likelihood function, but uses different forms for the DATA function: 
  MODEL 
    DATA  FORM = SUMLL        {the default form} 
      PDF NORMAL(topen tclose) 
        PARAM mu     LOW = 10     HIGH = 100 START = 30 END 
        PARAM sigma  LOW = 0.0001 HIGH = 10  START = 1  END 
      END  {pdf} 
    END {data} 
  RUN 
    FULL 
  END  {model} 

  MODEL 
    DATA  FORM = SUM         {The loglikelihood is specified} 
      LN(PDF NORMAL(topen tclose) 
           PARAM mu     LOW = 10     HIGH = 100 START = 30 END 
           PARAM sigma  LOW = 0.0001 HIGH = 10  START = 1  END 
         END  {pdf} 
      ) 
    END {data} 
  RUN 
    FULL 
  END  {model} 
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  MODEL 
    LN( 
      DATA  FORM = PRODUCT         {The likelihood is specified} 
        PDF NORMAL(topen tclose) 
          PARAM mu     LOW = 10     HIGH = 100 START = 30 END 
          PARAM sigma  LOW = 0.0001 HIGH = 10  START = 1  END 
        END  {pdf} 
      END {data} 
    ) 
  RUN 
    FULL 
  END  {model} 

In theory, these three models will yield identical results.  In practice, results may differ, particularly for the last model, 

because of round-off errors.  The last likelihood will producd a very small number before the log is taken of the entire 

likelihood.  There are several reasons for providing these three ways of specifying how the data is used within the likelihood: 

• Some likelihoods are much easier to write as a loglikelihood. 

• Many likelihoods include functions outside of the likelihood.  In particular, some likelihoods take an expectation  

outside of the individual likelihoods so that integration is done outside of the data function. 

• Some multilevel or hierarchical likelihoods require this type of control. 

There are two functions that are closely related to the DATA function: the LEVEL function and the LEVELDELTA 

funciton.  These two functions provides a mechanism by which multilevel or hierarchical models can be constructed. 

The LEVEL function 

The LEVEL function provides a mechanism by which multilevel or hierarchical models can be constructed.  The 

syntax of the LEVEL function is 
LEVEL <boolean expression> THEN <optional_form> 
  <expression> 
END 

The effect of the LEVELDELTA function is to test the <boolean expression> for each observaton and, while the condition is 

true, form a product of likelihoods out of the observations.  The <optional_form> is specified as it is for the DATA function, 

but with one difference: the default form is .FORM = PRODUCT.   

The best way to understand the effect of the level command is by an example.  Consider the likelihood 

 ,
1 1

( ) ( | , )
inN

i j
i j

L g z f t z dz
ω

α

θ
= =

 
=  

 
∏ ∏∫ . 

This is a standard model for which a distribution of clustering (or heterogeneity), g(z), is estimated along with the parameters 

(θθθθ).  There are two levels that make up this model.  Let us call the outer level denoted by the outer product the subject level—

that is, we have N subjects and this outer product is taken over those subjects. For each of N individuals, there are ni 

observations.  The inner level formed by the innermost product is the likelihood formed by ni repeated observations of the ith 

subject.   
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The rationale for this type of model is that the repeated observations for individuals violate the condition that the 

likelihoods for each observation are independent.  To fix this problem, we can compute an expected likelihood for each 

individual’s observations.  The integral computes the expected likelihood for each subject.  Here is a concrete example 

Say we have data in which levels are denoted by the number 1 or 2 as in  
1  Tom Smith 
2  23.4   26.8 . . . 
2  19.2   22.9 . . . 
2  26.8   -1   . . . 
1  Steven Jones 
2  19.5   23.7 . . . 
2  26.8   -1   . . . 
1  Martin Johnson 
2  0      44.1 . . . 
2  19.9   22.7 . . . 
2  19.9   -1   . . . 
... 

where the observations beginning with a 2 correspond to the individual at the preceding 1, so that Tom Smith has three 

observations beginning 23.4, 19.2, and 26.8.  If we were to treat all observations, within and among individuals, as 

independent, we could simply drop all of the level 1 lines, and form a likelihood as the product of all observations.  But, if we 

want to treat observations within individuals as correlated (non-independent), the we can integrate over a distribution of 

common effects as shown in the likelihood above.  Usually, we will estimate one or more parameters for the distribution g(z), 

in addition to θθθθ. 

If we assume that g(z) and f(t) are normal distributions, the likelihood in mlemlemlemle would be specified as 

MLE 
  DATAFILE(“example.dat”) 
  OUTFILE(“example.out”) 
 
  DATA 
    lev FIELD 1 
    topen FIELD 2 
    tclose FIELD 3 
  END 
   
  MODEL 
    DATA 
      LEVEL lev = 2 THEN 
        INTEGRATE z (-12, 12) 
          PDF NORMAL (z) 
            0, PARAM sigmaz LOW = 0.0001  HIGH = 3 START = 0.2 END 
          END {pdf} 
         * 
          PDF NORMAL(topen tclose) 
            PARAM mu LOW = 10 HIGH = 100 START = 30 END 
            PARAM sigma  LOW = 0.0001 HIGH = 10 START = 1 END 
            HAZARD COVAR z 1 
          END  {pdf} 
        END {integrate} 
      END {level} 
    END {data} 
  RUN 
    FULL 
  END  {model} 
END  {mle program} 

The LEVEL statement advances through all of the individual level observations and computes the product of the 

likelihoods for each individual.  The DATA statement only "sees" observations that begin with a 1, because the LEVEL 

statement "consumes" all of the observations that begin with a 2.  The LEVEL statement returns a likelihood, which is the 

product of likelihoods taken within each subject;  the DATA statement takes those likelihoods, one per subject, takes the 

natural log of each, and sums them over all subject. 
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The LEVELDELTA function 

The LEVELDELTA function is very similar to the LEVEL function.  LEVELDELTA provides a mechanism by which 

multilevel or hierarchical models can be constructed.  The syntax of the LEVELDELTA function is 
LEVELDELTA <expression> THEN <optional_form> 
  <expression> 
END 

The effect of the LEVELDELTA function is to evaluate <expression> for each observaton and, while the expression does not 

change, form a product of likelihoods out of the observations.  The <optional_form> is specified as it is for the DATA 

function, but with one difference: the default form is .FORM = PRODUCT. 

The only real difference between the LEVELDELTA and the LEVEL function is how each function decides when to 

"exit" the current level.  The LEVELDELTA function simply looks for a change in the value of <expression> whereas LEVEL 

evaluates a boolean function <bexpr> for each observation and terminates when the expression evaluates to FALSE.  In the 

example given under the LEVEL function, the only change necessary to use the LEVELDELTA function is replace the LEVEL 

line with 
      LEVELDELTA lev THEN 
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STATEMENTS AND PROCEDURES 

Introduction 

Previous chapters have described the MODEL statement and the DATA statement in some detail.  A number of other 

statements are supported by mlemlemlemle as well.  These include assignment statements, intrinsic procedures, which look like functions 

except that they do not return values, as well as looping statements (WHILE, REPEAT, FOR) and conditional statements (IF).  

This chapter summarizes all of the statements supported by mlemlemlemle.  In addition, a list of all procedures is given at the end of this 

chapter. 

List of statements 

Assignment statements 

Assignment statements serve two purposes.  First, assignment statements are used to define new variables. Secondly, 

assignment statements are used to assign a value to variables (whether new or pre-existing).  The basic formats for assignment 

statements are 
<var> = <expression> 
<var>:<type> = <expression> 

The <var> is the name of a variable.  If the variable does not exist, it will be created.  If so, and the first form of 

assignment is used, the type (INTEGER, REAL, etc.) returned from expression will define the type of the newly created 

variable.  Under the second form of assignment, the variable type is specified by the <type>, where type is a type of variable. .  

The expression type must be compatible or an error will result.  Some examples follow: 
MLE 
  y = SQRT(44.5)                {evaluates to 6.6708...} 
  z = BETA(1.2, 9*3/10 + 1)     {evaluates to 0.185...} 
  q = RAND                      {evaluates to a random number from 0 to 1} 
  r:REAL = 2                    {defines r as real, assigns the value 2.0} 
  ru : REAL                     {Defines ru, but does not initialize it} 
  s = "This is a string" 
  RANDOMSEED = 2342             {Set random number seed, or use the SEED(2342) procedure} 
  b = IF RAND < 0.2 THEN TRUE ELSE FALSE END 
  ra : REAL[-180 TO 180]        {Defines an array of type REAL with elements from -180 to 180} 
  ia : INTEGER[0 TO 100, -1 TO 1] = 0  {Defines integer matrix and initialize elements to 0} 
END 
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BEGIN...END statement 

The BEGIN...END statement provides a means of providing multiple statements in contexts where only a single 

statement is allowed.  The format is 
BEGIN  
  <statements>  
END 

The DATA statement 

The DATA...END statement define the format of the data file, defines variables to be read in, and provides for some 

transformation of the variables.  Details of the DATA statement is given in Chapter 3.  Only an overview is given here. The 

format for the DATA statement is: 
DATA 
  <variable> [FIELD x [LINE y]] [=<expr>] [DROPIF <expr> | KEEPIF <expr> ...] 
   ... 
END 

<variable> is the name of the variable to be defined.  The variable must not already exist.  All DATA variables are 

defined to be type real.  Integer values will be read in and converted to real number values.  Text strings can exist within a 

fields of a text file, but must not be assigned to a variable. 

Field: The term field refers to which column within an input file a variable is found in.  In the hammes.dat file used 

in Chapter 1, four fields (or columns) existed in the input file.  The field specifier must be a positive integer constant. 

Line: Sometimes observations are spread across multiple lines.  When the LINE keyword is used, e.g. LINE 2, mlemlemlemle 

keeps track of the maximum number of lines specified this way.  Then, all observations are assumed to have that number of 

lines.  If the observations each take but one line, the statement LINE 1 may be dropped—one line per observation is assumed 

as a default.  The line specifier must be a positive integer constant.  

<=expr> defines a transformation expression.  The expression can refer to the variable being read, or any variables 

that are defined before the current variable.  The line newvar FIELD 3 = newvar^2 will read newvar from field three of 

the data file.  The value of newvar is then squared and assigned back to newvar. 

<DROPIF> provides a mechanism to drop observations.  The expression following DROPIF must evaluate to TRUE 

or FALSE.  If TRUE, the expression is dropped.  The line newvar FIELD 3 DROPIF newvar <= 0 will drop all variables 

in field three that are not positive. 

<KEEPIF> provides another mechanism to drop observations.  The expression following KEEPIF must evaluate to 

TRUE or FALSE.  If FALSE, the expression is dropped (that is, not kept).  The line newvar FIELD 3 KEEPIF newvar > 0 

will drop all variables in field three that are not positive.  KEEPIF and DROPIF expressions can be far more complex, but must 

return TRUE or FALSE. 

Usually, data are read from a data file.  The DATAFILE() procedure defines and opens this file.  Thus 
DATAFILE("test.dat") 
DATA 
  o_time      FIELD 1  = o_time*365.25 
                         DROPIF (o_time > 100) 
  c_time      FIELD 3  = IF c_time = -1 THEN c_time ELSE c_time*365.25 END 
  missing     FIELD 4  DROPIF missing_data <> 1 
  frequency   FIELD 5  DROPIF frequency <= 0 
END 
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The variable names FREQUENCY or FREQ are taken as a field of frequencies for each observation.  (If both variable 

names are used, FREQUENCY is taken as the frequency variable).  The frequency of each observation is used to compute a 

proper likelihood.  If the FREQUENCY or FREQ keywords are missing, one is assumed. 

FOR statement 

The FOR statement provides a means of looping through statements.  The format is 
FOR <v> = <expr> TO <expr> DO  
  <statements>  
END 

and 

FOR <v> = <expr> DOWNTO <expr> DO  
  <statements>  
END 

The variable <v> must either not be previously defined or, if it already exists, it must be an integer variable.  Its 

value will change as the FOR statement is executed.  The first <expr> will be executed once and will define the starting value 

of v.  The second <expr> will be executed once and will define the last value of v.  Here is an example that will print sine and 

cosine tables in one degree increments as well as creating a table of radians for each degree: 
r : REAL[0 TO 359] 
FOR x = 0 TO 359 DO 
  r[x] = DTOR(x) 
  WRITELN(x " degrees (" r[x] " radians): SIN()=" SIN(r[x]) ", COS()=" COS(r[x])) 
END 

IF statement 

The IF statement provides a means of conditionally executing statements.  The following types of IF statements are 

available: 
IF <bexpr> THEN  
  <statements>  
END  

This form will conditionally execute the <statements> only if <bexpr> evaluates to TRUE.  An ELSE clause can be added to 

the statement so that one of two sets of statements will always be executed: 

IF <bexpr> THEN  
  <statements>  
ELSE  
  <statements>  
END  

In addition, one or more ELSEIF clauses can be added to the statement to allow multiple conditions to be tested: 

IF <bexpr> THEN  
  <statements>  
ELSEIF <bexpr> THEN 
  <statements>  
ELSEIF <bexpr> THEN 
  <statements>  
ELSE  
  <statements>  
END  

Here is an example of using the IF statement: 
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IF SYSTEM = "MS-DOS" THEN  
  PRINTLN("Run from an MS-DOS system") 
  SEP = '\' 
  DATAFILE("C:" + SEP + DIR + SEP + NAME) 
ELSE 
  PRINTLN("Run on a unix system") 
  SEP = '/' 
  DATAFILE(DIR + SEP + NAME) 
END  

MODEL statement 

The MODEL...RUN...END statement defines the underlying probability model used by mlemlemlemle and also defines 

constraints on which parameters are to be estimated.  An overview of the MODEL statement is given here.  Chapter 4 gives 

details for the writing likelihood models using the MODEL statement. 

The basic structure of the MODEL statement looks like this: 
MODEL 
  <expression> 
RUN 
  <run specifications> 
END 

Between MODEL and RUN is a single expression that is the likelihood.  Within the likelihood is one or more 

PARAM...END functions.  These define the parameters, whose values will be found so that the likelihood is maximized.  One 

of the most important aspects of learning mlemlemlemle  is the design and construction of the expression for the likelihood. 

A list of <run specifications> is given between the RUN and the END part of the MODEL statement, this provides a 

way of evaluating the full model as well as a series of nested or reduced models.  If all of the parameters (defined by 

PARAM...END functions) are to be found, a simple FULL command is placed between the RUN and its matching END.  

Reduced models, where one or more parameters are constrained to a constant or another parameter, are specified as REDUCE 

followed with a list of one or more "reductions".  For example, you might constrain a parameter called mean to be zero and 

only allow the parameter called stdev to be found.  Then you would put REDUCE mean = 0 between the RUN and the END.  

Any number of REDUCE commands (along with one FULL) can be used in a single model.  The various forms of the model will 

be evaluated in turn. 

Procedure statement 

mlemlemlemle supports a number of  intrinsic procedures statements.  Procedures are single word commands that include zero 

or more arguments.  Procedures perform some task given the list of arguments.  Procedures do not return a value the way a 

function does.  A list of all procedures, with examples, can be found at the end of this chapter. 

REPEAT statement 

The REPEAT statement provides a means of looping through statements until some condition is met.  The format is 
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REPEAT  
  <statements>  
UNTIL <bexpr> 

The <statements> are executed and then the boolean expression<bexpr> is evaluated.  If the result is FALSE, the 

loop repeats and <statements> are executed again.  When <bexpr> evaluates to TRUE, the loop terminates.  A REPEAT 

statement always executes the <statements> at least once. 

WHILE statement 

The WHILE statement provides a means of looping through statements while some condition is met.  The format is 
WHILE <bexpr> DO  
  <statements>  
END 

The  boolean expression <bexpr> is executed first.  If the value is TRUE, the <statements> are executed once and 

<bexpr> is evaluated again.  The sequence continues until <bexpr> evaluates to FALSE.  That is, when <bexpr> is FALSE, 

the loop terminates. 

List of procedures 

There are a few intrinsic procedures available in mlemlemlemle.  Procedures are single word commands that include zero or 

more arguments.  Procedures perform some task given the list of arguments.  Procedures do not return a value the way a 

function does.  The following sections describes the procedures available in mlemlemlemle. 

DATAFILE(s) 

Purpose: Opens up a data file for the DATA statement.  Closes any previous data files. 

Arguments:  A single string expression 

Examples:  DATAFILE("mydata.dat") 
 DATAFILE(filename + '.' + datextension) 

See also: OUTFILE 

HALT 

Purpose: Terminates execution of the program. 

Arguments:  None 
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OUTFILE(s) 

Purpose: Opens up a standard output file to which results are printed. Closes any previous output files. 

Arguments:  A single string expression 

Examples:  OUTFILE("mydata.out") 
 OUTFILE(DEFAULTOUTNAME) 

See also: DATAFILE, Function DEFAULTOUTNAME 

PRINT(a1, a2, . . .) 

Purpose: Prints a message to the standard output file without including a carriage return at the end. 

Arguments:  Any number of arguments of any type. 

Examples:  PRINT("The value of x is ", x) 
 PRINT("Sin(x) squared is ", SIN(x)^2) 

See also: PRINTLN, OUTFILE, WRITE, WRITELN 

PRINTLN(a1, a2, . . .) 

Purpose: Prints a message to the standard output file and includes a carriage return at the end. 

Arguments:  Any number of arguments of any type. 

Examples:  PRINTLN("The value of x is ", x) 
 PRINTLN("Sin(x) squared is ", SIN(x)^2) 

See also: PRINT, OUTFILE, WRITE, WRITELN 

SEED(i) 

Purpose: Seeds the random number generator. 

Arguments:  A single positive integer argument. 

Examples:  SEED(13234) 
 SEED(x) 

See also: functions RAND, IRAND, RRAND, variable RANDOMSEED 

WRITE(a1, a2, . . .) 

Purpose: Writes a message to the terminal without including a carriage return at the end. 

Arguments:  Any number of arguments of any type. 
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Examples:  WRITE("The value of x is ", x) 
 WRITE("Sin(x) squared is ", SIN(x)^2) 

See also: WRITELN, OUTFILE, PRINT, PRINTLN, function PUT 

WRITELN(a1, a2, . . .)  

Purpose: Writes a message to the terminal and includes a carriage return at the end. 

Arguments:  Any number of arguments of any type. 

Examples:  WRITELN("The value of x is ", x) 
 WRITELN("Sin(x) squared is ", SIN(x)^2) 

See also: WRITE, OUTFILE, PRINT, PRINTLN, function PUT 
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FUNCTIONS 

Introduction 

This chapter describes all of the functions that are supported by mlemlemlemle.  Functions serve the purpose of returning a 

single value, be it a numeric value, a string value or a boolean value.  Functions are used to build expressions, which are used 

for calculations of all types.   

This chapter is something of a catalog of the functions provided by mlemlemlemle.   used  All functions are listed in alphebetical 

order.  At the end of this chapter is a list of all, so called, simple functions. 

The DERIVATIVE function 

The DERIVATIVE function computes the numerical value of the derivative at a particular point.  Formats are: 
DERIVATIVE <variable> = <exp1>, <exp2> END 
DERIVATIVE <variable> = <exp1>, <exp2>, <exp3> END 
DERIVATIVE (<expr4>) <variable> = <exp1>, <exp2> END 
DERIVATIVE (<expr4>) <variable> = <exp1>, <exp2>, <exp3> END 

The <variable> is the variable of differentiation.  The first expression evaluates to the point at which the derivative is 

evaluated.  The second expression is what will be differentiated.  The optional third expression is the largest value of dx to 

begin with.  If the third expression is not given, an initial value for dx of 0.001 is used, which is reasonable for a wide range of 

functions.  This initial value can be changed by changing the value of the variable DIFF_DX.  In finding the derivative, 

successively smaller values of dx are used until reasonable precision is reached. 

For example, DERIVATIVE x = 1, SIN(x) END computes the value of the derivative at x = 1 for the function 

sin(x); it returns -0.841470984808.  On Intel computers under DOS, this derivative requires about 4 function evaluations with 

an initial dx = 0.001.  If dx is changed to 0.1, as in DERIVATIVE x = 1, SIN(x), 0.1 END, the same answer is found 

after 14 function evaluations.  Likewise, if dx is set to 1E-7, 6 function evaluations are required. 

The optional fourth expression evaluates to the degree of differentiation.  If this value is not given or is ≤ 1, a first 

degree derivative will be found [i.e. f'(x)].  Higher degrees derivatives are found if the forth expression is specified and are 

greater than one.  For example, SIN(x)'' evaluated at x = 1 is equal to -SIN(1) which is -0.841470984808.  The expression 

DERIVATIVE (2) x = 1, SIN(x) END returns the same numerical result. 

High order derivatives tend to lose numerical precision.  This can be seen in the following series, which should all 

evaluate to 24.0: 

DERIVATIVE (1) x = 1, 24*x   END returns 24.000000000000 
DERIVATIVE (2) x = 1, 12*x^2 END returns 23.999999999998 
DERIVATIVE (3) x = 1, 4*x^3  END returns 24.000000000455 
DERIVATIVE (4) x = 1, x^4    END returns 24.000026132114 
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The derivative function finds numerical estimates at a point using an adaptive algorithm similar to that described by 

Ridders (1982). 

The FINDMIN function 

The FINDMIN function iteratively finds the argument value that minimizes a bounded function.  Formats are: 
FINDMIN <variable> (<exp1>, <exp2>) <expr> END 
FINDMIN <variable> (<exp1>, <exp2>, <expr3>) <expr> END 
FINDMIN <variable> (<exp1>, <exp2>, <expr3>, <expr4>) <expr> END 
FINDMIN <variable> (<exp1>, <exp2>, <expr3>, <expr4>, <expr5>) <expr> END 

The <variable> is the argument that is changed to find the function minimum.    The expression <expr> is the 

function to be minimized.  The first expression is the minimum boundary of the function.  The second expression is the 

maximum boundary of the function.  The optional third expression is the starting value of <variable> to try.  The optional 

forth expression is the desired precision of the solution.  If the forth expression is not given, its value will taken from the 

variable FIND_EPS.  The fifth expression is the maximum number of iterations allowed in finding the solution.  If the fifth 

expression is not given, the value will be taken from the variable FIND_ITERS. 

For example, FINDMIN x (0, 2*PI) COS(x) END which returns 3.1415925395570 (π is an exact solution).  A 

more precise solution (but one that takes longer to find) is found by FINDMIN x (0, 2*PI, 1, 1E-15) COS(x) END 

which returns 3.1415926535713. 

Finding the argument that maximizes the function is done by simply negating <expr>. 

The FINDZERO function 

The FINDZERO function iteratively finds the argument for which a bounded function is zero.  Formats are: 
FINDZERO <variable> (<exp1>, <exp2>) <expr> END 
FINDZERO <variable> (<exp1>, <exp2>, <expr3>) <expr> END 
FINDZERO <variable> (<exp1>, <exp2>, <expr3>, <expr4>) <expr> END 

The <variable> is the argument that is changed to find the zero value of the function.  The expression <expr> is the 

function to find zero for.  The first expression is the minimum boundary of the function.  The second expression is the 

maximum boundary of the function.  The optional third expression is the desired precision of the solution.  If the third 

expression is not given, its value will taken from the variable FIND_EPS.  The forth expression is the maximum number of 

iterations allowed in finding the solution.  If the forth expression is not given, the value will be taken from the variable 

FIND_ITERS. 

For example, FINDZERO x (0, PI) COS(x) END returns 1.5707963267949, which is the correct value of π/2.    

This function works for well-behaved functions that have a single continuous zero within the bounds.  For example, 

cos(x) goes to zero for four different x values in the interval [0, 4π].  FINDZERO x (0, 4*PI) COS(x) END returns  

10.995574287564 (and may return other solutions depending on hardware and some variable values).  Another pathological 

example is functions with no zero in the specified interval.  For example, cos(x) has no value of zero in the interval [2π/3, 

4π/3].  FINDZERO x (2*PI/3, 4*PI/3) COS(x) END returns the value 2π/3; this is the closest value to zero found. 
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Identifiers and expressions 

A very simple type of function is a constant or a variable (or a previously declared parameter which looks like a 

variable).  Together these are called identifiers.  mlemlemlemle  predefines a number of built-in identifiers.  Some predefined variables 

allow you to change the behavior of mlemlemlemle.  A later chapter discusses many of those variables.  Some constants arise frequently 

in numerical work, and are predefined for convenience.  Some of these constants are given in Table 7. 

Algebraic, boolean and logical expressions 

Algebraic expressions are expressions created using a series of special operators.  Operators include algebraic 

symbols like +, –, *, /, ^, a series of algebraic keywords for integer operations,. DIV, MOD, SHL, SHR.  The right hand side of 

an assignment statement is an expression.  Thus, the following right-hand-sides are valid expressions: 
n = 2*3 
n = (HOURS/60)^2 
n = 12.5*first - 10*second 
i = mask SHL 4 
i = 23 DIV 4 

Boolean expressions evaluate to either TRUE or FALSE.  The operators for creating boolean expressions are >, <, >=, 

<=, ==, <>, and boolean keywords, AND, OR, XOR, and NOT and some simple functions.  These operators are used in the same 

Table 7 Some predefined mathematical constants. 

Constant name Meaning Value ≈ 
ATOMICMASSU atomic mass unit, 1/16 the mass of oxygen 1.6605655×10-27 kg 
AVOGADROSN Na, Avogadro’s number; atoms or molecules in 1 mole 6.022045×10-23 (g×mol)-1 
BOHRMAGNETON Bohr’s magneton.  A spinning electron’s magnetic moment 9.274078×10-24 A×m2 
BOHRRADIUS Bohr’s radius of the smallest electron orbit. 0.52917706×10-10 m 
BOLTZMANNSC Boltzsmann’s constant, k = R/Na 1.380662×10-23 J/K 
DEGREESPERRADIAN 180/π 57.295779513 
E e, base of the Napierian logarithm 2.71828183 
EULERSCONSTANT γ, Euler’s constant 0.57721566  
GRAVITATIONALC Gravitational force magnitude between two masses 6.672×10-11 N×m2/kg2 
LIGHTC Speed of light in a vacuum 2.99792458×108 m/s 
LOG_10 ln(10) 2.3025850930 
PI π, ratio of any circle’s circumference to its diameter 3.14159265 
PLANCKINV2PI  = h/(2π).  See Planck’s constant 1.054588×10-34 J×s 
PLANCKSC h, Planck’s constant relating frequency of radiation to a 

quantum of energy. 
6.626176×10-34 J×s 

RADIANSPERDEGREE π/180 0.0174532925 
RYDBERGC Rydberg’s constant relating the spectral lines of hydrogen 1.097373177×107 m-1 
UNIVERSALGASC R, the universal gas constant 8.31441 m-1 (J×mol)/K 

Number limits   
oo The largest representable real number machine dependent 
INFINITY The largest representable real number machine dependent 
NEGINFINITY The most negative representable real number machine dependent 
MACHINE_EPSILON The floating point precision machine dependent 
SQRT_EPSILON The square root of MACHINE_EPSILON machine dependent 
MAXINT The largest representable integer machine dependent 
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way as they are in many other programming languages. 
b = a <> 42^2 
b = (a <> 12) AND (a >= 0) 

The difference between boolean and logical expressions is that boolean expressions work with the values TRUE and 

FALSE only, whereas logical expressions work with bits.  For example, NOT TRUE is equal to FALSE; but NOT 767 is equal to 

-768.  How does this work?  The number 767 is represented by the computer as the binary sequence 

00000000000000000000001011111111.  The logical NOT operator flips all 1s to 0s and 0s to 1s, so that the number 

becomes 11111111111111111111110100000000.  The first (left most) bit denotes a negative value, so the value is –768.  

The logical AND, OR, and XOR functions act bit by bit, as well.  Thus the binary values 2X101101 AND 2X111000 (which is 

the same as 45 AND 56) evaluates to 40 (or 2X101000).  The SHL and SHR operators shift bits to the left and right.  So, 

2X000111 SHL 3 (i.e. 7 SHL 3) evaluates to 56 (or 2X111000). 

You might be wondering how mlemlemlemle decides whether an operator is boolean or logical.  The answer is simple: if both 

operands are boolean types, the operator will be boolean.  If both operands are integers, the operator will be logical.  If one 

operator is boolean and one is logical, an error results.  For the expression (x >= 4) OR (y <= 2), each of the expressions 

in parenthesis will evaluate to TRUE or FALSE, so that the OR will be a boolean operator.  

Operator precedence 

The built in operators in mlemlemlemle follow a more or less standard precedence.  That is, an expression like 4+2*3 will 

evaluate 2*3 first and then add 4.  The precedence of operators are defined in Table 9.  Higher precedence operators will 

always be evaluated before lower precedence operators 

The IF function 

The IF...THEN...ELSE...END function permits conditional tests. The simplest format for the IF function is 
IF <boolean expression> THEN 
  <expression> 
ELSE 
  <expression> 
END 

If the <boolean expression> must return a boolean type.  If the function evaluates to true then the first <expression> 

will be evaluated and returned as the value of the IF function.  If the boolean function returns false, the second <expression> 

will be evaluated and returned as the result of the IF function.  The <expression> may be another IF function, so that multiple 

IF...THEN...ELSE statements may be nested: 
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IF <condition> THEN 
  <expression> 
ELSE  
  IF <condition> THEN 
    <expression> 
  ELSE  
    IF <condition> THEN 
      <expression> 
    ELSE 
      <expression> 
    END         {3rd if...else} 
  END            {2nd if...else} 
END               {1st if...else} 

An alternative to the above is to use a series of ELSEIF <boolean expression> THEN <expression> with the basic IF 

statement.  The above example can be written 

IF <condition> THEN 
  <expression> 
ELSEIF <condition> THEN 
  <expression> 
ELSEIF <condition> THEN 
  <expression> 
ELSE 
  <expression> 
END 

Here are some examples of IF functions used in assignment statements: 
ind = IF (a^2 > 12) OR (a = 0) THEN a^2 ELSE 0 END  

Table 8.  Algebraic, boolean, and logical operators. 

Operator Function Example Equivalent function 
- uniary negation -x NEGATE(x) 

+ uniary positive +x  

^ power function x^y POWER(x, y) 

* multiply function x*y MULTIPLY(x, y) 

/ divide function x/y DIVIDE(x, y) 

DIV integer divide function x DIV y IDIV(x, y) 

MOD integer modulo function x MOD y MODF(x, y) 

AND boolean and logical and function x AND y ANDF(x, y) 

SHL logical shift left function x SHL y SHIFTLEFT(x, y) 

SHR logical shift right function x SHR y SHIFTRIGHT(x, y) 

+ addition x + y ADD(x, y) 

- subtraction x - y SUBTRACT(x, y) 

OR boolean and logical or function x OR y ORF(x, y) 

XOR boolean and logical xor function x XOR y XORF(x, y) 

== or = boolean “is equal” function x == y ISEQ(x, y) 

<> boolean “not equal” function x <> y ISNE(x, y) 

< boolean “less than” function x < y ISLT(x, y) 

> boolean “greater than” function x > y ISGT(x, y) 

<= boolean “less than or equal to” function x <= y ISLE(x, y) 

>= boolean “greater than or equal to” 
function 

x >= y ISGE(x, y) 
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message = IF not result THEN  
            “The result is not valid” 
          ELSE 
            “The result is valid” 
          END {if} 

status = IF height < 48 THEN  
           -1  
         ELSEIF (height >= 48) and (height <= 60) THEN 
           0 
         ELSE  
           1 
         END 

The INTEGRATE function 

The INTEGRATE function does one-dimensional numerical integration.  The integration method can be changed, and 

the user is given control on precision with some methods.  Typically, INTEGRATE is used to integrate a likelihood over some 

distribution of unmeasured heterogeneity or to renormalize an improper (degenerate) density function. Two formats of 

INTEGRATE are 
INTEGRATE <variable name> ( <lower_limit_expression> ,  <upper_limit_expression> )  
  <expression> 
END 

and 

INTEGRATE <variable name> ( <lower_limit_expression> ,  <upper_limit_expression>,  
    <tolerance_expression> )  
  <expression> 
END 

The variable name is the name of a variable of integration, which can be referenced within the expression.  Within the 

parentheses that follow the variable are two expressions: one for the lower limit, and one for the upper limit of integration.  

These expressions are evaluated once prior to integration;  The resulting values are then constant during the integration 

operations. The <expression> is the integrand, and can be any legal expression (including, perhaps, more INTEGRATE 

functions).  For example, consider a model in which observed exact times (t) to failure are distributed according to a Weibull 

PDF, f(t).  In addition we model the distribution of unmeasured heterogeneity, g(z) ~ N(0, σz
2).  Assume that the effect of z on 

f(t) is loglinear on a, so that the first parameter of the Gompertz distribution is a’=aez.  The likelihood for the ith observation 

is: 

Table 9.  Operator precedence. 

Operator(s) Precedence Category 
- + not high Uniary operators 
^  Exponent operator 
* / div mod and shl shr  Multiplying operators 
+ - or xor  Adding operators 
= (or ==)  <> < > <= >= low Relational operators 
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In this model, we would like to estimate the parameters a, b, and σz from a series of observations.  The mle mle mle mle  code to estimate 

this model is  

MODEL 
  DATA  
    INTEGRATE z (-25, 25) 
        PDF NORMAL(z)       {g(z): heterogeneity} 
          0, PARAM s  LOW = 0.0001 HIGH = 5  START = 1 END 
        END {pdf normal} 
      * 
        PDF GOMPERTZ(t)      {f(t): distribution of failures} 
          PARAM a LOW=0.0 HIGH=0.9 START=0.073 FORM=LOGLIN 
            COVAR z 1, PARAM  b  LOW = 0.0001  HIGH = 1.4  START = 0.5 END 
          END {param a} 
        END {pdf Gompertz} 
    END   {integrate} 
  END {data} 
END  {model} 

The INTEGRATE function is particularly useful for 1) estimating distributions of unmeasured heterogeneity as shown 

in the example; 2) estimating multilevel models for which one can integrate out the non-independence of observations 3) 

dealing with left or left-interval censoring as is described in the Examples chapter; and 3) computing survivorship in custom 

likelihood when a closed form is not available for the PDF. 

mlemlemlemle currently provides four different methods for performing numerical integration.  Each method has its strengths 

and weaknesses.  It should be kept in mind that numerical integration is difficult and time consuming—particularly once 

integrals become nested.  One useful trick for successful integration is to set the limits of integration as narrow as possible 

without “shutting out” non-zero areas of the function to be integrated.  In the above example, the limits of integration were set 

to ±25, because even with s = 5, the area under the distribution outside these limits is ignorable. 

Adaptive quadrature.  This is the default method, and it can be defined by setting INTEGRATE_METHOD = 

I_AQUAD.  The method is an eight point adaptive quadrature integration routine adapted from the routine QUANC8 (Forsythe 

et al. 1977).  The method will recursively integrate the function until a specified precision is reached.  Precision is defined by 

changing the INTEGRATE_TOL constant.  By default INTEGRATE_TOL = 0.000001.  This method works well for relatively 

smooth functions, and is probably the best general integration routine incorporated into mlemlemlemle. 

Simpson.  This method uses Simpson’s rule to evaluate integrals to a predefined tolerance, and is defined by setting 

INTEGRATE_METHOD = I_SIMPSON.  The method is adapted from the routine QSIMP (Press et al. 1986).  The function will 

be integrated until a predefined precision is reached or a maximum number of iterations are reached.  Precision is defined by 

changing the INTEGRATE_TOL constant.  By default INTEGRATE_TOL = 0.000001.  The maximum number of iterations is 

set with the constant INTEGRATE_N and is 100 by default.  This method is useful for smooth functions. 

Closed trapazoidal.  This method uses a brute force extended trapazoidal function to evaluate integrals.  The 

function to be integrated must be evaluable at the limits of integration; otherwise the opened trapazoidal should be used.  The 

method is defined by setting INTEGRATE_METHOD = I_TRAP_CLOSED.  The extended trapazoidal rule will be evaluated at a 

predefined number of equally spaced points defined by INTEGRATE_N (the default is 100).  The minimum allowable steps is 

eight.  The method does not provide an error tolerance.  Even so, the error is on the order of INTEGRATE_N-4.  This brute-

force method is useful for functions that are not smooth enough for adaptive quadrature or Simpson. 
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Open trapazoidal.  This method is similar to the closed trapazoidal method, except that the function to be integrated 

is never evaluated at the limits of integration. The method is defined by setting INTEGRATE_METHOD = I_TRAP_OPENED. 

 

Table 10.  Likelihoods returned by PDF for one, two, three, and four time variables under different conditions. 

 Example When Class Resulting Likelihood 
1 LNNORMAL(te)  Exact failure at te ( )eL f t=  
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The LEVEL function 

The LEVEL function provides a mechanism by which multilevel or hierarchical models can be constructed.  The 

syntax of the LEVEL function is 
LEVEL <boolean expression> THEN 
  <expression> 
END 

The effect of the level statement is to test <boolean expression> and, while the condition is true, form a product of likelihoods 

out of the observations. The best way to understand the effect of the level command is by an example.  The likelihood 
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is a standard model for which a distribution of clustering (or heterogeneity), g(z), is estimated along with the parameters (θ).  

There are two levels that make up this model.  The outer level denoted by the outer product is the subject level—that is, we 

have N subjects and this outer product is over those subjects. For each of N individuals, there are ni observations.  The inner 

level formed by the innermost product is the likelihood formed by ni repeated observations of the ith subject.   

The rationale for this type of model is that the repeated observations for individuals violate the condition that the 

likelihoods for each observation are independent.  To fix this problem, we can compute an expected likelihood for each 

individual’s observations.  The integral computes the expected likelihood for each subject.  Here is a concrete example 

Say we have data in which levels are denoted by the number 1 or 2 as in  
1  Tom Smith 
2  23.4   26.8 . . . 
2  19.2   22.9 . . . 
2  26.8   -1   . . . 
1  Steven Jones 
2  19.5   23.7 . . . 
2  26.8   -1   . . . 
1  Martin Johnson 
2  0      44.1 . . . 
2  19.9   22.7 . . . 
2  19.9   -1   . . . 
... 

where the observations beginning with a 2 correspond to the individual at the preceding 1, so that Tom Smith has three 

observations beginning 23.4, 19.2, and 26.8.  If we were to treat all observations, within and among individuals, as 

independent, we could simply drop all of the level 1 lines, and form a likelihood as the product of all observations.  But, if we 

want to treat observations within individuals as correlated (non-independent), the we can integrate out a distribution of 

common effects.  The likelihood in mlemlemlemle would be specified as 
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MLE 
  DATAFILE(“example.dat”) 
  OUTFILE(“example.out”) 
 
  DATA 
    lev FIELD 1 
    topen FIELD 2 
    tclose FIELD 3 
  END 
   
  MODEL 
    DATA 
      LEVEL lev = 2 THEN 
        INTEGRATE z (-12, 12) 
          PDF NORMAL (z) 
            0, PARAM sigmaz LOW = 0.0001  HIGH = 2 START = 0.2 END 
          END {pdf} 
          * 
            PDF NORMAL(topen tclose) 
              PARAM mu LOW = 10 HIGH = 100 START = 30  FORM = LOGLIN 
                COVAR z 1 
              END  {param} 
              PARAM sigma  LOW = 0.0001 HIGH = 10 START = 1 FORM = NUMBER END 
            END  {pdf} 
        END {integrate} 
      END {level} 
    END {data} 
  RUN 
    FULL 
  END  {model} 
END  {mle program} 

The PARAM function 

mlemlemlemle has a general method for defining all parameters to be used in a likelihood model.7  The PARAM function defines a 

parameter and its characteristics.  When models are “solved”, free parameters are estimated by iteratively plugging new 

values in for those parameters until the values that maximize the likelihood are found.  In other words, free parameters are 

values that are to be estimated by mlemlemlemle —they are the unknowns in likelihood models.  If the parameter is not constrained to 

some fixed value in the RUN part of the model statement, mlemlemlemle will estimate the value of that parameter.   

Covariate effects (and their associated parameters) may be modeled within the parameter statement, as well.  

Parameters are specified as 
PARAM  x HIGH = <expr>.LOW = <expr> START = <expr> TEST = <expr>..END 

or 

PARAM  x HIGH = <expr>.LOW = <expr> START = <expr> TEST = <expr> 
  COVAR <expr>  PARAM  z ... END 
END  {param} 

Here is an example of a likelihood hand-coded for an exponential PDF for exact failure times.  PARAMs, built-in 

functions, and pre-defined parameters are all used in this likelihood: 
MODEL 
  DATA 
    PARAM lambda LOW = 0 HIGH = 1 START = 0.23 END * EXP(-lambda * t) 
  END 
RUN 
  FULL 
END 

                                                           
7 The word parameter is used in a very specific way, as defined in Chapter 1.  Parameters are the quantities to be estimated in a likelihood 

model 



Functions 

 66 

Notice that lambda is first defined as a parameter, and thereafter is used as an ordinary variable.  As mlemlemlemle iteratively seeks a 

solution, the value of lambda will be updated.  As the likelihood itself is being computed, the PARAM function will simply 

return the current estimate of lambda. 

Sometimes parameters are constrained for the purpose of hypothesis testing.  They may be held constant, or fixed to 

the value of another parameter.  These are called fixed parameters, and an estimate will not be found for them.  mlemlemlemle provides 

the mechanism for fixed parameters primarily to reduce models from more complicated to simpler forms.  For example, in a 

slope function, we may have reason to believe that the slope m is one.  Perhaps this is because of the nature of the physical 

system we are modeling.  We could first fit our collection of x values to the model with parameter m free, and secondly fit it 

with m held constant to 1.  Statistical criteria can be used to determine whether m deviates from the value we expected it to be. 

Typically, parameters are defined for the intrinsic parameters of a PDF function.  For example, the normal PDF has 

two intrinsic parameters µ and σ.  The first parameter specified in the parameter list will be treated as µ.  The second will be 

Table 11.  Forms and transformations for parameters. 

Form Parameter (p’), covariates (xi), covariate 
parameters (ββββ), and the value returned 
by the PARAM function (pi) 

Notes 

NUMBER pi = p’ Default when no COVARs are modeled. 
ADD pi = p’ + xiββββ Must be used with care when the resultant parameter is 

constrained to positive values because pi might take on 
negative values for some combinations of xiββββ 

INVERT pi = 1/(p’ + xiββββ) The denominator must not be zero. 
INVADD pi = 1/p’ + xiββββ p’ must not be zero. 
INVMULTIPLY pi = xiββββ/p’ p’ must not be zero. 
INVLOGLIN pi = exp(xiββββ)/p’ p’ must not be zero. 
DIVIDE pi = p’/xiββββ xiββββ must not be zero. 
POWER i

ip p β′= x   

POWEREXP exp( )i
ip p β′= x   

EXPADD pi = exp(p’ + xiββββ) = exp(p’)exp(xiββββ) Constrains pi to positive values for all p’ and xiββββ. 
MULTIPLY pi = p’× xiββββ A multiplicative specification. 
EXCESS pi = p’exp(1 + xiββββ)  
LOGLIN pi = p’exp(xiββββ) This is a common specification, especially for parameters that 

are interpreted as hazards.  When p’ is constrained positive, 
the pi will also be positive. Like EXPADD but p’expadd = 
exp(p’loglin).  LOGLIN is the default specification whenever a 
COVAR is defined. 

LOGISTIC If ALTERNATE_LOGISTIC = FALSE, 
   pi = 1/[1 + exp(p’ + xiββββ)]. 
If ALTERNATE_LOGISTIC = TRUE, 
   pi = exp(p’ + xiββββ)/[1 + exp(p’ + xiββββ)] 

Frequently used for parameters that are interpreted as 
probabilities because, for all values of p’ + xiββββ, pi will be 
constrained from zero to one.  The alternative forms are 
related to each other as p’form1=1– p’form2 

LOGIT pi = ln[exp(p’ + xiββββ)/(1 + exp(p’ + xiββββ)] This specification is useful when pi can take on any value 
from –∞ to ∞ and p’ + xiββββ is a probability. 
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treated as σ.  How can you know the proper order for parameters?  Generally location parameters appear first (and are usually 

denoted a in this manual), scale parameters are second and shape parameters are third.  Even so, you can get a quick synopsis 

of each type of PDF by using the -h option from the command line, e.g.:  mle -h SHIFTWEIBULL 

Parameters are also used to model effects of covariates on other parameters.  Here is an example in which two 

parameters, used in place of some fixed values of µ and σ for a normal distribution, are defined with two covariate 

parameters, each: 
PDF NORMAL(topen tclose) 
  PARAM mean  LOW = 100  HIGH = 400  START = 270  TEST = 0  FORM = LOGLIN 
    COVAR  sex    PARAM b_sex_mu     LOW = -2  HIGH = 2  START = 0 END 
    COVAR  weight PARAM b_weight_mu  LOW = -2  HIGH = 2  START = 0 END 
  END 
  PARAM stdev     LOW = 0.1  HIGH = 100 START = 20  FORM = LOGLIN 
    COVAR  sex    PARAM b_sex_sig     LOW = -2  HIGH = 2  START = 0 END 
    COVAR  weight PARAM b_weight_sig  LOW = -2  HIGH = 2  START = 0 END 
  END 
END 

In this example, the first parameter of the normal distribution (µ) has two covariates and their corresponding 

parameters modeled on it.  The exact specification of how covariates and their parameters are modeled depend on the FORM of 

the intrinsic parameter.  In the example, the FORM = LOGLIN specifies that a log-linear specification is to be used.   The log-

linear specification is µi = µ’exp(xiββββ), where µ’ is the estimated intrinsic parameter (mean in this case).  Thus, for the ith 

observation, the µ parameter of the normal distribution will be constructed as:  µi=mean×exp(sexi×b_sex + 

weighti×b_weight).  The second parameter, stdev, has the same two covariates modeled on it, but the parameter names 

are (and must be) different from the parameters modeled on mean. 

For some forms, the parameter itself is transformed.  For example, when a parameter is a probability the parameter 

can be defined as: 
PARAM p  LOW = -999  HIGH = 999  START = 0  FORM = LOGISTIC END 

The logistic transformation permits the parameter p to take on any value from negative infinity to infinity, but the resulting 

value passed used by the likelihood will be constrained to the range (0, 1).  In other words, mle  mle  mle  mle  will estimate a parameter over 

the range –999 to 999, but before that parameter is used in computation, it will undergo a logistic transformation as p = 1/[1 + 

exp(p’)], so that the value of p will be a probability.  mlemlemlemle currently provides a limited number of specifications for how 

parameters and covariates are modeled (Table 4).  Even so, this mechanism for modeling covariates on any parameter is 

extremely general and provides the basis for building unique and highly mechanistic (Box et al. 1978) or etiologic (Wood 

1994) models.   

Setting Parameter Information 

Four characteristics may be set for each parameter in addition to the FORM.  They are: 1) the highest possible value 

that can be tried for the parameter, 2) the lowest possible value that can be tried for the parameter, 3) the starting guess to help 

mlemlemlemle out from the start, and 4) a test value against which the parameter will be tested when standard errors are computed.  In the 

previous example, the mean parameter was constrained to the range [100, 400] and the initial guess was 270. 

Use care when setting the HIGH and LOW limits.  Most importantly, limits must be constrained to valid ranges for the 

intrinsic parameter.  Thus, for the MIX mixing proportion parameter (the first of the three parameters) then, HIGH = 1 and 
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LOW = 0, should be defined as is appropriate for a probability—unless some FORM like FORM = LOGISTIC is used to 

constrain the resulting parameter to between 0 and 1.  Sometimes it is useful to impose narrower limits, perhaps to avoid 

getting hung-up at a local maximum or to solve the model more quickly.  Be careful, though. Limits that are too narrow may 

exclude the global maximum—after all, the best parameter estimates for a set of data are presumably unknown.  Excessively 

narrow limits may cause problems when numerical derivatives for the variance-covariance matrix are computed, as well.  

Also, likelihood confidence intervals will bump up and stop at the limits you set. 

The TEST = xxx part of a PARAM function provides a value against which the parameter will be tested (in some 

reports). In a sense, the TEST value is a null hypothesis value (h0).  The test performed is ˆ ˆ( ) / ( )ot p h SE p= − , where p̂ is 

the maximum likelihood parameter estimate and ˆ( )SE p  is the standard error for the parameter estimate.  The t-test is 

provided for convenience only.  mlemlemlemle does not make use of the test in any way. 

The PDF function 

The purpose of the PDF function is to specify the component of a pre-defined probability density or distribution 

functions in mlemlemlemle.  Although the name is PDF, the PDF function can return either the probability density function or specified 

Table 12.  Brief summary of some types of functions in mlemlemlemle. 

function Brief description 
PDF Specifies a pre-defined probability or cumulative density function.  Returns the value of the density or 

distribution function as is appropriate to the arguments with which is was called. 
INTEGRATE Integrates a function and returns the value of the integral. 
IF THEN ELSE Evaluates a condition and returns the appropriate subfunction. 
PREASSIGN Computes a subfunction and assigns the result to a variable.  Then it computes and returns the second 

subfunction. 
POSTASSIGN Computes the first subfunction.  Then it computes the second subfunction, assigns the result to a 

variable, and then returns the value of the first subfunction. 
PRODUCT Iterates over some limits and takes the product of a subfunction. 
SUMMATION Iterates over some limits and sums a subfunction. 

function  calls A number of ordinary mathematical functions.  Example: SQRT(x) and ADD(x, y). 

quick conditionals ZEROIF, ONEIF, NEGONEIF, INFINITYIF, NEGINFINIF, NEGONEIF: return common values 

conditional on simple tests. 

constants, variables Pre-defined and user defined variables can be used as functions. 
PARAM A parameter to be estimated. 
DATA The data function cycles through all observations 
LEVEL, 

LEVELDELTA 
Creates a nested or multilevel likelihood. 
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areas under the PDF curve including the cumulative and survival density functions, and even the hazard function.  In addition, 

the PDF function can return areas or densities that are left and right truncated.  The structure of the PDF function call is: 
PDF <PDF name> ( <time variable1>, <time variable2>, ... ) 
  <intrinsic parameter 1>, 
  <intrinsic parameter 2>, 
  ... 
  <optional HAZARD parameter> 
END 

The name following PDF is the name of the built-in distribution.  A brief summary for each built-in distribution is 

given in Table 13.  A more complete description of each distribution is given in the Appendix. 

Time variable list is a list of the time arguments passed to the PDF.  Most univariate PDFs can take from one to four 

‘time’ arguments.8  In fact, these four times describe a single observation in such a way as to incorporate defects in the 

observation process (right censoring, left truncation, right truncation, cross-sectional).  A description of how the four 

arguments combine to specify a probability are given in the section that follows.  Note that the time arguments can be any 

expression, so that time shifts and transformations can be incorporated in this list. 

Intrinsic parameter list provides specifications for the PDF’s intrinsic parameters.  The order that the intrinsic 

parameters are specified is important; it corresponds to how the PDF is defined within mlemlemlemle.. The PDFs chapter lists the order 

for intrinsic parameters; alternatively, the command line mle -h can be used to determine the proper argument order.  Note 

that any expression can be used for an intrinsic parameter.  That is, you do not need to use a PARAM function for the intrinsic 

parameters, although this is the most common use.  Here is an example in which the location parameter is fixed to a constant 

for a shifted lognormal distribution: 
PDF SHIFTLOGNORMAL ( tooth_eruption_age ) 
  9,  {shift the time back to conception} 
  PARAM location LOW = 1 HIGH = 4 START = 2.5 END, 
  PARAM scale LOW = 0.0001 HIGH = 3 START = 0.9 END 
END 

PDF time arguments 

Most PDFs can have as few as one and as many as four time arguments specified.  They are: tu, the last observation 

time before an event; te, the first observed time after the event; tα, the left truncation time for the observation or the PDF; and 

tω, the right truncation time for the observation or the PDF.  Understanding how these four times act on the PDF statement is 

critical to creating the desired and proper likelihood. 

PDFs contribute to likelihoods in a number of ways.  In survival analysis, for example, the likelihood for an exact 

failure is given by the value of the PDF at the exact point of failure.  For a right censored observation, the likelihood is given 

by summing up (integrating) all possible PDF values from the last observation time until the maximum possible time.  The 

likelihood for a cross-sectional “responder” is the integral from zero to the time of first observation.  Table 6 lists the 

likelihoods that result from the four time variables for different conditions.  For example, when tu=te or when only one time 

variable is specified, mlemlemlemle returns the density at tu.  This is the desired likelihood for an exact failure.  Likelihoods for right and 

interval censored observations, with and without left and right truncation are given in Table 6. 

                                                           
8 These are called time variables in the context of survival analysis; however, they may represent other measurements (length, dose, height, 

etc.). 
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The Hazard Parameter 

For most parametric distributions (like the normal or lognormal distributions) the hazard function does not take on a 

simple or closed form.  For this reason, most studies have modeled the covariates as acting on the failure time for these 

distributions.  Nevertheless, there is no inherent reason why hazards models cannot be constructed using distributions without 

a closed form for the hazards functions.  Most of the PDFs built into mlemlemlemle provide a general mechanism for covariates to be 

modeled as affecting the hazard of failure, rather than (or in addition to) affecting intrinsic parameters.  Here is an example: 
PDF NORMAL(topen tclose) 
  PARAM mean   LOW = 100  HIGH = 400  START = 270  TEST = 0  FORM = LOGLIN END, 
  PARAM stdev  LOW = 0.1  HIGH = 100 START = 20 END, 
  HAZARD COVAR  sex     PARAM b_sex     LOW = -2  HIGH = 2  START = 0 END 
         COVAR  weight  PARAM b_weight  LOW = -2  HIGH = 2  START = 0 END 
  END {hazard} 
END 

The covariates sex and weight are modeled to effect on the hazard of failure.  Parameters b_sex and b_weight provide 

estimates of the effect. 

The HAZARD statement always provides a proportional hazards specification modeled directly on the hazard of the 

PDF.  Usually, the specification is loglinear, so that the hazard for the ith observation including the covariate effects defined 

as hi(ti|xiββββ) = h(ti)exp(xiββββ), where h(t) is the baseline hazard for the specified PDF.  Then, the survival function becomes 

Si(ti|xiββββ) = S(ti)exp(xββββ), and the probability density function becomes fi(ti|xiββββ) = f(ti)S(ti)exp(xββββ)–1exp(xiββββ).  The reason for 

exponentiating the xiββββ array is to prevent it from going negative (hazards are always be positive).   

A multiplicative form for the proportional hazards specification can also be specified by setting the constant 

EXP_HAZARD = FALSE (it is TRUE by default).  Then, the model is hi(ti|xiββββ) = h(ti)xiββββ, S(ti|xiββββ) = S(ti)xββββ, and f(ti|xiββββ) = 

f(ti)S(ti)xββββ–1xiββββ. You must insure that xiββββ never goes negative. 

Table 13.  Pre-defined distributions that may be used within the PDF function. 

Name Comments Parameters Variables 
ARCSINE Arcsine distribution none tu, te, tα, tω 
ASYMPTOTIC-
RANGE 

Asymptotic range distribution a (location), b (scale) tu, te, tα, tω 
BERNOULLI- 
TRIAL 

Bernoulli distribution p (proportion) outcome = 
0 or non-0 

BETA Beta distribution a (shape), b (shape) tu, te, tα, tω 
BINOMIAL Binomial distribution p (probability), n (count) tu, te, tα, tω 
BIRNBAUM- 
SAUNDERS 

Birnbaum-Saunders distribution a (location), b (scale) tu, te, tα, tω 
BIVNORMAL Bivariate normal distribution. µx, σx, µy, σy, ρ (correlation) tux, tuy, tex, tey, 

tαx, tαy, tωx, tωy 
CAUCHY Cauchy distribution a (location), b (scale) tu, te, tα, tω 
CHI Chi distribution a (location), b (scale), c (shape) tu, te, tα, tω 
CHISQARED Chi squared distribution a (location), b (scale) tu, te, tα, tω 
COMPOUND-
EXTREME 

Compound extreme a (location), b (scale), c (shape) tu, te, tα, tω 
DANIELS Daniel’s distribution none tu, te, tα, tω 
DISK Disk distribution a (location), b (scale) tu, te, tα, tω 
EXPONENTIAL Exponential distribution λ (hazard) tu, te, tα, tω 
FAILED Returns 1 if a failure occurs or 0 if no 

failure. 
none tu, te, tα, tω 
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GAMMA Gamma distribution a (location), b (scale), c (shape) tu, te, tα, tω 
GAMMAFRAIL Constant hazard with Gamma distributed 

heterogeneity 
h (constant hazard), c (frailty distribution 
parameter) 

tu, te, tα, tω 

GAUSSIAN Normal distribution. (NORMAL). µ (location, mean), σ (scale, standard 
deviation) 

tu, te, tα, tω 

GENGAMMA Generalized gamma distribution a (location), b (scale), c (shape) tu, te, tα, tω 
GENGUMBEL Generalized Gumbel distribution a (location), b (scale), c (shape) tu, te, tα, tω 
GEOMETRIC Geometric distribution p (probability) tu, te, tα, tω 
GOMPERTZ Gompertz PDF. a (baseline hazard), b (time-dependent 

hazard) 
tu, te, tα, tω 

GUMBEL Gumbel distribution. (LARGEEXTREME). a (location), b (scale) tu, te, tα, tω 
HORSESHOE Horseshoe family including symmetric 

quad, quart, and sextic distributions 
a (location), b (scale), c (shape) tu, te, tα, tω 

HYPERBOLIC-
SECANT 

Hyperbolicsecant distribution a (location), b (scale) tu, te, tα, tω 
HYPER-
GEOMETRIC 

Hypergeometric distribution p (proportion),  m (count) n (count) tu, te, tα, tω 
HYPER2EXP Two point hyperexponential distribution p (proportion); λ1, λ2 (subgroup hazards). tu, te, tα, tω 
HYPO2EXP Two stage hypoexponential distribution λ1, λ2 (subgroup hazards) tu, te, tα, tω 
IMMUNE Returns 0 if failure occurs or 1 if no 

failure.  Used with MIX to model sterility.  
(STERILE). 

none tu, te, tα, tω 

INVBETA1 Inverse beta distribution. First type a (location), b (scale), c (shape) tu, te, tα, tω 
INVBETA2 Inverse beta distribution. Second type a (location), b (scale), c (shape) tu, te, tα, tω 
INVCHI Inverse chi distribution. a (location), b (scale) tu, te, tα, tω 
INVGAMMA Inverse gamma distribution. a (location), b (scale) tu, te, tα, tω 
INVGAUSSIAN Inverse Gaussian distribution. a (location), b (scale) tu, te, tα, tω 
LAPLACE Laplace distribution. Also called double, 

2-tailed or bilateral exponential. 
a (location), b (scale) tu, te, tα, tω 

LARGEEXTREME Largest extreme value distribution (type 
1). (GUMBEL). 

a (location), b (scale) tu, te, tα, tω 

LINEARHAZARD Linear hazard distribution a (baseline), b (time-dependent) tu, te, tα, tω 
LNGAMMA loggamma distribution a (location), b (scale), c (shape) tu, te, tα, tω 
LNLOGISTIC Two parameter log-logistic distribution. a (location), b (scale) tu, te, tα, tω 
LNNORMAL Lognormal distribution. (LOGNORMAL). a (location, median), b (scale) tu, te, tα, tω 
LOGISTIC Two parameter logistic distribution a (location), b(scale) tu, te, tα, tω 
LOGNORMAL Lognormal distribution. (LNNORMAL). a (location, median), b (scale) tu, te, tα, tω 
LOGSERIES Logseries distribution. p (proportion) tu, te, tα, tω 
LOWMAX Lowmax distribution. a (location), b (scale), c (shape) tu, te, tα, tω 
MAKEHAM Gompertz-Makeham PDF a1, a2, b (hazards) tu, te, tα, tω 
MAXWELL Maxwell distribution. a (location), b (scale) tu, te, tα, tω 
MIXMAKEHAM 2-point mixed Gompertz-Makeham 

distribution. 
p (proportion) a1 (first constant hazard), a2  
(second constant hazard), a2 ,  b (hazards). 

tu, te, tα, tω 

NEGBINOMIAL Negative binomial distribution p (proportion) n (count). tu, te, tα, tω 
NORMAL The normal distribution. (GAUSSIAN) µ (location, mean), σ (scale, standard 

deviation) 
tu, te, tα, tω 

PARETO Pareto distribution. a (location), c (shape) tu, te, tα, tω 
PASCAL Pascal distribution. p (proportion) n (count). tu, te, tα, tω 
POISSON Poisson distribution. n (count) tu, te, tα, tω 
POWER-
FUNCTION 

Power function distribution. a (location), b (scale), c (shape) tu, te, tα, tω 
RASIED-COSINE Raised cosine distribution. a (location), b (scale) tu, te, tα, tω 
RANDOMWALK Random walk distribution. a (location), b (scale) tu, te, tα, tω 
RAYLEIGH Rayleigh distribution. b (scale) tu, te, tα, tω 
RECTANGULAR Continuous uniform distribution. 

(UNIFORM) 
none tu, te, tα, tω 

REVPOWER-
FUN TION

Reverse power function distribution. a (location), b (scale), c (shape) tu, te, tα, tω 
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FUNCTION 
RINGINGEXP0 Ringing exponential distribution at 0 

degrees phase. 
a (location), b (scale), c (shape) tu, te, tα, tω 

RINGING-
EXP180 

Ringing exponential distribution at 180 
degrees phase. 

a (location), b (scale), c (shape) tu, te, tα, tω 

SHIFTED-
LOGNORMAL 

Shifted lognormal distribution. a (location), b (scale), c (shape) tu, te, tα, tω 
SHIFTED-
WEIBULL 

Shifted weibull distribution. a (location), b (scale), c (shape) tu, te, tα, tω 
SILER Siler competing hazards distribution. a1, b1, a2, a3, b3 where, as are baseline 

hazards, bs are time-dependent. 
tu, te, tα, tω 

SMALLEXTREME Smallest extreme value distribution. a (location), b (scale) tu, te, tα, tω 
SUBBOTIN Subbotin distribution a (location), b (scale), c (shape) tu, te, tα, tω 
UNIFORM Continuous uniform distribution. 

(RECTANGULAR) 
none tu, te, tα, tω 

VONMESIS Von Mesis distribution  tu, te, tα, tω 
WEIBULL Weibull distribution. b (scale), c (shape) tu, te, tα, tω 

 

The PREASSIGN and POSTASSIGN functions 

The likelihood is always specified as a single function.  This means that within a likelihood, a special function must 

be used to compute intermediate results or perform other computations. The PREASSIGN...,...END function provides a 

mechanism to compute partial results of a likelihood outside of the main likelihood, or within part of the likelihood.  The 

statement takes on this form 
PREASSIGN  
  <variable1> = <expression1> 
  <variable2> = <expression2> 
   ... 
, 
<expression> 
END 

One or more assignment statements are defined immediately after the PREASSIGN.  Each of these assignment 

statements will be executed and the result assigned to the <variable> specified.  After that, the <expression> (just before the 

END) is evaluated.  The PREASSIGN function itself returns the results of that evaluation. For example, the following code 

would reparameterize the exponential PDF so that the parameter λ is replaced by the function -b-1 

MODEL 
  PREASSIGN  
    z = -1/PARAM b LOW = 0 HIGH = 1 START = 0.1 END 
  , 
    DATA 
      PDF EXPONENTIAL( t ) z END 
    END {data} 
  END {preassign} 
RUN 
  FULL 
END 

Notice that first the value z is assigned the value -b-1.  Next the likelihood eλt  is computed.  But, lambda is constrained to z.  

The assignment in the first part of the PREASSIGN function will be executed for each observation. 

The PREASSIGN function is particularly useful for defining a series of parameters, “up front”, so that the likelihood 

function itself is easier to specify.  Here is an example of recodeing a program so that all parameters are defined in advance. 
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MODEL  {mixture of two normal distributions} 
  PREASSIGN 
    pr = PARAM  p      LOW = 0    HIGH = 1   START = 0.5 END 
    u1 = PARAM  mu1    LOW = 5    HIGH = 14  START = 8   END 
    s1 = PARAM  sigma1 LOW = 0.1  HIGH = 5   START = 1.2 END 
    u2 = PARAM  mu2    LOW = 0    HIGH = 6   START = 2   END 
    s2 = PARAM  sigma2 LOW = 0.01 HIGH = 5   START = 1.2 END 
  , 
    DATA 
      MIX(pr, PDF NORMAL(topen tclose) u1 s1 END, PDF NORMAL(topcn tclose) u2 s2 END) 
    END {data} 
  END {preassign} 
RUN 
  FULL 
END {model} 

The POSTASSIGN...,...END function is similar to the preassign function, except that the list of assignment 

statements come after the function expression.  The form is 
POSTASSIGN 
  <expression> 
, 
  <variable1> = <expression1> 
  <variable2> = <expression2> 
  ... 
END 

The function defined by the first <expression> is evaluated first, and is the result returned by the POSTASSIGN 

function.  Then the list of statements is evaluated with each result assigned to the corresponding <variable>. 

The PRODUCT function 

The PRODUCT function computes a finite product.  The format is similar to the INTEGRATE or SUMMATION 

functions: 
PRODUCT <variable name> (<lower_limit> , <upper_limit>) 
  <expression> 
END 

or 

PRODUCT <variable name> (<lower_limit> , <upper_limit>, <convergence>) 
  <expression> 
END 

The expressions <lower_limit> and <upper_limit> define the lower and upper limits of the product.  These 

expressions (as well as the optional <convergence> expression) are evaluated once.  The optional <convergence> expression 

provides a second way to terminate the series.  When used, the product will terminate when the difference between one 

product and the next is less than the value of the <convergence> expression 

The PRODUCT function can be used, for example, to calculate likelihoods that incorporate geometric series.  The 

inner <expression> will be repeatedly evaluated with the index variable incremented for each evaluation.  Here is an example 

of a likelihood consisting of a Polya-Eggenberger distribution (Eggenberger and Pólya 1923) for exact failures at integer 

times t.  The probability density function for the Polya-Eggenberger distribution is 
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There are three products that must be computed as part of computing the density function.  The following mlemlemlemle  program 

fragment shows the code needed to implement the Polya-Eggenberger distribution.  Parameters p and c are to be estimated for 

a set of observations t. 

MODEL 
  DATA 
      COMBINATIONS(n, t) 
    * PRODUCT i (0, t - 1) 
          PARAM p LOW = 0 HIGH = 1 START = 0.5 END  
        * i * PARAM c LOW = -1 HIGH = 25 START = 1 END 
      END {product} 
    * 
      PRODUCT j (0, n - t - 1) 
        1 - p + j*c 
      END {product} 
    / 
      PRODUCT k (0, n - 1) 
        1 - k*c 
      END 
  END {data} 
RUN 
  FULL 
END 

Simple functions 

An <expression> can be a built-in simple function call, like SIN( <expression> ), POWER( <expression> , 

<expression> ), etc..  Simple functions are “simple” because they have a standard calling format.  Given a list of zero or 

more arguments, they evaluate a function and return a single value.  The function arguments themselves are <expressions>.   

Some examples are 

x = FACT(4)                   {evaluates to 24} 
y = SQRT(44.5)                {evaluates to 6.6708...} 
z = BETA(1.2, 9*3/10 + 1)     {evaluates to 0.185...} 
q = RAND                      {evaluates to a random number from 0 to 1} 

A list all of the built-in simple functions comes at the end of this chapter. 

The SUMMATION function 

The SUMMATION function computes a finite sum.  The format is similar to the INTEGRATE or PRODUCT 

functions: 
SUMMATION <variable name> (<lower_limit> , <upper_limit>) 
  <expression> 
END 

or 

SUMMATION <variable name> (<lower_limit> , <upper_limit>, <convergence>) 
  <expression> 
END 
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The expressions <lower_limit> and <upper_limit> define the lower and upper limits of the sum.  These expressions 

(as well as the optional <convergence> expression) are evaluated once.  The optional <convergence> expression provides a 

second way to terminate the series.  When used, the summation will terminate when the difference between one sum and the 

next is less than the value of the <convergence> expression 

Here is an example of a likelihood hand-coded for a Thomas distribution (Thomas 1949) for exact failures at integer 

times t.  The probability density function for the Thomas distribution is 
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A single finite summation must be computed as part of computing the density function.  The following mlemlemlemle  program fragment 

shows the code needed to implement the Thomas distribution.  Parameters a and b are to be estimated for observed times t. 

MODEL 
  DATA 
      EXP(-PARAM a LOW = 0.0001 HIGH = 20 START = 5 END) 
    * SUMMATION i (1, t) 
          EXP(-i * PARAM b LOW=0.0001 HIGH=40 START=0.5 END) 
        * a^i * (i*b)^(t - 1) / (FACT(i)*FACT(t - 1)) 
      END  {summation} 
  END      {data} 
RUN 
  FULL 
END 

List of simple functions 

ABS(x)  

Returns: Absolute value of x 

Range:  Positive values 

Examples:  ABS(-4) returns 4 

 ABS(4) returns 4 

 ABS(-4.0) returns -4.0 

ADD(x, y)  

Returns: The sum of two numbers, or the concatenation of strings or characters.  This is the functional 
form of “x + y”. 

Examples:  ADD(1, 5) returns 6.  The result is an integer. 

 ADD(2.5, 2.5) returns 5.0.  The result is a real number. 

 ADD(‘a’, “ string”) returns “a string”. 

Notes:  An integer is returned if both arguments are integers.  A real value is returned if either 
argument is real.  A string is returned with string or character arguments. 
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ANDF(x, y) 

Returns: Logical or boolean AND function.  This is the functional from of x AND y. 

Examples: ANDF(TRUE, TRUE) returns TRUE 

 ANDF(15, 28) returns 12 

 ANDF(2x010101, 2x000111) returns 5 

Notes: If both x and y are integer types, ANDF(x, y) returns the bitwise (logical) AND of the two 
numbers.  If x and y are boolean types, ANDF(x, y) returns the boolean AND of the two 
numbers. 

See also ORF, NOTF, XORF 

ARCCOS(x) 

Returns: Inverse cosine of x, which is the angle (in radians) whose cosine is x 

Constraints:  –1 ≤ x ≤ 1 

Examples: ARCCOS(0.5) returns 1.0. 

 ARCCOS(-1/2) returns 2.0943951023932 

ARCCOSH(x)  

Returns: Inverse hyperbolic cosine of x. 

Constraints: x ≥ 1 

Examples: ARCCOSH(2) returns 1.3169578969248 

 ARCCOSH(1) returns 0.0 

ARCCOT(x)  

Returns: Inverse cotangent of x. 

Constraints: x ≠ 0 

Examples: ARCCOT(3) returns 0.3217505543966 

ARCCOTH(x)  

Returns: Inverse hyperbolic cotangent of x. 

Constraints: x ≠ 0 

Examples: ARCCOTH(2) returns 0.5493061443341 
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ARCCSC(x)  

Returns: Inverse cosecant of x. 

Constraints: x ≠ 0 

Examples: ARCCSC(5) returns 0.2013579207903 

ARCCSCH(x) 

Returns: Inverse hyperbolic cosecant of x. 

Constraints: x ≠ 0 

Examples: ARCCSCH( 5) returns 0.1986901103492 

ARCSEC(x)  

Returns: Inverse secant of x. 

Constraints: x ≠ 0 

Examples: ARCSEC(1) returns 0.0 

ARCSECH(x)  

Returns: Inverse hyperbolic secant of x. 

ARCSIN(x)  

Returns: Inverse sine of x, or the number whose angle (in radians) is x 

Constraints: -1 ≤ x ≤ 1 

Range: -π/2 to π/2 

Examples: ARCSIN(1) returns 1.5707963267949 

 ARCSIN(0.5) returns 0.5235987755983 

ARCSINH(x) 

Returns: Inverse hyperbolic sine of x, which is the value whose hyperbolic sine is x 

Examples: ARCSINH(-2.5) returns -1.647231146371 

 ARCSINH(0) returns 0.0 
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ARCTAN(x)  

Returns: Inverse tangent of x, which is the angle (in radians) whose tangent is x 

Range: -π/2 to π/2 

Examples: ARCTAN(0) returns 0.0 

 ARCTAN(1) returns 0.7853981633974 

ARCTANH(x)  

Returns: Inverse hyperbolic tangent of x. 

Constraints: -1 < x < 1 

Examples: ARCTANH(0) returns 0.0 

 ARCTANH(0.5) returns 0.5493061443341 

BESSELI(x, y)  

Returns: The modified Bessel function of the first kind I (integer order x) of real y. 

See also: BESSELJ, BESSELK, BESSELY 

BESSELJ(x, y)  

Returns: The Bessel function of the first kind J (integer order x) of real y. 

See also: BESSELI, BESSELK, BESSELY 

BESSELK(x, y)  

Returns: The modified Bessel function of the second kind K (integer order x) of real y. 

See also: BESSELI, BESSELJ, BESSELY 

BESSELY(x, y) 

Returns: The Bessel function of the second kind Y (integer order x) of real y. 

See also: BESSELI, BESSELJ, BESSELK 
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BETA(ν, ω) 

Returns: Euler's beta function.  
1

1 1

0

BETA( , ) (1 )z x dxν ων ω − −= −∫ . 

Constraints: ν > 0, ω > 0 

Examples: BETA(5, 2) returns 0.0095238095231 

 BETA(4.0, 8.0) returns 0.0007575757575 

See also: BETA, IBETA, GAMMA, PDF BETA 

BOOL2STR(x) 

Returns: A string from boolean expression x. 

Examples: BOOL2STR(1 <> 1) returns "FALSE" 

 BOOL2STR(TRUE) returns "TRUE" 

See also: INT2STR, REAL2STR 

CEIL(x) 

Returns: The least integer greater than or equal to x. 

Examples: CEIL(1.9) returns 2.0 

 CEIL(2.0) returns 2.0 

 CEIL(2.1) returns 3.0 

 CEIL(-1.9) returns -1.0 

 CEIL(-2.0) returns -2.0 

 CEIL(-2.1) returns -2.0 

See also: FLOOR, ROUND, INT 

COMB(x, y) 

Returns: The binomial coefficient, which is combinations of x1 elements taken x2 at a time, which is: 

 x!/[y! (x – y)!] 

Constraints x ≥ y,  x and y are integer expressions. 

Examples: COMB(13, 10) returns 286.0 

 COMB(5, 5) returns 1.0 

See also: PERMUTATIONS 
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COMP(x) 

Returns: Complement of x.  The results is computed as SIGN(1-ABS(x), x). 

Examples: COMP(0) returns 1.0 

 COMP(0.25) returns 0.75 

 COMP(1) returns 0 

See also: COMPN 

COMPN(x, n)  

Returns: The n complement of x.  The results is computed as SIGN(n-ABS(x), x). 

Examples: COMPN(4, 3) returns 1.0 

 COMPN(-10, 2) returns -8.0 

See also: COMP 

CONCAT(x1, x2) 

Returns: The concatenation of two strings or characters. 

Examples: CONCAT("hello", " world") returns "hello world" 

 CONCAT('a', " string") returns "a string" 

 CONCAT('a', 'b') returns "ab". 

See also: ADD 

COS(x) 

Returns: Cosine of x. 

Examples: COS(0) returns 1 

 COS(1) returns 0.5403023058681 

 COS(DTOR(60)) returns 0.5 

COSH(x)  

Returns: The hyperbolic cosine of x. 

Examples: COSH(0) returns 1 

 COSH(4) returns 27.308232836016 
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COT(x) 

Returns: Cotangent of x. 

COTH(x)  

Returns: The hyperbolic cotangent of x. 

CSCH(x) 

Returns: The hyperbolic cosecant of x. 

DEC(x)  

Returns: x – 1 

Constraints: x must be an integer 

Examples: DEC(42) returns 41 

 DEC(-42) returns -43 

See also: INC 

DEFALULTOUTNAME 

Returns: A reasonable output file name based on the name of the mlemlemlemle program.  The function appends 
".out" to the program name after stripping off a trailing ".mle" or ".MLE", if any. 

Examples: For programs called "sample.mle", "sample." or "sample" the function returns "sample.out" 

Notes: The line OUTFILE(DEFAULTOUTNAME) will automatically pick and assign a useful name for 
the output file.  This is useful when you are constantly modifying and changing the name of a 
program. 

DELTA(x, y)  

Returns: The Kronecker’s delta function: 1 if x = y otherwise 0. 

Examples: DELTA(10, 10) returns 1 

 DELTA(11, 10) returns 0 

SEE ALSO HEAVISIDE, SGN 
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DIVIDE(x, y)  

Returns: x divided by y.  This is the functional form of x/y. 

Constraints y ≠ 0 

Examples 10/2 returns 5.0 

DMSTOD(x, y, z)  

Returns: An angle in degrees from an angle in degrees (x), minutes (y), and seconds (z). 

Examples: DMSTOD( 34,  15,  10.2) returns 34.252833333333 

 DMSTOD( 0,  20,  15) returns 0.33750 

DMSTOR(x, y, z) 

Returns: An angle in radians from an angle in degrees (x), minutes (y), and seconds (z). 

Examples: DMSTOR( 34,  15,  10.2) returns 0.5978247198035 

 DMSTOR( 0,  20,  15) returns 0.0058904862255 

DMYTOJ(x, y, z)  

Returns: A Julian day from day (x), month (y), and year (z). 

Examples: DMYTOJ(15, 1, 2000) returns the Julian day 2451559 

 DMYTOJ(4, 7, 1776) returns the Julian day 2369916 

Notes: This function is useful for computing durations between two dates in failure time models.  For 
example, the duration between "birth" on 16 Feb 1976 and "death" on 21 Jul 1992 would be 
computed as DMYTOJ(21, 07, 1992) – DMYTOJ(16, 02, 1976), which returns exactly 6000 
days. 

See also: JULIAND, JULIANM, JULIANY, YEARDAY, WEEKDAY 

DTOR(x)  

Returns: Degrees from radians, πx/180. 

Examples: DTOR(30) returns 0.5235987755983 

 DTOR(180) returns 3.1415926535898 

See also: RTOD 
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ERF(x)  

Returns: The error function, which is the integral of a standard normal probability density function 

from 0 to x.  ( )2

0
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x

ux e du x
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Constraints none, but x should be non-negative in order to return a proper probability 

Examples: ERF(0.75) returns 0.7111555777692 

 ERF(2) returns 0.995322139784 

 ERF(-2) returns -0.995322139784, which is not a probability 

See also ERFC 

ERFC(x)  

Returns:  The complementary error function, which is 1 – ERF(x). 

Constraints none, but x should be non-negative in order to return a proper probability 

Examples: ERFC(0.75) returns 0.2888444222308 

 ERFC(2) returns 0.0046778602160 

 ERFC(-2) returns 1.9953221397840, which is not a probability 

See also ERF 

EXP(x)  

Returns: The value e raised to the power x, ex. 

Examples: EXP(0.2) returns  1.2214027581602 

 EXP(0) returns 1 

 EXP(-0.2) returns 0.1353352832366 

FACT(x)  

Returns: The factorial function, x!, which is x × (x–1) × (x–2) × . . . × 2 × 1. 

Constraints None, but the function can overflow the computers representation of a real number from 
modest values of x 

Examples: FACT(5.0) returns 120.0 

 FACT(100) returns  9.332622E+0157 
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FISHER(x)  

Returns: Fisher's transformation as 
1 1ln
2 1

x
x

+ 
 − 

. 

Constraints -1 < x < 1 

Examples: FISHER(0) returns 0.0 

 FISHER(0.5) returns 0.5493061443341 

 FISHER (-0.99990000) returns -4.951718775643 

See also: FISHERINV 

FISHERINV(x)  

Returns: The inverse Fisher's transformation as 
exp(2 ) 1
exp(2 ) 1

x
x

−
+

. 

Range: The result falls between -1 and 1. 

Examples: FISHERINV(4) returns 0.9993292997391 

 FISHERINV(0.5) returns 0.4621171572600 

 FISHERINV(0) returns 0.0 

See also: FISHER 

FLOOR(x)  

Returns The greatest integer less than or equal to x as a real number. 

Examples: FLOOR(1.9) returns 1.0 

 FLOOR(2.0) returns 2.0 

 FLOOR( 2.1) returns 2.0 

 FLOOR(-1.9) returns -2.0 

 FLOOR(-2.0) returns -2.0 

 FLOOR(-2.1) returns -3.0 

See also: CEIL, ROUND, INT 

FRAC(x)  

Returns: The fractional part of x. 

Examples: FRAC(2.0) returns 0.0 

 FRAC(2.1) returns 0.1 
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 FRAC(-3.2) returns -0.2 

See also: INT 

GAMMA(x) 

Returns: Euler's gamma function, 1

0

( ) x tx t e dt
∞

− −Γ = ∫  

Examples: GAMMA(4) returns 6 

 GAMMA(PI) returns 2.2880377950731 

See also: IGAMMA, IGAMMAC, IGAMMAE, PDF GAMMA 

GCF(x, y)  

Returns: The greatest common factor of x and y, which is the greatest value that divides both x and y 
exactly. 

Examples: GCF(81, 36) returns 9 

 GCF(143, 187) returns 11 

See also: LCM 

HEAVISIDE(x)  

Returns: the Heaviside function, which is 1 if x ≥ 0 otherwise it returns 0. 

Examples: HEAVISIDE(3) returns 1 

 HEAVISIDE(0) returns 1 

 HEAVISIDE(-2) returns 0 

See also: DELTA, SGN 

IBETA(p, ν, ω)  

Returns: The normalized Euler's incomplete beta function.  
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Constraints: 0 ≤ p ≤ 1, ν > 0, ω > 0 

Examples IBETA( 0.5, 3, 6) returns 0.8554687499873 

 IBETA(1, 3, 3) returns 1.0 



Functions 

 86 

See also: BETA, IBETAC, GAMMA, PDF BETA 

IBETAC((p, ν, ω)  

Returns: The complement of the normalized Euler's incomplete beta function. IBETAC(p, ν, ω) = 1 – 
IBETA(p, ν, ω). 

Constraints: 0 ≤ p ≤ 1, ν > 0, ω > 0 

Examples IBETAC(0.5, 3, 6) returns 0.1445312500127 

 IBETAC(1, 3, 3) returns 0.0 

See also: BETA, IBETA, GAMMA, PDF BETA 

IDIV(x, y)  

Returns: The integer part of x/y.  This is the same as the algebraic expression x DIV y. 

Constraints y ≠ 0.  x and y must be integers 

Examples: IDIV(104, 25) returns 4 

 IDIV(-124, 25) returns -4 

See also: MODF, MODULO, REMAINDER, DIVIDE 

IGAMMA(x, y)  

Returns: Euler's incomplete gamma function. 

See also GAMMA, IGAMMAC, IGAMMAE 

IGAMMAC(x1, x2)  

Returns: The complement of the Euler's incomplete gamma function. 

See also GAMMA, IGAMMA, IGAMMAE 

IGAMMAE(x1, x2)  

Returns: IGAMMA(x1, x2)*ROOT(x2, x1). 
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INC(x)  

Returns: x + 1 

Constraints: x must be an integer 

Examples: INC(42) returns 43 

 INC(-42) returns -41 

See also: DEC 

INT(x) 

Returns The integer part of x as a real number. 

Examples: INT(1.9) returns 1.0 

 INT(2) returns 2.0 

 INT(-1.9) returns -1.0 

See also: FRAC, CEIL, ROUND, FLOOR 

INT2STR(x) 

Returns: A string from integer expression x. 

Examples: INT2STR(-123) returns "-123" 

 INT2STR(0rMCMXII) returns "1912" 

See also: BOOL2STR, REAL2STR 

INVERT(x)  

Returns: 1/x. 

Constraints x ≠ 0 

Examples: INVERT(2) returns 0.5 

 INVERT(-1.25) returns -0.8 

IRAND(x, y) 

Returns: A random integer from x to y. 

Notes: Before IRAND or other random number functions can be used, the value of RANDOMSEED 
must be set to a positive constant.  Use the SEED() procedure. 

See also: RAND, RRAND 
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ISEQ(x, y) 

Returns: The boolean x = y 

See also: ISGE, ISGT, ISLE, ISLT, ISNE, ISNEAR 

ISEVEN(x) 

Returns: TRUE if integer x is an even number, FALSE if x is odd 

Examples: ISEVEN(0) returns TRUE 

 ISEVEN(199) returns FALSE 

See also: ISODD 

ISGE(x, y) 

Returns: The boolean x ≥ y 

See also: ISEQ, ISGT, ISLE, ISLT, ISNE, ISNEAR 

ISGT(x, y)  

Returns: The boolean x > y 

See also: ISGE, ISEQ, ISLE, ISLT, ISNE, ISNEAR 

ISLE(x, y)  

Returns: The boolean x ≤ y 

See also: ISGE, ISGT, ISEQ, ISLT, ISNE, ISNEAR 

ISLT(x, y)  

Returns: The boolean x < y 

See also: ISGE, ISGT, ISLE, ISEQ, ISNE, ISNEAR 

ISNE(x, y)  

Returns: The boolean x ≠ y. 
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See also: ISGE, ISGT, ISLE, ISLT, ISEQ, ISNEAR 

ISNEAR(x, b, δ)  

Returns: TRUE if x is in the interval [b – δ, b + δ]; otherwise it returns FALSE. 

Examples: ISNEAR(23.5, 20, 4) returns TRUE 

 ISNEAR(23.5, 20, 1) returns FALSE 

See also: ISGE, ISGT, ISLE, ISLT, ISNE, ISEQ 

ISODD(x) 

Returns: TRUE if integer x is an odd number, FALSE if x is even 

Examples: ISODD(0) returns FALSE 

 ISODD(199) returns TRUE 

See also: ISEVEN 

JULIAND(x)  

Returns: The day of the month for a Julian day. 

Range: 1 to 31 

Examples: DMYTOJ( 30, 6, 1961) returns 2437481 {30 June 1961} 

 JULIAND(2437481) returns 30 

See also: JULIANM, JULIANY, YEARDAY, WEEKDAY, DMYTOJ 

JULIANM(x)  

Returns: The month for a Julian day. 

Range: 1 to 12 

Examples: DMYTOJ( 30, 6, 1961) returns 2437481  {30 June 1961} 

 JULIANM(2437481) returns 6 

See also: JULIAND, JULIANY, YEARDAY, WEEKDAY, DMYTOJ 

JULIANY(x)  

Returns: The year for a Julian day. 
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Examples: DMYTOJ( 30, 6, 1961) returns 2437481  {30 June 1961} 

 JULIANY(2437481) returns 1961 

See also: JULIAND, JULIANM, YEARDAY, WEEKDAY, DMYTOJ 

LCM(x, y)  

Returns: The least common multiple of x and y. 

Examples: LCM(9, 12) returns 36 

See also: GCF 

LEAPYEAR(y) 

Returns: The TRUE if the year specified by y is a leap year. 

Examples: LEAPYEAR(2000) returns TRUE 

 LEAPYEAR(2001) returns FALSE 

LEFTSTRING(x, y) 

Returns: The leftmost substring from x of up to y characters. 

Examples: LEFTSTRING("Probability theory", 11) returns "Probability" 

 LEFTSTRING("Anyway", 3) returns "Any" 

 LEFTSTRING("Anyway", 20) returns "Anyway" 

See also: RIGHTSTRING, SUBSTRING 

LN(x)  

Returns: The natural (Naperian) logarithm of x (also LOG). 

Constraints x ≥ 0.  If x = 0, -∞ is returned. 

Examples: LN(E) returns 1.0 

 LN(E^25) returns 25 

 LN(35) returns 3.5553480614894 

See also: LOG, LOGBASE, EXP 
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LNFACT(x) 

Returns: The natural logarithm of x!. 

Example LNFACT(10) returns 15.104412573076 

 LNFACT ( 3000) returns 21024.024853046 

See also: FACT, LNGAMMA 

LNGAMMA(x)  

Returns: The natural logarithm of GAMMA(x). 

Example: LNGAMMA ( 11) returns 15.104412572871 

 LNGAMMA(3001) returns 21024.024853046 

See also: GAMMA, LNFACT 

LOG(x)  

Returns: The natural (Naperian) logarithm of x (also LN). 

Constraints x ≥ 0.  If x = 0, -∞ is returned. 

Examples: LOG(E) returns 1.0 

 LOG(E^25) returns 25 

 LOG(35) returns 3.5553480614894 

See also: LN, LOGBASE, LOG10, EXP 

LOG10(x)  

Returns: The base-10 logarithm x. 

Constraints x ≥ 0.  If x = 0, -∞ is returned. 

Examples: LOG10(10) returns 1.0 

 LOG10(10^25) returns 25 

 LOG10(35) returns 1.5440680443503 

See also: LN, LOG, LOGBASE, EXP 

LOGBASE(x, y)  

Returns: The logarithm (base y) of x. 

Constraints x ≥ 0.  If x = 0, -∞ is returned. 
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Examples: LOGBASE(10, 10) returns 1.0 

 LOGBASE(10^25, 10) returns 25 

 LOGBASE(35, E) returns 3.5553480614894 

See also: LN, LOG, LOG10, EXP 

LOGISTIC(x)  

Returns: 1/[1 + exp(x)] (its complement if alt_logistic=true). 

LOGIT(x)  

Returns: ln[exp(x)/(exp(x) - 1)]. 

LUNARPHASE(j) 

Returns: An approximate phase of the moon on Julian date j. 

Examples: LUNARPHASE(DMYTOJ(15, 1, 2000)) returns 0.6055993482011 

 LUNARPHASE(DMYTOJ(16, 1, 2000)) returns 0.6733257524912 

See also: DMYTOJ 

MAX(x, y)  

Returns: The greatest of x and y. 

Examples: MAX(15, 10) returns 15 

 MAX(-15, -10) returns -10 

See also: MIN 

MIN(x, y)  

Returns: The least of x and y. 

Examples: MIN(10, 15) returns 10 

 MIN(-15, -10) returns -15 
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MIX(p, x, y)  

Returns: x and y weighted (mixed) by probability p.  px + (1 – p)y. 

Examples: MIX(0.5, 10, -10) returns 0 

 MIX(0.25, 1000, 2000) returns 1750 

MODULO(x, y)  

Returns: The integer remainder of x/y.  This is the same as the algebraic expression x MOD y. 

Constraints y ≠ 0.  x and y must be integers 

Examples: MODULO(110, 25) returns 10 

 MODULO(-124, 25) returns -24 

See also: REMAINDER, IDIV 

MONTHDAYS(m, y)  

Returns: the number of days in month m of year y. 

Examples: MONTHDAYS(2, 2000) returns 29 

 MONTHDAYS(2, 2001) returns 28 

See also: LEAPYEAR 

MULTIPLY(x, y)  

Returns: The algebraic product x × y; This is the same as the algebraic expression x * y. 

Examples: MULTIPLY(2, 3) returns 5 

 MULITPLY(2.5, 3) returns 7.5 

NEGATE(x)  

Returns: -x. 

Examples: NEGATE(23) returns -23 

 NEGATE(-45) returns 45 
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NOTF(x)  

Returns: The logical or boolean NOT function. 

Examples: NOTF(357) returns -358 

 NOTF(2x011011) returns -28 

 NOTF(TRUE) returns FALSE 

Notes: If x is an integer, NOTF(x) returns the bitwise (logical) NOT of the number.  If x is a boolean 
variable or constant, NOTF(x) returns the boolean NOT of the number. 

See also ORF, ANDF 

ORD(c)  

Returns: The ordinal value of character c. 

Examples: ORD('A') returns 65 

 ORD('a') returns 97 

ORF(x, y)  

Returns: The logical or boolean or function. 

Examples: ORF(456, 123) returns 507 

 ORF(2x00101, 2x01010) returns 15 

 ORF(TRUE, FALSE) returns TRUE 

Notes: If both x and y are integer variables or constants, ORF(x, y) returns the bitwise (logical) OR of 
the two numbers.  If x and y are boolean variables or constants, ORF(x, y) returns the boolean 
AND of the two numbers. 

See also: NOTF, ANDF, XORF 

PERMUTATIONS(x, y)  

Returns: Permutations: x taken y at a time: x!/(x – y)!. 

Constraints x ≥ y,  x and y are integer expressions. 

Examples: PERMUTATIONS(10, 1) returns 10.0 

 PERMUTATIONS(10, 3) returns 720.0 

See also: COMB 
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POLARTORECTX(r, a)  

Returns: Rectangular x coordinate from polar coordinates r, a, rcos(a). 

See also: POLARTORECTY, RECTTOPOLARR, RECTTOPOLARA 

POLARTORECTY(r, a)  

Returns: Rectangular y coordinate from polar coordinates r, a: rsin(a). 

See also: POLARTORECTX, RECTTOPOLARR, RECTTOPOLARA 

POWER(x, y)  

Returns: x raised to the power y, xy.  This is the functional form of the algebraic expression x^y. 

See also: ROOT 

PUT(x)  

Returns: the value of x, and, as a side effect, writes x to the standard output. 

Notes: x can be any type.  This function is particularly useful for debugging likelihoods. 

RAND 

Returns: A random real number from 0 to 1. 

Notes: Before RAND or other random number functions can be used, the value of RANDOMSEED 
must be set to a positive constant. 

See also: IRAND, RRAND 

REAL2STR(x, l, s) 

Returns: A string from real expression x.  The length of the string is l characters, and at least s 
significant digits are represented.  The function tries to return the number in decimal format 
rather than scientific format.  A minimum field length of about 9 is recommended for small or 
large numbers. 

Examples: REAL2STR(PI, 10, 1) returns "3.14159265" 

 REAL2STR(PI, 5, 5) returns "3.142" 

 REAL2STR(1.234567E-8, 20, 2) returns "0.000000012345670000" 

 REAL2STR(1.234567E-8, 9, 8) returns "1.2E-0008" 
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 REAL2STR(1.234567E-8, 12, 5) returns "1.235E-0008" 

See also: BOOL2STR, INT2STR 

RECTTOPOLARA(x, y) 

Returns: Polar angle (in radians) from rectangular coordinates x and y. 

See also: POLARTORECTY, POLARTORECTA, RECTTOPOLARR 

RECTTOPOLARR(x, y) 

Returns: Polar radius from rectangular coordinates x and y. 

See also: POLARTORECTY, POLARTORECTA, RECTTOPOLARA 

RECTTOSPHERER(x, y, z) 

Returns: Spherical radius from rectangular coordinates x, y, and z. 

Examples: RECTTOSPHERER(1, 2, 3) returns 3.7416573867739 

 RECTTOSPHERER(1, 1, 1) returns 1.7320508075689 

See also: SPHERETORECTX, SPHERETORECTY, SPHERETORECTZ, RECTTOSPHEREA1, 
RECTTOSPHEREA2, RECTTOPOLARA, RECTTOPOLARR, POLARTORECTX, 
POLARTORECTY 

RECTTOSPHEREA1(x, y, z) 

Returns: Spherical angle 1 (in radians) from rectangular coordinates x, y, and z. 

Examples: RECTTOSPHEREA1(1, 2, 3) returns 1.1071487177941 

 RECTTOSPHEREA1(1, 1, 1) returns 0.7853981633974 

See also: SPHERETORECTX, SPHERETORECTY, SPHERETORECTZ, RECTTOSPHERER, 
RECTTOSPHEREA2, RECTTOPOLARA, RECTTOPOLARR, POLARTORECTX, 
POLARTORECTY 

RECTTOSPHEREA2(x, y, z) 

Returns: Spherical angle 2 (in radians) from rectangular coordinates x, y, and z. 

Examples: RECTTOSPHEREA2(1, 2, 3) returns 0.6405223126794 

 RECTTOSPHEREA2(1, 1, 1) returns 0.9553166181245 
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See also: SPHERETORECTX, SPHERETORECTY, SPHERETORECTZ, RECTTOSPHERER, 
RECTTOSPHEREA1, RECTTOPOLARA, RECTTOPOLARR, POLARTORECTX, 
POLARTORECTY 

REMAINDER(x, y) 

Returns: The real remainder of x/y.  Returns 0 if y = 0 

Examples: REMAINDER(110.0, 25.0) returns 10.0 

 REMAINDER(-124, 25) returns -24.0 

 REMAINDER(-100, 0) returns 0.0 

See also: MODULO, IDIV 

RIGHTSTRING(x, y) 

Returns: The rightmost substring from x of up to y characters. 

Examples: RIGHTSTRING("Probability theory", 6) returns "theory" 

 RIGHTSTRING("Small", 4) returns "mall" 

 RIGHTSTRING("Small", 20) returns "small" 

See also: LEFTSTRING, SUBSTRING 

ROOT(x, y) 

Returns: The yth root of x, x1/y. 

Examples: ROOT(100, 2) returns 10.0 

 ROOT(100, -2) returns 0.10 

See also: POWER, SQRT 

ROUND(x)  

Returns: x rounded and returned as the nearest integer. 

Examples: ROUND(1.9) returns 2 

 ROUND(2.0) returns 2 

 ROUND(1.5) returns 2 

 ROUND(-1.5) returns -2 

See also: FRAC, CEIL, INT, FLOOR, TRUNC 
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RRAND(x, y) 

Returns: A real random number from x to y. 

Notes: Before RRAND or other random number functions can be used, the value of RANDOMSEED 
must be set to a positive constant. 

See also: RAND, IRAND 

RTOD(x) 

Returns: Radians from degrees, 180x/π. 

Examples: RTOD(0.5) returns 28.647889756541 

 RTOD(PI) returns 180.0 

See also: DTOR 

SEC(x) 

Returns: The secant of x. 

SECH(x) 

Returns: The hyperbolic secant of x. 

SGN(x) 

Returns: 1 if x > 0, 0 if x = 0, or -1, if x < 0. 

Examples: SGN(3) returns 1 

 SGN(0) returns 0 

 SGN(-2) returns -1 

See also: SIGN, DELTA, HEAVISIDE 

SHIFTLEFT(x, y)  

Returns: Shifts bits of x to the left by y binary positions. 

Examples: SHIFTLEFT(1, 5) returns 32 

 SHIFTLEFT(2, 10) returns 2048 

See also: SHIFTRIGHT 
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SHIFTRIGHT(x, y)  

Returns: Shifts bits of x to the right by y binary positions. 

Examples: SHIFTRIGHT(32, 5) returns 1 

 SHIFTRIGHT(2048, 10) returns 2 

See also: SHIFTLEFT 

SIGN(x, y)  

Returns: x with the same sign as y. 

Examples: SIGN(-234, 1) returns 234 

 SIGN(234, 0) returns 234 

 SIGN(-234, 0) returns 234 

 SIGN(234, -1) returns -234 

SIN(x)  

Returns: The sine of angle (in radians) x 

Examples: SIN(PI) returns 0.0 

 SIN(PI/2) returns 1.0 

SINH(x)  

Returns: The hyperbolic sine of x. 

Examples: SINH(1) returns 1.1752011936438 

 SINH(0) returns 0.0 

 SINH(-1) returns -1.175201193644 

SPHERETORECTX(r, a1, a2) 

Returns: Rectangular x from 3 spherical coordinates, radius r, angles (in radians) a1 and a2. 

Examples: SPHERETORECTX(1, PI, PI) returns 0 

 SPHERETORECTX(1, PI/4, PI/4) returns 0.5 

See also: SPHERETORECTY, SPHERETORECTZ, RECTTOSPHERER, RECTTOSPHEREA1, 
RECTTOSPHEREA1, RECTTOPOLARA, RECTTOPOLARR, POLARTORECTX, 
POLARTORECTY 
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SPHERETORECTY(r, a1, a2) 

Returns: Rectangular y from 3 spherical coordinates, radius r, angles (in radians) a1 and a2. 

Examples: SPHERETORECTY(1, PI, PI) returns 0 

 SPHERETORECTY(1, PI/4, PI/4) returns 0.5 

See also: SPHERETORECTX, SPHERETORECTZ, RECTTOSPHERER, RECTTOSPHEREA1, 
RECTTOSPHEREA1, RECTTOPOLARA, RECTTOPOLARR, POLARTORECTX, 
POLARTORECTY 

SPHERETORECTZ(r, a1, a2) 

Returns: Rectangular z from 3 spherical coordinates, radius r, angles (in radians) a1 and a2. 

Examples: SPHERETORECTZ(1, PI, PI) returns -1 

 SPHERETORECTZ(1, PI/4, PI/4) returns 0.7071067811865 

See also: SPHERETORECTX, SPHERETORECTY, RECTTOSPHERER, RECTTOSPHEREA1, 
RECTTOSPHEREA1, RECTTOPOLARA, RECTTOPOLARR, POLARTORECTX, 
POLARTORECTY 

SQR(x) 

Returns: x squared, x2 

Examples: SQR(PI) returns 9.8696044010894 

 SQR(10) returns 100 

 SQR(-5) returns -25 

See also: POWER 

SQRT(x) 

Returns: The square root of x, √x 

Examples: SQRT(100) returns 10 

 SQRT(25) returns 5 

See also: ROOT 

STANDARDIZE(x, µ, σ) 

Returns: A value for x standardized by location parameter µ and scale parameter σ, as (x – µ)/σ. 

Examples: STANDARDIZE(1, 2, 1) returns -1.0 
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 STANDARDIZE(1, 1, 1) returns 0.0 

 STANDARDIZE(2, 1, 1) returns 1.0 

STRING2INT(s) 

Returns: An integer number from string s 

Examples: STRING2INT("-124") returns -124 

 STRING2INT("0rMCMXIV") returns 1914 

See also: STRING2REAL 

STRING2REAL(s) 

Returns: A real number from string s 

Examples: STRING2REAL("-124.73") returns -124.73 

 STRING2REAL("0rMCMXIV") returns 1914.0 

See also: STRING2INT 

SUBSTRING(x, y, z)  

Returns: A substring from string x, beginning in position y and length z. 

Examples: SUBSTRING("Probability theory", 5, 7) returns "ability" 

 SUBSTRING("Small", 10, 5) returns the empty string "" 

 SUBSTRING("Small", 2, 20) returns "mall" 

See also: LEFTSTRING, RIGHTSTRING 

SUBTRACT(x, y)  

Returns: x – y.  This is the functional form of the algebraic x – y. 

Examples: SUBTRACT(10, 2) returns 8 

 SUBTRACT(-10, 2) returns -12 

See also: ADD 

TAN(x) 

Returns: The tangent of angle (in radians) x. 
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Examples: TAN(DTOR(45)) returns 1.0 

 TAN(0) returns 0 

TANH(x)  

Returns: The hyperbolic tangent of x. 

Examples: TANH(0) returns 0 

 TANH(1) returns 0.7615941559558 

TOLOWER(x) 

Returns: A string in lower case. 

Examples: TOLOWER("A STRING") returns "a string" 

 TOLOWER('A' + 'b') returns "ab" 

See also: TOUPPER 

TOUPPER(x)  

Returns: A string in upper case. 

Examples: TOUPPER("a string") returns "A STRING" 

 TOUPPER('A' + 'b') returns "AB" 

See also: TOLOWER 

TRIM(x)  

Returns: A string with leading and trailing spaces removed. 

Examples: TRIM(" a string ") returns "a string" 

 TRIM("   ") returns ""  (empty string) 

See also: TRIML, TRIMR 

TRIML(x)  

Returns: A string with leading spaces removed. 

Examples: TRIML(" a string ") returns "a string " 

 TRIML("   ") returns ""  (empty string) 
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See also: TRIM, TRIMR 

TRIMR(x)  

Returns: A string with trailing spaces removed. 

Examples: TRIMR(" a string ") returns " a string" 

 TRIMR("   ") returns ""  (empty string) 

See also: TRIM, TRIML 

TRUNC(x)  

Returns: x truncated to an integer. 

Examples: TRUNC(1.0) returns 1 

 TRUNC(2.8) returns 2 

 TRUNC(-2.5) returns -2 

See also: ROUND, FRAC, CEIL, INT, FLOOR 

WEEKDAY(x)  

Returns: A numerical day of the week (Sun=1 Mon=2...) for Julian day x. 

Examples: WEEKDAY(DMYTOJ(01, 01, 2000)) returns 7 (Saturday) 

 WEEKDAY(DMYTOJ(15, 01, 2001)), M.L. King Jr.'s birthday, returns 2 (Monday). 

See also: See also: JULIAND, JULIANM, JULIANY, YEARDAY, DMYTOJ 

XORF(x, y)  

Returns: Logical or boolean XOR function.  This is the functional from of x XOR y. 

Examples: XORF(TRUE, TRUE) returns FALSE 

 XORF(FALSE, FALSE) returns FALSE 

 XORF(TRUE, FALSE) returns TRUE 

 XORF(2x010101, 2x000111) returns 18 (2x010010) 

Notes: If both x and y are integer types, XORF(x, y) returns the bitwise (logical) XOR of the two 
numbers.  If x and y are boolean types, XORF(x, y) returns the boolean XOR of the two 
numbers. 

See also ORF, NOTF, ANDF 
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YEARDAY(x)  

Returns: Day of the year (1-jan = 1...) for Julian day x. 

Examples: YEARDAY(DMYTOJ(01, 01, 2000)) returns 1 

 YEARDAY(DMYTOJ(30, 06, 2000)) returns 182 

See also: See also: JULIAND, JULIANM, JULIANY, WEEKDAY, DMYTOJ 

Calculator mode 

mlemlemlemle can be made to act like a calculator.  In this mode, instead of a program filled with assignment statement, data 

statements, and model statements, a series of expressions are given to mlemlemlemle.  The expressions are evaluated and the result is 

printed.  This can be done either interactively (using the -i command line option) or by reading in a program file.   

This “calculator” mode is invoked by not including the prefix  mle as the first thing read either interactively or in 

the program file.  mlemlemlemle will then execute all subsequent commands as expressions to be interpreted.  The exception to this is 

that DATA statements are also legal. Here is an example 
c:\>mle -i 
sin(pi * 3)      This is the user-defined expression 
2.168404E-0019      And this is what was returned 
 
PDF normal(2, 3) 1, 2 end    Compute the area under normal pdf from 2 to 3, µ=1, σ=2 
0.1498822726114     resulting area 
 
INTEGRATE z (2, 3) PDF NORMAL(z) 1, 2 end end Expressions can be nested. Integrate for 2 to 3 a normal pdf with 
µ=1, σ=2 
0.1498822847945     This should be close to the previous result 
 
gamma(3.8)      Evaluates the gamma function 
4.6941742051124 
summation i (1, 10) 1/i^2 end    Sum from 1 to 10, 1/i2 
1.5497677311665 
 
end       Ends and returns to DOS 
In version 2 of mlemlemlemle, when using calculator mode interactively, there will always be a delay of one expression before 

the results is returned.  This is because an expression can continue on indefinitely.  For example, the expression "SIN(2*pi)" 

followed by a carriage return does not complete the expression because the next line may be "+ 1/2".  A new expression is 

needed to denote the end of the old expression.  Thus, typing "1 pi 2" followed by a carriage return will result in two 

complete expressions (returning 1 and 3.1415926535898).  The third expression is not yet complete. 

Note that if you begin mlemlemlemle with the options -i -v and begin typing expressions, the verbose result will be to show 

the entire expression in functional form (i.e. as a series of functions).  For example 
c:\>mle -i -v 
sin(pi^2/4 + 1)      This is the user-defined expression 
returns  
SIN(ADD(DIVIDE(POWER( PI ,  2),  4),  1)) ->  -0.320074806512 
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SOME EXAMPLE PROGRAMS 

Survival analysis—Exact measurements 

This first example not only provides an illustration of a simple mlemlemlemle program, but also shows the notation that will be 

used throughout this chapter.  The problem at hand is finding one or more parameters θθθθ of some distribution f(t|θθθθ), given a 

series of observations, t=t1, t2, . . ., tN.  The values of t are known exactly.  For an individual observation, ti, the individual 

likelihood is Li = f(ti|θθθθ), and the overall likelihood for the N observations is  

(2) ( , | ) ( | , )
N

i
i=1

L a b = f a b dtt∏t . 

Data for this example (Table 14) are a series of 15 observations of times to breakdown for an insulating fluid at 32 

kV.  The times are arranged as one observation per line in a file named ex1.dat.  The underlying distribution is believed to 

follow a negative exponential probability density function, with a single parameter lambda.  The following mlemlemlemle program 

analyses these data 
MLE 
  TITLE = "32 kV Insulating Fluid Example from Nelson (1982:105)" 
  DATAFILE("ex1.dat")   {Input data file name} 
  OUTFILE("ex1.out")    {Name to which results are written} 
 
  DATA 
    failtime   FIELD 1 
  END 
 
  MODEL 
    DATA 
       PDF EXPONENTIAL(failtime) 
         PARAM  lambda  LOW=0.00001  HIGH=1  START=0.05  END 
       END  {of the PDF} 
    END 
  RUN 
    FULL 
  END  {of the MODEL} 
END    {of the MLE program} 

Here is the abridged output 

Table 14 Times to breakdown for an insulating fluid at 32 kV, from Nelson W (1982:105). 

0.27 0.4 0.69 
0.79 2.75 3.91 
9.88 13.95 15.93 
27.8 53.24 82.85 
89.29 100.58 215.1 
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New model:  32 kV Insulating Fluid Example 
 
LogLike= -70.76273 Iterations= 2 Func evals= 26 Del(LL)= 0.0000000000 
Converged normally 
 
Results with estimated standard errors.  (7 evals) 
Solution with 1 free parameter 
         Name Form       Estimate         Std Error          t        against 
       lambda LOGLIN   0.024294254090   0.004468859626    5.43634307759   0.0 
 
Likelihood CI Results:  (21 evals) 
Solution with 1 free parameter 
         Name Form       Estimate          Lower CI          Upper CI 
       lambda LOGLIN   0.024294254090   0.009423459169    0.049934238797 

The first part of the output shows the loglikelihood, and information about iterations, function evaluations, and 

convergence.  This is followed by two output reports, first with standard errors and the with an approximate likelihood 

confidence interval (region). 

Survival analysis—Exact failure and right censored observations 

The standard problem in survival analysis is to find parameters of a parametric model when some observations are 

right censored.  Typically we have N exact observations, and N+ right-censored observations, the likelihood is  

(3) 
1 1

( ) ( | ) ( | )
N N

i i
i i

L = f St t
+

= =
∏ ∏tθ | θ θθ | θ θθ | θ θθ | θ θ , 

where S(t|θθθθ) is the survival distribution, which is the area under f(t|θθθθ) to the right of t.  The area under a right censored 

observation is specified in the mlemlemlemle PDF function by setting the second time variable to infinity (or something less than the first 

time variable).  So, the function PDF NORMAL(14,-1) 10, 6 END would return the area from 14 to infinity of under a 

normal pdf with parameters µ = 10, and σ = 6, or about 0.2525.  This would correspond to the likelihood of an individual 

surviving to 14 units of times under the specified model. 

For this example, we use the data in Table 14 and suppose that there were three additional observations that had not 

failed by time 220—the end of the experiment.  The data will be coded so that the three right censored times are  given as 

negative times, -220.  The DATA statement now creates two variables, the first is the absolute value of time to failure, and the 

second is the unmodified time.  Thus, failed observations have two identical failure times, for example [9.88, 9.88], which 

defines an exact failure; whereas, right-censored observations have a positive and a negative censored time [220, -220], 

yielding the area under the pdf from 220 to infinity. 
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MLE 
  TITLE = "32 kV Insulating Fluid Example" 
  DATAFILE("ex2.dat")   {Input data file name} 
  OUTFILE("ex2.out")    {Name to which results are written} 
 
  DATA     
    topen   FIELD 1 = ABS(topen) 
    tclose  FIELD 1  
  END 
 
  MODEL 
    DATA  
       PDF EXPONENTIAL(topen, tclose) 
         PARAM  lambda  LOW=0.00001  HIGH=1  START=0.05  END 
       END  {of the PDF} 
    END 
  RUN 
    FULL 
  END  {of the MODEL} 
 
END    {of the MLE program} 

The abridged output is 
 
18 lines read from file ex2.dat 
18 Observations kept and 0 observations dropped. 
 
New model:  32 kV Insulating Fluid Example 
 
LogLike= -81.66833 Iterations= 2 Func evals= 28 Del(LL)= 0.0000000000 
Converged normally 
 
Results with estimated standard errors.  (8 evals) 
Solution with 1 free parameter 
         Name Form       Estimate         Std Error          t        against 
       lambda LOGLIN   0.011742333138   0.002142967492    5.47947329296   0.0 
 
Likelihood CI Results:  (21 evals) 
Solution with 1 free parameter 
         Name Form       Estimate          Lower CI          Upper CI 
       lambda LOGLIN   0.011742333138   0.004554712392    0.024135096958 

Survival analysis—Interval censored observations 

Interval censored observations, are those collected between two points of time.  These observations frequently arise 

from prospective studies in which periodic observations are collected.  The exact times to the event are not known.  What is 

known is tu, the last time before the event occurred, and te, the time of the first observation after the event occurred.  The 

likelihood for interval censored events is the area under the pdf between tu and te, 

(4) ( , ) ( | ) ( | )
i i

N

u e u e
i=1

L S t S t = − ∏t tθ | θ θθ | θ θθ | θ θθ | θ θ  

In mlemlemlemle, the area under the pdf is specified for most distributions as the first two times, with the second time greater than the 

first.  For example, PDF NORMAL(11, 15) 10, 6 END return 0.231, which is the area between 11 and 15 under a normal 

distribution with µ=10, and σ=6.  Here is an mlemlemlemle program that finds parameters of a lognormal distribution from interval 

censored data. 
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MLE 
  TITLE = "Example" 
  DATAFILE("ex3.dat") 
  OUTFILE("ex3.out") 
 
  DATA     
    topen   FIELD 1 
    tclose  FIELD 2 
  END 
 
  MODEL 
    DATA  
       PDF LOGNORMAL(topen, tclose) 
         PARAM  a  LOW=0.00001  HIGH=9  START=1  END 
         PARAM  b  LOW=0.00001  HIGH=2   START=0.4  END 
       END  {of the PDF} 
    END 
  RUN 
    FULL 
  END  {of the MODEL} 
 
END 

Current status analyses 

Current status analysis consists of observations that are collected cross-sectionally.  The methods most commonly 

associated with current status analysis is probit and logit analysis.  mlemlemlemle allows for current status analysis with any of the built-

in distribution functions. 

Under a cross-sectional study design, each observation consists of (1) time of a single observation since the study 

began (t), (2) an indicator variable to determine whether or not the individual experienced the event.  The result of the 

indicator variable is that the individual is a responder (r) or non-responders (n).  The likelihood from N observations made up 

of Nr responders and Nn non-responders is 

(5) 
1 1

( ) ( | ) ( | )
n r

i i
i i

L = S Ft t
= =

∏ ∏tθ | θ θθ | θ θθ | θ θθ | θ θ  

This likelihood can be interpreted as follows.  For the likelihood for the non-responders is the area under the pdf from the 

time of observation to infinity.  Thus, a responder contributes a likelihood that is exactly like a right-censored observation.  

The likelihood for a responder is the area under the pdf from -∞ (or 0 for pdfs defined to have positive arguments) to the time 

of observation, which is the probability of the event occurring at some time unknown time before the time of observation.  In 

mle, the area under the likelihood for a responder is specified as PDF LOGNORMAL(-1, 5) 2, 0.5 END return 0.217, 

which is the area between 0 (or anything less than 0) and 5 under a lognormal distribution with µ=2, and σ=0.5. 

Consider a data set that contains a time of observation and an indicator variable that is 0 if the observation was a 

non-responder and 1 for a responder.  One way of coding this model is to place an IF...THEN...ELSE...END statement to 

switch between responder and nonresponder likelihoods as appropriate for each observation: 
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MLE 
  TITLE = "Example" 
  DATAFILE("ex4.dat") 
  OUTFILE("ex4.out") 
 
  DATA     
    t       FIELD 1  {time of observation} 
    resp    FIELD 2  {1 if responder, 0 if nonresponder} 
  END 
 
  MODEL 
    DATA  
      IF resp = 1 THEN        {it is a responder} 
        PDF LOGNORMAL(0, t) 
          PARAM  a  LOW=0.00001  HIGH=9  START=1    END 
          PARAM  b  LOW=0.00001  HIGH=2  START=0.4  END 
        END  {of the PDF} 
      ELSE  {non-responder} 
        PDF LOGNORMAL(t, oo) a, b END 
      END  {of if then else} 
    END {data} 
  RUN 
    FULL 
  END  {of the MODEL} 
 
END 

Alternatively, The following mlemlemlemle data statement will transform the observation time into a set of two times.  For a 

responder, topen will be set to zero and tclose will take the value of the observed time.  For a non-responder, topen will 

take the value of the observed time and tclose will be set to zero.  Note that when the second time is set to zero, it will be 

less than topen, so mlemlemlemle returns the area from topen to infinity.  
MLE 
  TITLE = "Example" 
  DATAFILE("ex4.dat") 
  OUTFILE("ex4.out") 
 
  DATA     
    time     FIELD 1    {read in observation time} 
    resp     FIELD 2    {1 if responder, 0 if nonresponder} 
    topen     = IF resp == 1 THEN 0 ELSE time END 
    tclose    = IF resp == 1 THEN time ELSE -1 END 
  END 
 
  MODEL 
    DATA  
       PDF LOGNORMAL(topen, tclose) 
         PARAM  a  LOW=0.00001  HIGH=9  START=1    END 
         PARAM  b  LOW=0.00001  HIGH=2  START=0.4  END 
       END  {of the PDF} 
    END 
  RUN 
    FULL 
  END  {of the MODEL} 
 
END 

Survival analysis—With left-truncated observations 

Left truncation arises in survival analysis when some early portion of an individual's period of risk is not observed.  

For example, in a prospective study of mortality, we might want to follow all living people in some area, instead of just 

following individuals from birth.  This type of data collection can lead to unbiased results, provided observations are left-

truncated at the age at which people are enrolled in the study.  The idea is that, had the someone died prior to being enrolled 

in the study, that would not have been enrolled; therefore, their risk of mortality is know to be zero. 
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For this example, we will use the Siler competing hazards mortality model for a fictitious prospective study of 

mortality.  We will two types of observations: those who died and those who are right censored.  For each observation we 

know three times: the time an individual was enrolled for prospective observation (tα), the last time an individual was 

observed as alive (tu), and the first time the individual was known to be dead (te).  The first time, tα, defines the left truncation 

point, tu and te define an interval within which death took place.  For right censored observations, te is set to infinity (or a 

number greater than the human lifespan).  The likelihood is 

(6) 
1

( | ) ( | )
( , , )

( | )
i i

i

N
u e

u e
i

S t S t
L

S tα
α=

−
= ∏t t t

θ θθ θθ θθ θ
θ,θ,θ,θ,

θθθθ
. 

From this likelihood it can be seen that an individual's probability of death is the area under pdf between tu and te and divided 

by the area from tα to infinity, which renormalizes the pdf for the period of actual observation.  An individual likelihood is 

constructed in mlemlemlemle as PDF SILER(14, 15, 6) 0.05, 0.3, 0.0, 0.001, 0.05 END, which represents a person who 

died between ages 14 and 15, and were enrolled in the study at age 6. 

MLE 
  TITLE = "Example" 
  DATAFILE("ex5.dat") 
  OUTFILE("ex5.out") 
 
  DATA     
    talpha    FIELD 1  {Left truncation time} 
    topen     FIELD 2  {time last known alive} 
    tclose    FIELD 2  {time first known dead, or oo if censored} 
  END 
 
  MODEL 
    DATA  
       PDF SILER(topen, tclose, talpha) 
         PARAM  a1  LOW=0.00001  HIGH=0.5 START=0.01   END 
         PARAM  b1  LOW=0.01     HIGH=2   START=0.1    END 
         PARAM  a2  LOW=0        HIGH=1   START=0.001  END 
         PARAM  a3  LOW=0.0000   HIGH=1   START=0.001  END 
         PARAM  b3  LOW=0.00001  HIGH=1   START=0.001  END 
       END  {of the PDF} 
    END 
  RUN 
    FULL 
  END  {of the MODEL} 
 
END 

Survival analysis—right-truncated observations 

Right truncation arises in survival analysis when the later risk is determined by the study design.  For example, we 

might have data on child mortality for analysis.  Each child was followed from birth to age five, and the only children 

available in the data set were those who died from birth to five.  This type of data collection can lead to unbiased results, 

provided child's observations are right-truncated at age five. 

For this example, we will use the Gompertz competing hazards mortality model for a fictitious prospective study of 

mortality.  We will have observations selected for mortality by age five and no right-censoring.  A single age at death is 

known.  The likelihood for exact times to death with right truncation is 
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From this likelihood it can be seen that an individual's probability of death is the pdf at the age of death, divided by the area 

from 0 to tω, which renormalizes the pdf for the period of actual observation.  An individual likelihood is constructed in mlemlemlemle as 

PDF GOMPERTZ(2.1, 2.1, 6) 0.05, 0.3 END, which is a death at the age of 2.1. 

MLE 
  TITLE = "Example" 
  DATAFILE("ex6.dat") 
  OUTFILE("ex6.out") 
 
  DATA     
    tdeath    FIELD 1  {Left truncation time} 
  END 
 
talpha = 5.0     {set a constant for right truncation} 
 
  MODEL 
    DATA  
       PDF GOMPERTZ(tdeath, tdeath, talpha) 
         PARAM  a1  LOW=0.00001  HIGH=0.5  START=0.01  END 
         PARAM  b1  LOW=-2       HIGH=-0   START=0.1   END 
       END  {of the PDF} 
    END 
  RUN 
    FULL 
  END  {of the MODEL} 
 
END 

Survival analysis—With left-and right-truncated observations 

This example extends the previous one by including both left and right truncation, as well as interval censored 

observations.  We will use a child mortality example again, but now each children is recruited at some age from 0 to 5 years.  

Their risk will be left-truncated at the age of entry.  Again, only children who die before age 5 would be included in the 

analysis, so that all exposures are right-truncated.  Finally, children are periodically visited, so all observations are interval 

censored.  Again, we will use the Gompertz competing hazards mortality model for this fictitious prospective study of child 

mortality.  The likelihood is 
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From this likelihood it can be seen that an individual's probability of death is the area under pdf between tu and te and divided 

by the area from tα to tω, which renormalizes the pdf for the period of actual observation.  An individual likelihood is 

constructed in mlemlemlemle as PDF GOMPERTZ(topen, tclose, talpha, tomega) 0.05, 0.3 END.  For example PDF 

GOMPERTZ(2.1, 2.4, 1.0, 5.0) 0.05, 0.3 END returns the probability that a child, enrolled in the study at age one 

and selected for having died by age five, died between the ages of 2.1 and 2.4. 
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MLE 
  TITLE = "Example" 
  DATAFILE("ex7.dat") 
  OUTFILE("ex7.out") 
 
  DATA     
    talpha    FIELD 1  {Left truncation time} 
    topen     FIELD 2  {time last known alive} 
    tclose    FIELD 2  {time first known dead, or oo if censored} 
  END 
 
tomega = 5.0 
 
  MODEL 
    DATA  
       PDF GOMPERTZ(topen, tclose, talpha, tomega) 
         PARAM  a1  LOW=0.00001  HIGH=0.5 START=0.01  END 
         PARAM  b1  LOW=0.01     HIGH=2   START=0.1   END 
       END  {of the PDF} 
    END 
  RUN 
    FULL 
  END  {of the MODEL} 
 
END 

Survival analysis—Accelerated failure time  

Frequently, one is interested in modeling the effects of covariates on the time to failure.  A common model of this 

type is call the accelerated failure time model (AFT), in which covariates shift the time to failure to the right or the left.  mlemlemlemle 

has a general mechanism for modeling the effects of covariates on any parameter that is defined, so that accelerated failure 

time models can be easily constructed. 

In this example, the mean of a normal distribution has two covariates that shift the failure time.   
MLE 
  TITLE = "Example" 
  DATAFILE("ex8.dat") 
  OUTFILE("ex8.out") 
 
  DATA     
    topen     FIELD 1  {Last observation time prior to the event} 
    tclose    FIELD 2  {First observation time after the event} 
    weight    FIELD 3  {the first covariate} 
    age       FIELD 4  {the second covariate} 
  END 
 
  MODEL 
    DATA  
       PDF NORMAL(topen, tclose) 
         PARAM  mu  LOW=0.00001  HIGH=100 START=25  FORM=LOGLIN 
            COVAR weight PARAM b_weight LOW=-20 HIGH=20  START=0  END 
            COVAR age    PARAM b_age    LOW=-20 HIGH=20  START=0  END 
         END     {param mu} 
         PARAM  s  LOW=0.01  HIGH=50  START=3  END 
       END  {of the PDF} 
    END 
  RUN 
    FULL 
  END  {of the MODEL} 
 
END 

From this specification of covariates, the µ intrinsic parameter of the normal distribution will be computed for the ith 

observation as µi = mu×exp(weighti × b_weight + agei × b_age). 
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Survival analysis—Hazards model 

An alternative to the accelerated failure time model is the hazards model.  Under the hazards model, the effects of 

covariates is to raise or lower the hazard by some amount9.  In general, if h(t) is the hazard function, covariates for the ith 

individual,  xiβ, are modeled on the hazard as hi(t) = h(t)exp(xiβ).   

Most of the probability density functions in mlemlemlemle provide a mechanism for modeling the effects of covariates on the 

hazard.  You can find out for any particular pdf by typing, for example, mle -h lognormal.  A message will tell you 

whether or not covariates can be modeled on the hazard. 

In this example, the same normal distribution used in the previous example has had the two covariates moved from 

affecting µ to affecting the hazard. 
MLE 
  TITLE = "Example" 
  DATAFILE("ex8.dat") 
  OUTFILE("ex8.out") 
 
  DATA     
    topen     FIELD 1  {Last observation time prior to the event} 
    tclose    FIELD 2  {First observation time after the event} 
    weight    FIELD 3  {the first covariate} 
    age       FIELD 4  {the second covariate} 
  END 
 
  MODEL 
    DATA  
       PDF NORMAL(topen, tclose) 
         PARAM  mu  LOW=0.00001  HIGH=100  START=25  END 
         PARAM  s   LOW=0.01     HIGH=50   START=3   END 
         HAZARD COVAR weight PARAM b_weight LOW=-20 HIGH=20  START=0  END 
                COVAR age    PARAM b_age    LOW=-20 HIGH=20  START=0  END 
         END     {hazard} 
       END  {of the PDF} 
    END 
  RUN 
    FULL 
  END  {of the MODEL} 
 
END 

Survival analysis—Immune subgroup 

When observing times to events, there may be an unidentifiable subgroup for whom risk of experiencing the event is 

zero.  These make up a so-called immune fraction, a sterile subgroup, or a contaminating fraction.  It is possible to model 

some fraction of individuals who are not at risk, so to statistically identify the subgroup.     

If complete records are available for all individuals, one could simply remove the sterile individuals from the 

analysis of the non-sterile fraction.  When complete records are not available (i.e. we cannot tell a sterile individual from a 

right-censored individual) maximum likelihoods methods are easily adapted to include estimation of an unknown fraction of 

individuals who are not susceptible to failure.   

The effect of the sterile subgroup on the survival distribution can be seen in Figure 5.  Call s the non-susceptible 

fraction.  Then the proportion of individuals who are susceptible at the start of risk is p(0)=1 – s.  Inspection of Figure 5 

                                                           
9   Except for the exponential and the weibull distributions, accelerated failure time models are not proportional hazards models. 
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suggests that the fraction of surviving individuals at time t must be made up of two fractions.  One is Sf(t) weighted by the 

fraction not sterile, (1 – s).  The second fraction is constant at s: 

 ( ) (1 ) ( )fS t s S t s= − + . 

The overall hazard at time t is simply the hazard of the non-susceptible subgroup weighted by the proportion of that 

group at time t.  The proportion of susceptible individuals at time t will decrease as fecund individuals fail, and  must depend 

on survivorship of the non-sterile group to time t and the initial fraction of sterile individuals, s.  This fraction at time t is 
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The hazard at time t is 
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and the probability density function is found as  

 ( ) ( ) ( ) (1 ) ( ) ( ) (1 ) ( )f f ff t h t S t s S t h t s f t= = − = − . 

These forms for the PDF, SDF, and hazard function provide for reasonably straight-forward maximum likelihood 

estimation of the parameters of the distribution for the susceptible observations as well as s. The general form of the 

likelihood when sterility is included, becomes 

 

Figure 5. The effect of contamination by a sterile subgroup on the survivorship distribution.  The subgroup makes up fraction s of 
the initial population at risk.  The left panel shows survivorship for the uncontaminated group and the right panel shows the same 
distribution contaminated by the sterile subgroup. 
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where the δ{x,y} is the Kronecker's delta function, which equals one when x=y, and zero when x≠y. 

The following example estimates one such model.  The likelihood begins with the mix() function, which produces 

an average of the second and third arguments, weighted by first argument (which is a probability).  The first PDF is PDF 

STERILE() END, which returns one if tclose is infinity or less than topen.   Covariates are modeled on both the non-

susceptible fraction as well as the hazard of the susceptible fraction. 
MLE 
  TITLE = "Example" 
  DATAFILE("ex.dat") 
  OUTFILE("ex.out") 
 
  DATA     
    topen     FIELD 1  {Last observation time prior to the event} 
    tclose    FIELD 2  {First observation time after the event} 
    weight    FIELD 3  {the first covariate} 
    age       FIELD 4  {the second covariate} 
  END 
 
  MODEL 
    DATA 
       MIX( PARAM s LOW=-100  HIGH=100 START=0  FORM=LOGLIN    {define the immune fraction} 
               COVAR  weight  PARAM b_s_weight  LOW=-20  HIGH=20  START=0  END 
               COVAR  sex     PARAM b_s_sex     LOW=-20  HIGH=20  START=0  END 
            END  {param s} 
 
            PDF STERILE(topen, tclose) END,     {returns 1 for right censored observations} 
 
            PDF LNNORMAL(topen, tclose) 
              PARAM  a  LOW=0.00001  HIGH=100 START=25  END 
              PARAM  b  LOW=0.01     HIGH=50   START=3  END 
              HAZARD COVAR weight PARAM b_weight LOW=-20 HIGH=20  START=0  END 
                     COVAR sex    PARAM b_sex    LOW=-20 HIGH=20  START=0  END 
              END  {hazard} 
            END  {of the PDF} 
       )  {mix function} 
    END 
  RUN 
    FULL 
  END  {of the MODEL} 
 
END 

Linear regression in the likelihood framework 

This example shows how linear regression is treated within the framework of likelihood models.  The linear 

regression model with n covariates specifies that the value of the ith observation is a combination of a y intercept term (α) an 

additive covariate-parameter term (xi1β1 + xi2β2 + ... + xinβn)  plus an error (ei).  Furthermore, distribution among all error 

terms (ε) is normally distributed with a mean of zero and a standard deviation of σ.  The formal specification is: 

 yi = α + xi1β1 + xi2β2 + ... + xinβn + ei 

 ε ~ N(0, σ) 

Under the likelihood model, the equivalent specification can be given in a very different format.   
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The difference in the two specifications exemplifies the two different philosophies in the methods.  Under regression, 

difference between each observation and the line specified by the parameters is treated as "error".  Under the likelihood 

model, the observations are normally distributed, with a mean that is determined by a series of covariates.   

The data for this example are fictitious.  The third column contains the values of yi, column 1 is xi1 and xi2. 
0.4 53 64 
0.4 23 60 
3.1 19 71 
0.6 34 61 
4.7 24 54 
1.7 65 77 
9.4 44 81 
10.1 31 93 
11.6 29 93 
12.6 58 51 
10.9 37 76 
23.1 46 96 
23.1 50 77 
21.6 44 93 
23.1 56 95 
1.9 36 54 
29.9 51 99 

The following shows the output from a regression analysis 
     VARIABLE               MEAN      STD. DEVIATION COEF. VARIAT. 
Indept Variable: Y        76.17647059   16.63293154    0.21834736 
Depent Variable:  1       11.07058824    9.74453467    0.88021833 
Depent Variable:  2       41.17647059   13.43612339    0.32630585 
 
 VAR.    COEFFICIENT   STD ERROR    T STATISTIC  
Alpha   66.46540496    
B(1)     1.29019050    0.34276468    3.76407073 
B(2)    -0.11103677    0.24858973   -0.44666675 
 
              SUM OF               MEAN         F 
SOURCE       SQUARES      DF      SQUARE      RATIO 
REGRESS.    2325.1795      2   1162.5897      7.7458 
RESIDUAL    2101.2911     14    150.0922 
TOTAL       4426.4706     16    276.6544 
 
R SQUARE =     0.5253 
STANDARD ERROR OF ESTIMATE =    12.251213 

The following shows the mlemlemlemle code for the equivalent likelihood model.  Notice that this program is similar to the 

accelerated failure time model, except that the form for modeling covariates on the mean is additive (FORM = ADD). 
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MLE 
  TITLE = "Test regression" 
  DATAFILE("eg.dat") 
  OUTFILE("eg.out") 
 
  DATA 
    y       FIELD 3  
    x1      FIELD 1 
    x2      FIELD 2 
  END 
 
  MODEL 
    DATA 
      PDF NORMAL(y) 
        PARAM  mu   LOW = 7   HIGH = 500   START = 50 FORM = ADD 
          COVAR  x1  PARAM  b1  LOW=-10  HIGH=10  START=0  END 
          COVAR  x2  PARAM  b2  LOW=-10  HIGH=10  START=0  END 
        END   {param} 
        PARAM  sig  LOW=0.1   HIGH=200   START=10  END 
      END   {pdf}  
    END   {data} 
  RUN 
    FULL 
  END 
 
END 

The following output fragment shows the result from this model. 
LogLike= -65.06725 Iterations= 334 Func evals= 25383 Del(LL)=  9.745E-0011 
Converged normally 
 
Results with estimated standard errors.  (27 evals) 
Solution with 4 free parameters 
         Name Form       Estimate         Std Error          t        against 
           mu ADD      66.46589883575   9.596050356992    6.92638078825   0.0 
           b1          1.290194199465   0.453901547297    2.84245384742   0.0 
           b2          -0.11104975496   0.202022074279    -0.5496911927   0.0 
          sig          11.11779472801   2.630810510011    4.22599601366   0.0 

The results are nearly identical to the regression results presented earlier.  All parameters of the model are given with 

a standard error. 
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SOME DETAILS 

This chapter is a series of notes and technical details for mlemlemlemle.   

Maximizers 

mlemlemlemle has four methods for maximizing the likelihood function.  Each of the methods has strengths and weaknesses for 

different types of functions.  Understanding some of the details of each method is useful for deciding which to use for any 

given application.  The following sections describe each of the maximizers and points out strengths and weaknesses of each.  

The behavior of some methods can be modified considerably by the user. 

The maximization method is selected by setting the variable METHOD. 

The overall goal of function maximization is to find the set of parameters that maximize a function.  A simple 

analogy is to imagine that you are looking at a topographic map that codes altitude by color.  You want to find the longitude 

and latitude coordinates (the "parameters") that will put you at the highest point on the map.  By looking over the map, you 

may be able to quickly ascertain a mountain peak or some other maximum.  In order to do this, however, you effectively 

scanned hundreds of thousands of points on the map until finding those places where the colors suggest the highest altitude.  

With a little more work, the highest peak is easily resolved.  Visual evaluation of maximum elevation is easy and takes almost 

no time because the map shows the elevations evaluated at hundreds of thousands of points on the map, and our eyes can 

quickly scan those points.  That is, each "function" evaluation was inexpensive—we merely had to look at a point to know its 

value.  Now imagine that the map surface is covered by a piece of paper.  You can only expose a tiny hole in the map in order 

to read the color at that point (that is, to evaluate the function at that point).  Furthermore, each hole takes a long time to cut, 

perhaps minutes or hours.  Then the question becomes this: how do we find the maximum elevation of the map in the shortest 

possible time?  The map analogy will be used to understand how different computer algorithms finds the maximum of a 

likelihood surface. 

Many different function maximization methods have been developed at least since Isaac Newton developed methods 

out of the calculus.  Nevertheless, no single method has emerged as superior for all types of problems.  In general, function 

maximization is easiest to do when information is available for the derivative of the function.  A traditional way of finding 

maximum likelihood parameters for simple functions is to symbolically find the derivatives of the function with respect to 

each free parameter.  Each partial derivative is set to zero. This set of equations is collectively called the likelihood equations.  

Since the derivatives are defined as the slope of the function, it follows that any place where all the partial derivatives go to 

zero must be a minimum or a maximum of the function.  If practical, the likelihood equations are "solved"; that is, the sets of 

parameter values are analytically found that simultaneously yields zero for each of the partial derivatives.  The maximum 

likelihood estimates for a parameter is found from a particular series of observations by simply applying that equation on the 

set of observations.  Unfortunately, this method is difficult and non-general and, therefore, not practical for general-purpose 

maximization as found in mlemlemlemle.  Advances in computer-assisted symbolic mathematics (packages like Maple and Mathematica) 
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may eventually prove this method feasible for many users, but the need for specialized mathematical knowledge and skills still 

limits this method.  A general method must work for most types of likelihood functions, whether or not analytical derivatives 

are easy (or even possible) to find. 

Another class of fast maximizers estimates derivatives numerically.  These methods are not robust for complex 

surfaces with many local maxima.  From some starting point, they tend to rush up to the top of the nearest local maximum. A 

given function may have one or many points where the derivatives goes to zero, so this method may not find the global 

maximum.  Numerical derivatives have limitations resulting, in part, from the inaccuracy of real number representation in 

computers, so that a number of derivative-free methods have been developed.  One clever method solves a two dimensional 

maximization problem by trying to enclose the maximum within a triangle.  The triangle grows and shrinks based only on 

information from the three points of the triangle at a given step.  A rather unsophisticated method alternates between 

maximizing the function first by longitude, using as many evaluations as needed to find the maximum longitude for a given 

latitude, and then does the same for latitude.  By repeating this many times, a maximum (usually the global maximum) is 

found.  Needless to say, this method can be very slow.  Finally, a newer method has been developed that mimics natures own 

maximization method.  The method can be slow, but seems to be as robust at finding the global maximum as any iterative 

method. 

Conjugate gradient method 

The conjugate gradient method searches through parameter space for combinations of parameters where the slope of 

the likelihood function goes to zero.  Now, the computer numerically computes a slope (or gradient) using the equation mi = 

[f(xi + ∆xi) – f(xi]/∆xi, for parameters x and small values ∆x.  This procedure uses the slopes (mi) to figure out the next set of x 

under the idea that the slope will decrease as the maximum is approached (unless the surface is flat). 

The conjugate-gradient method used in mle mle mle mle was developed by Powell (1964), Brent (1973), and further developed by 

Press et al. (1989).  For problems of more then two free parameters, the conjugate gradient method is usually much faster than 

the direct method.  Caution must be exercised when using this method.  At times a local maximum is latched onto by the 

solver and the rest of the parameter space is excluded.  Furthermore, some conditions can cause the maximizer to leap to 

another part of the surface, where a local minimum might be reached.  For example, when maximizing a likelihood function 

that includes numerical integration, the tolerance in the integrator must be several orders of magnitude smaller than that of the 

solver, or else the error in integration can lead the solver astray. 

Two forms of the conjugate gradient method are available, METHOD=CGRADIENT1 and METHOD=CGRADIENT2. 

Simplex 

The simplex method is a derivative-free maximization method described by Nelder and Mead (1965) and 

popularized by Press et al. (1989).    The method is set with METHOD=SIMPLEX. 



SOme Details 

 120 

Direct method 

A simple method for finding a maximum is to consider only one dimension at a time.  So, for our map, we would 

find the highest latitude for a given longitude by examining points along a line of longitude.  We could use the method of 

bisection or even better ways to find the maximum along that line of longitude in the fewest number of evaluations (i.e. fewest 

holes).  Once we have settled on a latitude, we can find the longitude of highest elevation along that latitude.  We next go 

back and find a new latitude for the new longitude, etc.  This is known as the direct method (Nelson 1983), and works well for 

some functions over a small number of dimensions.  In fact, the method is usually more robust at finding a global maximum 

than the simplex or congugate gradient methods.  Furthermore, it is easy to constrain the algorithm so that new parameter 

values never overstep the user-defined (or mathematically defined) limits—that is, it respects the boundaries of our map.  

Unfortunately, the number of function evaluations goes up as an exponent of the number of dimensions in the problem.  When 

the number of parameters gets large, the solution is very slow in coming.  Furthermore, some functions that have the 

maximum along a long narrow ridge at a 45° angle to the lines of longitude and latitude require a large number of tiny 

movements before reaching the maximum. 

The direct method and is set by METHOD=DIRECT.  It uses the HIGH = value and LOW = values to constrain all 

parameters (as discussed below).  The START = values define the initial starting parameters.   

The direct method uses Brent's (1973; see also Press et al. 1989) parabolic interpolation to find the maximum along a 

single direction (i.e. for a single parameter holding all other parameters constant).  The maximizer uses the HIGH = value and 

LOW = value to define the extreme bounds of the problem.  The START = value is the first "guess" at the maximum.  A 

parabola is then fit through the set of three points, and the maximum is analytically computed.  This procedure is repeated 

with the three points enclosing the maximum until the maximum in that dimension is found to some prespecified tolerance.  

There are three ways you can modify the Brent maximizer.  First, the maximum number of iterations in a single dimension can 

be set with BRENT_ITS = value, which is sufficient for almost every function.  The next modification is to change the value of 

BRENT_MAGIC to some other number.  This number defines the interpolation point between two points of a parabola—the so-

called golden mean of ancient Greece.  With such a heritage, there is little reason to change it.  Finally, the value 

BRENT_ZERO is an arbitrary tiny number used in place of zero for the difference of two equal function evaluations. 

Simulated annealing method 

The simulated annealing method is an exciting and relatively new idea in maximization.  It was first proposed by 

Kirkpatrick et al. (1983) for combinatorial problems.  The algorithm was further developed for functions of continuous 

variables by Corana et al. (1987) and refined by Goffe et al. (1994); both papers lucidity describe how the method works.   

As a metal is heated to its melting point, it loses its crystalline organization.  Then as it again cools, the crystalline 

pattern reemerges.  When cooled slowly, a process called annealing, small crystals of metal rearrange themselves and join 

other crystals with maximum orderliness (or minimum energy).  This occurs as random movements of atoms and groups of 

atoms eventually fall into an alignments that minimize gaps.  Once these structured alignments arise, they form a larger crystal 

and are subsequently less likely to fall out of alignment.  As the temperature drops and the atoms move around less, large 

overall changes in structure become less probable.  When absolute zero is reached, the structure becomes fixed (at room 
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temperature, solid metals continue to anneal very slowly).  Rapid cooling of the metal, called quenching in metallurgy 

because the metal is thrust into cool water or pickle, does not provide sufficient time for crystals to move about and organize.  

Thus, numerous vacancies and dislocations exist among many small crystals, and orderliness is minimal.  Maximizing the 

crystalline order (or minimizing vacancies and dislocations) is done by cooling the metal very slowly and providing ample 

opportunity for the random crystal movements to fortuitously align themselves into more ordered structures. 

The simulated annealing method attempts to mimic the physical process of annealing.  An initial "temperature" is set, 

and a cooling rate is specified.  New parameters are randomly chosen over a large range of the parameter space.  As the 

temperature cools, smaller and smaller ranges of the parameter space are explored.  Additionally, the maximizer will not 

always travel up hill.  At any given temperature, a certain fraction of downhill moves will be taken so that local maxima will 

not trap the maximizer. 

The advantage of simulated annealing over other methods is that it is very good at finding the global maximum, even 

in the presence of highly multimodal likelihood surfaces.  The user can fine tune the behavior of the algorithm so that 

functions with  complex topography can be searched more thoroughly for the maximum.  Another advantage of simulated 

annealing is that it does not require computation of derivatives.  In fact, simulated annealing can find the maximum of 

discontinuous functions and those otherwise without first derivatives.  Finally, the simulated annealing algorithm is extremely 

simple and intuitive.  The disadvantages of simulated annealing are that it usually takes from one to several orders of 

magnitude more function evaluations than do other methods and the user must have an understanding of the algorithm to set 

up initial parameters that lend themselves to efficient estimation.  Sometimes it is worth experimenting to find the best 

combinations of input parameters to the simulated annealing algorithm so as to minimize the total number of function 

evaluations. 

Simulated annealing begins at some user-defined temperature (T) and a user-defined rate of cooling (r).  At the end 

of one cycle of annealing, the temperature is reduced as T = T×r, and a new cycle of annealing is performed.  Typically the 

temperature will be 1 for simple function to 100,000 for difficult functions, and it is cooled every cycle by r = 0.85.  When the 

algorithm begins, the starting point is evaluated and becomes the best value, so far.  Each iteration will then search the 

likelihood surface in a partially random way and always keep track of the best point so far.  A single cycle of annealing (i.e. 

one iteration) consists of the following.  First, a cycle of random movements is started.  Nrand random steps are taken over one 

direction at a time.  The maximum width of the random step for parameter i is controlled by the step length variable vi.  For 

our map example, this would correspond to evaluating Nrand randomly picked points along a line of longitude or latitude.  

Initially we would use the entire height and with of the map for the maximum step length.  As each point is evaluated, we keep 

track of the overall best maximum.  Any time we find a point higher than our current maximum, we move to that point and 

consider it our new starting point.  But, if a lower point is found we might accept that point according to the Metropolis 

criterion (Metropolis et al. 1953) by which the point is accepted with probability exp(–∆l/T), where ∆l is the difference 

between the current starting point and the downhill point we have just evaluated.  In other words, we draw a uniform random 

number on [0, 1), and accept the move if that number is less than a negative exponential survival function of ∆l, with 

parameter 1/T.  This criterion means that at high temperatures we will frequently accept downhill moves with large changes in 

the loglikelihood, but as temperature drops, downhill moves will only occur at small changes in the loglikelihood.  After 

completing the Nrand movements and evaluations, we now adjust the maximum steplength vector v.  The reduction or increase 

in steplength is done according to the proportion of accepted and rejected movements by an algorithm described in detail 
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below.  In short, the maximum step length is reduced or increased so that we can expect to accept about one half of all moves 

in the next cycle of random steps.  Following this adjustment, a new cycle of random steps is initiated until a total of Nadj of 

these adjustments have been completed.  Thus, after Nrand×Nadj function evaluations, a single iteration completes, and a new 

iteration is begun until convergence, the maximum number of iterations is reached, or the maximum number of function 

evaluations is reached. 

The simulated annealing method is set by METHOD=ANNEALING.  The method does use the HIGH = value and LOW 

= values to constrain all parameters (as discussed below).  The START = values define the initial starting parameters.  A 

number of other variables should be set with this method.  Since the simulated annealing method uses random numbers, the 

user must set a random seed, by calling the procedure SEED() with a positive integer.  The starting temperature is set with 

SA_TEMPERATURE.  The default value is 1000.0, which is too high for all but extremely wild functions.  It is difficult to know 

what a good starting temperature is for a function, but values under 100 empirically seem to work for all but the most 

topographically complicated likelihood functions.  When a likelihood is to be solved multiple times on similar data sets, like 

when running on bootstrapped data sets, it is worth exploring a couple of different temperatures and monitoring the progress 

of the annealing by using the verbose (–v) option.  In fact, watching the entire annealing process is useful for developing and 

understanding of the algorithm.  The variable SA_COOLING controls the cooling rate, and is 0.85 by default.  Too high a value 

will slow down cooling and may lead to unnecessary evaluations, whereas too low a value may resulting in (simulated) 

quenching.  The number of steps of random parameter perturbation is set using SA_STEPS.  The number of step length 

adjustments taken every iteration is controlled by SA_ADJ_CYCLES.  Finally, the size of each step adjustment can be 

controlled by SA_STEPLENGTH_ADJ, but the default value of 2.0 usually works well. 

The simulated annealing algorithm uses a different criterion for convergence than do the other solvers.  An array of 

the best likelihoods of size SA_EPS_NUMBER (default is 4) is created and updated every iteration.  Convergence is considered 

achieved when the likelihood for the current iteration differs from all SA_EPS_NUMBER likelihoods by the value of EPSILON. 

Several other variables can be used for fine tuning of the simulated annealing algorithm, but there is rarely a need to 

mess with them. SA_STEPLENGTH is the initial step length for all parameters.  Empirically, the starting step length value has 

little effect on the outcome of the maximizer. SA_ALT_ADJUSTMENT uses an alternative formula for adjusting the step length.  

SA_ADJ_LOWERBOUND defines a "null" area for which step length is not adjusted.  If the proportion of accepted moves is 

greater than SA_ADJ_LOWERBOUND and is less than 1 – SA_ADJ_LOWERBOUND, the current steplength will continue to be 

used.  See Corana et al. (1987) for more details. 

Stopping criteria 

There are three ways to terminate finding the solution of a model.  The first way is to minimize the change in the log-

likelihood to below some specified minimum value.  You can specify this by setting, for example, EPSILON=1E-8.  When the 

absolute difference between the log-likelihoods of the previous iteration and the current iteration falls below this value, the 

problem will be considered to have converged normally. 

The second way of controlling the stopping criteria is by specifying the maximum number of iterations permissible.  

For example, setting MAXITER=1000, would stop searching for the maximum after 1,000 iterations, regardless of the change 

in the likelihood.  Note that a single iteration is that over all dimensions. 
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The third stopping criterion is by specifying the maximum number of function evaluations permissible.  You can 

specify, for example, MAXEVALS=10000, which would stop searching for the maximum likelihood after 10,000 evaluations of 

the likelihood.   

Looping through methods 

mlemlemlemle provides a mechanism to specify that different methods be used to solve the same likelihood.  For example, you 

can set  
METHOD1=DIRECT 
MAXITER1=10 
METHOD2=CGRADIENT1 
MAXITER2=500 

to begin the problem with the direct method and then switch to a conjugate gradient solver for the next 500 iterations.  The 

variables METHOD, MAXEVALS, MAXITER, and EPSILON can have a digit appended in this way.  When the variable 

METHOD_LOOP is set to true, mle mle mle mle  will loop back to the first method and continue the solver sequence again until one of the 

methods converges normally. 

Output options 

Options are provided for controlling the output format of the DATA and the MODEL statement.  Many of the variables 

that control output options are boolean variables that are set to TRUE or FALSE.   

DATA reports 

For DATA statements, the values of all variables can be printed, summary statistics can be printed, and other 

information about reading and dropping observations can be printed.  The PRINT_BASIC variable, when TRUE directs that the 

title, parameter file name, input file name, and the count of variables to be read from the input file are printed.  The 

PRINT_FIELDS variable, when TRUE, prints out the name of each variable and the field it is read in from the input file. 

The variable PRINT_DATA_STATS, when set to TRUE, prints summary statistics for each variable, including the 

mean, variance, standard deviation, minimum and maximum.  When PRINT_OBS=TRUE, each observation is printed in the 

output file.  PRINT_COUNTS, when TRUE, prints out how many lines were read from the input file, how many observations 

were kept, and how many observations were dropped. 

MODEL reports 

The output report from mlemlemlemle  following the MODEL statement consists of parameter reports, the variance-covariance 

matrix, a list of the individual likelihoods for each observation, and plots of distributions. 
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Standard error report 

A report with estimated standard errors is printed when PRINT_SE = TRUE.  When the variable PRINT_SHORT = 

TRUE, the report format is modified so that all parameters estimates are printed on one line.  Whenever standard error are 

reported, a variance-covariance matrix will be estimated.  The next section discusses the details of computing and printing 

that matrix. 

Variance-covariance matrix 

An estimate of a variance-covariance matrix can be computed for the parameters by setting PRINT_VCV = TRUE.  

The number of elements of the matrix printed on a single line is normally 5, but can be changed by changing the value of 

VCV_WIDTH. 

The asymptotic variance-covariances of maximum likelihood estimates is found by inverting the local Fisher's 

information matrix I for the n parameters: 
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The expectations should be taken at the true parameter values.  When parameter estimates cannot be evaluated analytically,  

numerical estimates of the information matrix, Î  can be formed by plugging in parameter estimates, q̂ .  An estimated 

variance-covariance matrix is taken as 1ˆ ˆ−=V I .   

mlemlemlemle  uses two different estimates for the variance-covariance matrix.  Either one, or both, methods may be used by 

setting INFO_METHOD1 or INFO_METHOD2 to TRUE or FALSE.  The default method (INFO_METHOD1) computes the variance 

and covariance matrix by inverting Nelson's (1983) approximation to the Fisher's information matrix.  The xth, yth element of 

that matrix is computed as ( )( )ˆ / /xy i i
i

L x L y∂ ∂ ∂ ∂Ε = ∏ , using the standard perturbation method for approximating the 

partial derivative.  Appropriate sizes for ∆x and ∆y are iteratively computed for each parameter.  mlemlemlemle  initially uses a ∆x (and 

∆y) of DX_START and then iteratively finds a ∆x that changes the loglikelihood by at least DX_TOOSMALL but no more than 

DX_TOOBIG.  Up to DX_MAXITS such iterations are permitted.  The default values are almost always suitable.  The one 

serious limitation of this method is that it does not work for hierarchical likelihoods. 

The second estimate of the variance-covariance matrix is computed by estimating the second partial derivative by 

numeric perturbation.  This method does not truly compute an expectation, and is inaccurate in some cases (you can compare 

the two methods by setting INFO_METHOD2=TRUE).  Nevertheless, when hierarchical likelihoods are being computed, this 

method will produce better estimates. 
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Confidence interval report 

An approximate confidence region for each parameter can be estimated by mlemlemlemle.  When the variable PRINT_SHORT = 

TRUE, the report format is modified so that all parameters estimates are printed on one line. 

The confidence interval is defined as the extent of upper and lower perturbations away from the estimates that 

change the loglikelihood by a specified amount.  For example, approximate 95% confidence intervals are formed when the 

change in the loglikelihood in each direction is 5.0239.  This value corresponds to an expected probability of 0.025 on each 

tail of the chi-squared distribution with one degree of freedom.  Over both directions, the total interval can be considered a 

95% confidence interval for the parameter. 

The interpretation of the one-dimensional confidence region must be done with caution.  Figure 6 shows what 

happens when parameters are correlated (which is quite common).  Panel a. shows the contour of the loglikelihood surface 

when parameter 1 is changed over the p1 axis, and parameter 2 is changed over the p2 axis.  The bold ellipses represents the 

desired confidence level (say, 95%).  The dotted lines show the confidence limits when p1 is perturbed along the axis to each 

side of the estimate; this occurs where the bold ellipse intersects the p1 axis.  Panel b. shows what happens when parameters 

are correlated.  Now, the dotted lines still show the 95% confidence limits when p1 is perturbed from the estimate and p2 is 

held constant at its maximum.  The dashed lines show the true confidence region defined as the greatest extend of the 95% 

confidence ellipse over the space of p1 and p2.  It is easy to see that the one-dimensional confidence interval will always 

underrepresented the true interval p1 and p2 are correlated. 

p1

a.                                                                 b.

p1

p2 p2

 

Figure 6 The log likelihood contour over the space of parameters p1 and p2.  The bold ellipse represents the target change in likelihood that 
defines the upper and lower bounds of the confidence interval.  Panel a: uncorrelated parameters, where the one dimensional change in 
likelihood is identical to the change over both parameters.  Panel b: correlated parameters where the change in likelihood (dotted lines) is 
less than the change in likelihood over both parameters (dashed lines). 

The confidence intervals are found iteratively in one dimension at a time.  For each of the limit pairs, mlemlemlemle first 

evaluates the likelihood at the extremes LOW + CI_LIMIT_DELTA and HIGH + CI_LIMIT_DELTA. Convergence occurs when 

the difference between the likelihood at the parameter estimate and the confidence limit estimate is equal to CI_CHISQ, down 

to an absolute error of ±CI_CONVERGE.  The maximum number of iterations for each of the limits is CI_MAXITS. 
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Printing distributions 

The values of the survival function, the probability density function and the hazard function can be tabulated in the 

output by setting PRINT_DISTS = TRUE.  All distributions that are in the model will be tabulated.  The tabulation starts at 

value DIST_T_START, ends at the value DIST_T_END, and is tabulated for DIST_T_N equally spaced points.  The mean value 

of data variables (e.g. covariates) are used when computing the distributions.   

For example, to print the SDF, PDF, and hazard function at 100 points from 0 to 100 use the following code: 
PRINT_DISTS   = TRUE     {print out distributions} 
DIST_T_START  = 0        {lowest value to print} 
DIST_T_END    = 100      {highest value to print} 
DIST_T_N      = 101      {number of points to print} 

Other printing options 

The MIN_SIGNIFICANT variable controls the minimum number of significant digits in each numeric field of the 

confidence interval and standard error reports.  More significant digits are displayed if there is room.  If the number of leading 

zeros becomes too large, that number will be printed in scientific notation (1.2343E-56). 

The variable PRINT_INFO, when TRUE, directs mlemlemlemle to print basic information about the model, including the method 

being used, the maximum number of iterations, the maximum number of function evaluations, and the criterion for normal 

convergence. 

The PRINT_FREE_PARAMS variables, when TRUE  ̧directs mlemlemlemle to print a list of all free parameters and the attributes of 

those parameters.  

The variable PRINT_LLIKS controls printing of the individual likelihoods in a model.  When TRUE, the likelihood 

and frequency for each observation will be printed to the output file. 

Integration methods 

Numeric integration can be difficult and slow.  Furthermore there is no best method for integrating all functions.  mlemlemlemle 

provides you with a number of different integration methods and several options for controlling those methods.   

The method of integration is set using the variable INTEGRATE_METHOD.  Currently there are four integration 

methods that are selected by assigning INTEGRATE_METHOD one of the following: I_AQUAD, I_SIMPSON, I_TRAP_OPEN, 

and I_TRAP_CLOSE. 

INTEGRATE_METHOD = I_AQUAD selects an eight-point adaptive quadrature integration routine based on the Quanc8 

routine of Forsythe et al (1977).  This is probably the best all-around integration method included in mlemlemlemle.  With it, you can 

specify an tolerance to which integration will be done using the variable INTEGRATE_TOL variable or by including a third 

argument within the parenthesis of the INTEGRATE function call. When likelihoods include numerical integration, you should 

ensure that the integration tolerance is one or more magnitudes greater then the tolerance for the maximizer. 
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INTEGRATE_METHOD = I_SIMPSON selects a method of integration that is an extended Simpson's rule.  When this 

method is selected, the function is split into smaller and smaller fractions until INTEGRATE_N levels have been evaluated.  

The subdivision will stop after INTEGRATE_N steps or when the relative error is less than INTEGRATE_TOL. 

INTEGRATE_METHOD = I_TRAP_OPEN or INTEGRATE_METHOD = I_TRAP_CLOSE selects an integration routine 

which finds the integral using a trapezoidal  approximation to the integral of INTEGRATE_N steps.  When this method is 

selected, the number of subdivisions of the function will be INTEGRATE_N, and there is no convergence criterion.  

I_TRAP_OPEN uses an open extended Simpson's rule, so that the endpoints are never evaluated.  The formula is 
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where N is the number of subdivisions (INTEGRATE_N), and ti = a + (i–1)(b – a)/N.  I_TRAP_CLOSE uses a closed extended 

Simpson's rule, so that the endpoints are evaluated.  The formula is 
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The error for both approximations is on the order N–4. 

Logistic equations 

Logistic transformations are sometimes useful to change a variable in the range [-∞, ∞] to a transformed variable in 

the range [0, 1].  There are two common ways to construct these transformations.  The transformation is p1 = 1/(1 + et), and 

the second transformation is p2 = et/(1 + et).  Both transformation are equally useful, and there is no reason except habit to 

choose one over the other.  Mathematically, they are related as complements; that is, p1 = 1 – p2. 

By default, mlemlemlemle uses the transformation to p1 for both the LOGISTIC() function call, and the FORM = LOGISTIC 

parameter transformation.  You can change mlemlemlemle to use the p2 form of the equation by setting the variable ALT_LOGISTIC = 

TRUE.  The default value of ALT_LOGISTIC is false. 

The interactive debugger 

mlemlemlemle incorporates an interactive debugger that provides some degree of control while models are being solved.  Entries 

in the symbol table can be viewed and changed, so that convergence can be forced early or postponed, output variables can be 

changed, and the values of various debugging options can be set and reset. 
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The debugger is called by typing <CTRL> C on most systems.  The <BREAK> key also works on some systems.  

After mlemlemlemle gets to some reasonable stopping point—usually the end of an iteration—control will be passed to the user.  The 

debugger responds with 

Exit: immediately exits the program. 

Resume: resumes running mlemlemlemle from where it left off. 

One step: continue from where it left off for one more iteration and then reenters the interactive debugger. 

Pick a symbol: selects a symbol to display.  The value of the symbol is displayed between debugger commands, for 

this and all subsequent calls to the debugger. 

Change the value of a symbol:  If no symbol is selected, the user will be prompted for a symbol to change and then 

a value to change it to.  If a symbol is selected (with Pick), then that symbol will be changed. 

Search for symbols:  Prompts the user for search text, and then searches the symbol table for symbol names that 

match any part of the search text.  The name, types, and value of matching symbols are displayed. 

Predefined variables and constants 

There are a plethora of pre-declared variables that are used to change the behavior of the program.  These variables 

can occur anywhere in the main body of the program but not within a MODEL...END or a DATA...END statement. 

The form used to assign a value to a variables is: 
 variable_name = <expression> 

where <expression> can be an integer, a real, character, string or boolean (TRUE or FALSE) expression.  (Expressions are 

discussed in the chapter on the Model statement).  Certain of these types cannot be mixed.  For instance, a string expression 

cannot be assigned to a variable already defined as a integer, real, or boolean.  Likewise, a variable that is already defined as 

an integer cannot have a real number assigned to it subsequently.  A variable that is type real can have an integer assigned to 

it; the integer will be converted to a real number first. 

Table 15. Pre-defined variables. 

Variable name Default value Comments 
ALT_LOGISTIC FALSE Controls how logistic transformation are done in function and parameter 

form LOGISTIC.  If set to false, they return p=1/[1+exp(x)].  If  true, the 
transformation is p=exp(x)/[1+exp(x)]. 

ANNEALING ANNEALING A string constant for the simulated annealing method. 
ATOMICMASSU 1.6606E-27 Atomic mass unit constant 
AVOGADROSN 6.0220E-23 Avogadro's number 
BOHRMAGNETON 9.2741E-24 Bohr's magneton 
BOHRRADIUS 5.292E-11 Bohr's radius 
BRENT_ITS 200 Defines the maximum number if iterations allowed for a single dimensional 

maximization when using the BRENT one-dimensional maximizer in the 
DIRECT and CGRADIENT methods. 

BRENT_MAGIC 0.381966 [3 – sqrt(5)]/2, a constant used by the one-dimensional maximizer 
CGRADIENT1 CGRADIENT1 A METHOD string so that the congugate gradient method (type 1) is used 
CGRADIENT2 CGRADIENT2 A METHOD string so that the congugate gradient method (type 2) is used 
CI_CHISQ 5.02389 Chi square value for likelihood CIs.  This value defines a 95% CI. 
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CI_CONVERGE 0.00005 The maximum allowable difference between the likelihood at the confidence 
limit and CHISQ_C 

CI_EVALS 0 Used to record the number of function evaluations when computing 
confidence intervals. 

CI_LIMIT_DELTA 0.0 When confidence intervals are computed, mlemlemlemle adds this value to the lower 
parameter value and subtracts this parameter from the upper parameter value, 
thus preventing the confidence interval from being evaluated at the 
boundary.  Negative values will extend the range over which the CI will be 
evaluated. 

CI_MAXITS 30 The maximum number of iterations allowed for finding a confidence limit. 
CONVERGENCE 1 Used to record the reason for terminating a solution 
CREATE_OBS 0 For positive values, creates that number of observations rather than reading 

them from a data file; otherwise, observations are read from a file. 
DATAFILE  The name of the file to be read in by a DATA statement.  This variable is set 

using the DATAFILE() procedure. 
DEBUG 0 A integer debug level.  The higher this value, the more trees that die.  Values 

of 5 and 11 are useful. (also -d ## on the command line) 
DEBUG_DATA FALSE When TRUE, debugging is turned on for the routines that read in data files 

(also -dd on the command line). 
DEBUG_INT FALSE When TRUE, turns on debugging for the integration routines (also -di on the 

command line). 
DEBUG_LIK FALSE When TRUE, turns on debugging for likelihoods, and individual likelihoods 

are printed (also -dl on the command line). 
DEBUG_PARSE FALSE When TRUE, turns on debugging for the language parsing routines (also -dp 

on the command line) 
DEBUG_SYM FALSE When TRUE, turns on debugging for the symbol table routines (also -ds on 

the command line). 
DEGREESPERRADIAN 57.2957795 The number of degrees in one radian = π/180 
DELIMITERS " , <tab>" A string of delimiters that will define fields within a data file. 
DELTA_LL ∞ Used to record the change in likelihood when solving models 
DIFF_DX 0.001 The initial (largest) value of dx used for the DERIVATIVE function. 
DIRECT "DIRECT" A METHOD string so that likelihoods are solved by the direct method 
DIST_DX_SCALE 0.25 Multiplied by the standard error of a parameter when computing the 

derivative of distributions with respect to each parameter. 
DIST_T_END 10.00 The default end time when distributions are printed.  (See PRINT_DISTS and 

DIST_T_START) 
DIST_T_N 10 The number of time points (between DIST_T_START and DIST_T_END) for 

which the distributions are printed.  (See PRINT_DISTS). 
DIST_T_START 1.00 The default start time when distributions are printed.  (See PRINT_DISTS 

and DIST_T_END) 
DX_MAXITS 12 The maximum number of iterations allowed for finding a reasonable sized ∆x 

when computing numerical derivatives. 
DX_START 0.1 The starting value for ∆x used in finding numerical derivatives. 
DX_TOOBIG 0.3 The maximum change in log likelihood allowed for computing a reasonable 

 sized ∆x. 
DX_TOOSMALL 0.01 The minimum change in log likelihood allowed for computing a reasonable 

sized ∆x 
D_OBS  The number of data observations that were dropped. 
E 2.71828... The value e. 
EPSILON 0.00001 The maximum change in log likelihood for convergence when estimating 

parameters for a model. 
EULERSC 0.57721567 Euler's constant 
EVALS 0 The number of function evaluations used to solve a model 
EXP_HAZARD True Changes the way proportional hazards are modeled on the baseline hazard. if 

TRUE, h(t) = h(t)'ep otherwise h(t) = h(t)'p. 
FALSE FALSE A boolean constant 
FIND_EPS 0.00001 The convergence criterion for the FINDZERO and FINDMIN functions 
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FIND_MAXITER 100 Maximum number of iterations for the FINDZERO and FINDMIN functions 
FREE_PARAMS 6.672E-11 The number of free parameters while solving a model 
GRAVITATIONALC 6.672E-11 Universal gravitational constant 
HIGH_DEFAULT oo The default value for the HIGH parameter limit.  If no HIGH = ... is set for 

a parameter, the value will be taken from HIGH_DEFAULT. 
INFINITY (hardware) A constant for the largest real number available on the computer.  This 

number is determined when mlemlemlemle begins. 
INFO_METHOD1 True Computes the local Fisher's information matrix using Nelson's (1983:394) 

first derivative method.  This method does not work for nested likelihoods, 
but is fairly robust for non-nested models. 

INFO_METHOD2 False When TRUE, computes the local Fisher's information matrix using numerical 
perterbation for the second partial derivatives. 

INPUT_SKIP 0 Number of initial rows to skip when reading in data files.  This is useful 
when, for example, columns of numbers in the input file have one or more 
lines of headings to describe the columns. 

INTEGRATE_METHOD I_AQUAD Sets the method of integration. 
INTEGRATE_N 15 Number of points in the Simpson and trapezoidal integrators. 
INTEGRATE_TOL 0.001 The tolerance for the Simpson and adaptive quadrature integrators. 
ITERATIONS 0 The number of iterations taken to solve a model. 
ITERATION_PRINT 0 When set to n, every nth iteration will print out a partial result. 
I_AQUAD 3 Constant for adaptive quadrature integrator (default) 
I_SIMPSON 0 Constant for Simpson integrator 
I_TRAP_CLOSED 1 Constant for trapezoidal (closed endpoint) integrator 
I_TRAP_OPEN 2 Constant for trapezoidal (open endpoint) integrator 
LARGEST_LIKELIHOOD (hardware) The largest likelihood acceptable from a function 
LARGEST_LLIKELIHOOD (hardware) The largest loglikelihood acceptable from a function 
LARGE_ZERO (hardware) A characteristic of the hardware floating point math. 
LIGHTC 299792458 The speed of light 
LINES_PER_OBS 1 The default number of lines per observation.  This number is modified by mlemlemlemle 

if the LINE statement is used with the FIELD statement. 
LINE_NUMB 0 Set to each data file line while reading in data.  Afterward, it is set to the 

number of lines in the data file. 
LNINFINITY (hardware) The log of the largest representable real number 
LOGLIKELIHOOD 0.0 The loglikelihood found in solving the model 
LOG_10 2.3025850 A constant. 
LOW_DEFAULT -oo The default value for the LOW parameter limit.  If no LOW = ... is set for a 

parameter, the value will be taken from LOW_DEFAULT. 
MACHINE_EPSILON (hardware) Value associated with round-off error for the particular hardware being used.  

This number is determined when mlemlemlemle begins. 
MAXEVALS 100000 The maximum number of function evaluations for solving a likelihood. Upon 

hitting MAXEVALS function evaluations, mlemlemlemle will terminate even if the 
convergence criterion has not been met. 

MAXINT (hardware) Value of the greatest integer for the current architecture. 
MAXITER 100 The maximum number of iterations allowed for estimating the parameters of 

a model.  Upon hitting MAXITER iterations, mlemlemlemle will terminate even if the 
convergence criterion has not been met. 

MAX_BOOLEANS (hardware) Fixed maximum size of a boolean array 
MAX_CHARS (hardware) Fixed maximum size of a character array 
MAX_INTEGERS (hardware) Fixed maximum size of an integer array 
MAX_REALS (hardware) Fixed maximum size of a real array 
MAX_STRINGS (hardware) Fixed maximum size of a string array 
METHOD DIRECT METHOD takes on the value of one of several strings to define what method 

will be used for solving likelihoods. 
METHOD_LOOP FALSE Turns on looping through methods until convergence is reached. 
MINIMUM_ITS 1 The minimum number of iterations when solving a model. 
MIN_SIGNIFICANT 4 The minimum number of significant digits to print for most fields in the 

parameter estimate reports. 
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NEGINFINITY (hardware 
dependent) 

The most negative real number supported by the machine.  This value is 
determined when mlemlemlemle begins. 

NEWTON "NEWTON" A METHOD used for finding parameter estimates. 
N_OBS  The number of observations read and kept from the input file 
N_VARS  The number of variables read and kept from the input file 
NOTSINGULAR FALSE Returns the result of inverting the information matrix in computing the 

variance-covariance matrix.  TRUE if the matrix is singular. 
oo (hardware) The greatest positive real number.  Also INFINITY 
OUTFILE (operating 

system 
dependent) 

The name of the output file.  Usually OUTFILE is defined in the mlemlemlemle program 
code using the procedure OUTFILE().  If OUTFILE is not defined in the 
program, the output will be sent to the standard output.  OUTFILE can also be 
defined on the command line. 

PARSE_ONLY FALSE When set to TRUE, mlemlemlemle parses the program file and then terminates.  If syntax 
and other errors are encountered during parsing, mlemlemlemle will print the errors; 
otherwise, mlemlemlemle  will simply terminate with error. The same effect is achieved 
by using -p on the mlemlemlemle command line. 

PI 3.14159 The value π. 
PLANCKINV2PI 1.0546E-34 Planck's constant divided by 2×π. 
PLANCKSC 6.6262E-34 Planck's constant  
POWELL "POWELL" A METHOD used for finding parameter estimates. 
PRINT_BASIC TRUE Toggles printing of basic model information. 
PRINT_CI TRUE Toggles printing of confidence interval report. 
PRINT_COUNTS TRUE Toggles printing of variable counts from input variables. 
PRINT_DATA_STATS TRUE Toggles printing of mean, standard deviation, minimum, maximum statistics 

for each input variable. 
PRINT_DISTS FALSE Toggles printing of values for the survivorship, hazard, and PDF 

distributions at user-specified time points.  When PRINT_DISTS is set to 
TRUE, values should also be set for DIST_T_START, DIST_T_END and 
DIST_T_N.  The following code fragment will print the SDF, PDF, and 
hazard distributions at 100 time points from 100 to 300. 

PRINT_DISTS = TRUE 
DIST_T_START = 100.0 
DIST_T_END = 300.0 
DIST_T_N = 100 

PRINT_FIELDS FALSE Toggles printing information about the field in the input file. 
PRINT_FREE_PARAMS FALSE Toggles printing a list of free parameters sent to the maximizer.  This is 

usually used for debugging purposes only. 
PRINT_INFO TRUE Toggles printing of some information to the output file. 
PRINT_LLIKS TRUE Toggles printing of individual likelihoods (1 per obs.) to the output file. 
PRINT_OBS FALSE Toggles printing of the observations from the input file after transformations.  

When TRUE, prints the final values for all observations. 
PRINT_SE TRUE Toggles printing of standard error report. 
PRINT_SHORT FALSE When FALSE, mlemlemlemle prints a detailed reports for parameter estimates.  When 

TRUE, mlemlemlemle prints a one-line report for the report.  This option is useful when 
the results are to be manipulated directly by another program.  The number 
of fields in the output report depend on how many parameters are estimated 
and whether the Standard Error report or the Confidence Limit report is 
generated. 

PRINT_VCV FALSE Toggles printing of variance-covariance matrix.  The rows and columns of 
the VCV matrix are in the same order as free parameters are defined. 

PROGRAM_NAME mle  
RADIANSPERDEGREE 0.01745329 The number of radians per degree = π/180 
RANDOM_SEED -1 The initial random seed.  This must be set to a positive number (use the 

SEED() procedure) before using the random number generator.  Note that 
the simulated annealing maximizer must have a random seed set. 

RELEASE – The release number for mlemlemlemle. 
REVISION – The revision number for mlemlemlemle. 
RYDBERGC 0.01745329 Rydberg's constant 
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SA_ADJ_CYCLES 20 For simulated annealing, this is the number of step length adjustment steps 
every cooling cycle (iteration). 

SA_ADJ_LOWERBOUND 0.4 For simulated annealing, picks the lower and upper percentages of accepted 
and rejected evaluations between which no step length adjustment is made. 

SA_ALT_ADJUSTMENT false For simulated annealing, uses an alternative adjustment formula 
SA_COOLING 0.85 This is the rate of cooling for each cooling cycle.  Tn+1 = Tn × SA_COOLING.  

Values > 1 can be used to explore a good starting temperature. 
SA_EPS_NUMBER 4 For simulated annealing, this is the number of function points that will be 

compared for determining convergence. 
SA_STEPLENGTH 1.0 For simulated annealing, this is the steplength constant. 
SA_STEPLENGTH_ADJ 2.0 For simulated annealing, this is the steplength adjustment constant 
SA_STEPS 5 For the simulated annealing method, this is the number of steps of random 

parameter perturbations before entering an adjustment cycle. 
SA_TEMPERATURE 1000.0 For the simulated annealing method, this is the initial temperature.  This 

value is conservatively high for most functions. 
SIMPLEX "SIMPLEX" A METHOD string to denote Nelder and Mead's (1965) simplex maximizer. 
SIMPLEX_ALPHA 1.0 The simplex maximizer's reflection coefficient 
SIMPLEX_BETA 0.5 The simplex maximizer's contraction coefficient 
SIMPLEX_GAMMA 2.0 The simplex maximizer's extrapolation coefficient 
SMALLEST_LIKELIHOOD (hardware) The greatest value allowed for a likelihood 
SMALLEST_ 
  LLIKELIHOOD 

(hardware) The greatest value allowed for a log likelihood 

SMALLEST_NUMBER (hardware) The smallest positive number greater than zero supported by the hardware. 
SQRT_EPSILON (hardware) A small number used for computing derivatives. 
START_DEFAULT 0.5 The default START value for parameters used in the event no START = ... 

is used in a parameter definition. 
SURFACE_POINTS 20 Not yet used 
SYM_TABLE_SIZE 401 An internal constant. 
SYSTEM – Name of the operating system. 
TEST_DEFAULT 0.0 The default t-test value against which the parameters are tested.  This value 

is used when the TEST = is not used in a parameter definition. 
TITLE  A string that is printed for the mlemlemlemle main program and each model.  When 

TITLE is defined before a DATA statement, the title will be printed to the 
output as the global title.  The title can be redefined before each MODEL 
statement as a model-specific statement. 

TRUE TRUE A boolean constant. 
UNIVERSALGASC 8.314410 The universal gas constant. 
VCV_EVALS 0 The number of function evaluations in computing the variance-covariance 

matrix. 
VCV_WIDTH 5 The number of elements printed on one line for the variance-covariance 

matrix. 
VERBOSE FALSE If true, mlemlemlemle prints out status information as it works.  This is useful for 

following the progress of mlemlemlemle. 
VERSION – The version number of mlemlemlemle . 
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PDFS AND THEIR CHARACTERISTICS 

ARCSINE 

This is the parameterless arcsine distribution.  The arc sine distribution arises as a special case of the Beta 

distribution when ν = ω. 

Parameters: none. 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: 0 ≤  t ≤ 1 

PDF: f t
t t

( )
( )

=
−

1
1π

 

SDF: S t t( ) arcsin= d i 2π  

Quantile: t q
q = FHG

I
KJsin π

2

2

 

Mean: 1/2 

Median: 1/2 

Mode: 0 and 1 

Variance: 1/8 

References: Christensen (1984), Lévy (1939), Rao (1973) 

See also: BETA 
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ASYMPTOTICRANGE 

This is the asymptotic range distribution. 

Parameters: a (location), b (scale) 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: -∞ < t < ∞ 

PDF: f t
b

e e
t a

b
t a

b( ) =
F
HG

I
KJ

− − − −2 20
2Κ  

SDF: S t e e
t a

b
t a

b( ) = −
F
HG

I
KJ

− − − −

1 2 22
1

2Κ  

Mean: a + 2γb 

Median: ≈ a + 0.92860 b 

Mode: ≈ 0.50637 b 

Variance: b2π2/3 

Constraints: b ≥ 0 

References: Christensen (1984), Gumbel (1947) 

BERNOULLITRIAL 

This distribution returns the probability from a single Bernoulli trial.  The distribution has single intrinsic parameter 

(call it p) that is the probability of success.  A single variable (call it event) is passed to the distribution and returns: 

p, for event ≠ 0 

1 – p, for event = 0 

Constraints: 0 ≤ p ≤ 1 

Mean: p 

Variance: p(1 – p) 

Notes: Since the Bernoulli distribution is not a time-based PDF, left- and right-truncation is not 
available.  Covariate effects can be modeled on parameter p, but not on the hazard.   

Example: code that determines fairness of coins from coin-tossing experiments is: 
MODEL 
 PDF BERNOULLITRIAL( is_heads ) 
  PARAM p  LOW = -999  HIGH = 999  START = 0  FORM = LOGISTIC 
   COVAR mint  PARAM b_mint  LOW = -5  HIGH = 5  START = 0 
   COVAR year  PARAM b_year  LOW = -5  HIGH = 5  START = 0 
 END 
END 

See also: BINOMIAL 
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BETA 

The Beta distribution is also called a Pearson Type I distribution.  This distribution takes on values from 0 to 1.  The 

distribution is J-shaped when (ω – 1)(ν – 1) < 0 and is U-shaped for ω < 1 and ν < 1.  For other ν and ω the distribution is 

unimodial. 

Parameters: ν (shape 1) and ω (shape 2) 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: 0 ≤ t ≤ 1 

PDF: f t t t( ) ( )
( , )

= −− −ν ω

ν ω

1 11
Β

 

SDF: S(t) = βp(ν, ω) 

Mean: ν/(ν + ω) 

Mode: 

( ) / ( ), ,
,
,

, ,
/ ,

ν ν ω ν ω
ν ω ν ω
ν ω ν ω
ν ω ν ω
ν ω

− + − > >
< ≤ ≤
> ≤ ≤
< < =
= =

R

S
|||

T
|||

1 2 1 1
0 1 1
1 1 1
0 1 1
1 2 1 1

 
  or 
  or 

 and 1   
 

 

Variance: νω/[(ν + ω )2(ν + ω + 1)] 

Constraints: ν ≥ 0, ω ≥ 0, ν + ω > 0 

Reduced models: Reduces to the arc sine distribution when ν = ω. 

References:  Bayes (1763), Christensen (1984), Rao (1973) 
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BINOMIAL 

This is the binomial distribution with two parameters. 

Parameters: p (proportion), n (count of Bernoulli trials). 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: t ≥ 0, t is an integer. 

PDF: f t
n
t

p pt n t( ) =
F
HG
I
KJ − −1b g  

SDF: S(t) = Βp(t + 1, n – t) 

Mean: np 

Mode: p(n + 1) 

Variance: np(1 – p) 

Constraints: 0 ≤ p ≤ 1, 0 < n < ∞, n is an integer. 

References: Rao (1973) 

See also: BERNOULLITRIAL 
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BIRNBAUMSAUNDERS 

This is the Birnbaum-Saunders distribution. 

Parameters: a (location), b (scale). 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: t > 0 

PDF: f t
b t t

t a
b

a
t( ) exp=

+ − −F
HG
I
KJ

L
N
MM

O
Q
PP

1

2 2
1

2

2

π
 

SDF: S t t a
b t

( ) = − −F
HG
I
KJ1 Φ  

Quantile: t aq
b

q
b

q= + +F
H

I
K2 2

2
2

Φ Φ  

Mean: a + b2/2 

Median: a 

Variance: b a b2 5
4

2( )+  

Constraints: a ≥ 0, b ≥ 0 

References: Birnbaum and Saunders (1969), Christensen (1984) 



PDFs and their Characteristics 

 138 

BIVNORMAL 

This is the bivariate normal (or Gaussian) distribution with five intrinsic parameters. 

Parameters: µx, σx, are the mean and standard deviation in the x dimension; µy, σy are the mean and 
standard deviations in the y dimension, and ρ is the correlation between X and Y. 

Time variables: tux, tuy, tex, tey, tαx, tαy, tωx, tωy. 

Range: –∞ < t < ∞ 

PDF: f t t

t t t t

x y

x

x

x y

x y

y

y

x y
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exp
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2 1
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2 1
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2

2

2

2

2

ρ
µ

σ
ρ µ µ

σ σ
µ

σ

πσ σ ρ
 

Mean: µx, µy 

Median: µx, µy 

Mode: µx, µy 

Variance: σ σx y
2 2,  

Covariance(X, Y): ρσxσy 

Constraints: s1 > 0, s2 > 0, 0 ≤ r ≤ 1 

Notes: Covariate effects cannot be modeled on the hazard. 

See also: NORMAL 
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CAUCHY 

This is the Cauchy distribution.  The distribution is unimodal symmetric and with tails that extend to infinity.  The 

quartiles are found as a – b and a + b. 

Parameters: a (location) and b (scale) 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: -∞ < t < ∞ 

PDF: f t

b t a
b

( ) =

+ −F
HG
I
KJ

L
N
MM

O
Q
PP

1

1
2

π

 

SDF: S t

t a
b( )

arctan
=

−F
HG
I
KJ +2

2

π

π
 

Quantile: t a b qq = + −tan π 1
2d i  

Mean: Doesn't exist 

Median: a 

Mode: a 

Variance: ∞ 

Constraints: b > 0 

References: Christensen (1984), Evans (1993), Rao (1973) 
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CHI 

This is the three-parameter chi distribution. 

Parameters: a (location), b (scale), c (shape). 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: t ≥ 0 

PDF: f t
b
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b

e
c

c
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Hazard: h t

t a
b

e

b b t a
b

c
c t a

b

c c
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=
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Quantile: q a b ct q= + χ2 ( )  

Mean: a b c c+ +F
HG
I
KJ
F
HG
I
KJ

−

2 1
2 2

1

Γ Γ  

Mode: a b c c
a c

+ − >
≤

RS|T|
1 1

1
,

,
 

Variance: cb b c c2 2
1 2

2 1
2 2

− +F
HG
I
KJ
F
HG
I
KJ

L
N
MM

O
Q
PP

−

Γ Γ  

Constraints: a ≥ 0, b > 0, c ≥ 0 

Reduced models: Reduces to a Rayleigh distribution with c = 2, and a type of Maxwell distribution with c = 3. 

References:  Christensen (1984), Evans, et al. (1993) 

See also: RAYLEIGH, CHISQUARED, MAXWELL 
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CHISQUARED 

This is the central Chi-squared distribution. 

Parameters: a (location), b (scale) 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: t ≥ 0 

PDF: f t t e

b

a

a

t
b

a
( ) =

− −
2

2

1 2

22b g c hΓ
 

SDF: S t
a t

b
a

( )
,

=
γ 2 2

2

c h
c hΓ

 

Hazard: h t t e

b

a

a

t
b

a t
b

( )
,

=
− −

2

2

1 2

2 2 2γc hb g
 

Quantile: q b at q= χ2 ( )  

Mean: ab 

Median: ≈ ab – 2/3,  when ab is large. 

Mode: 
b a a

a
( ),
,

− >
≤

RST
2 2

0 2
 

Variance: 2ab2 

Constraints: a ≥ 0, b > 0 

Reduced models: Reduces to an exponential distribution with λ=(2b)-1 when a = 2. 

References: Christensen (1984), Evans et al. (1993), Pearson (1900) 

See also: GAMMA, CHI 
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COMPOUNDEXTREME 

This is the compound extreme value distribution. 

Parameters: a (location), b (scale), c (shape). 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: -∞ < t < ∞ 

PDF: f t ca e

a be

c

c

t
b

t
b

( ) =
+FH IK

+1  

SDF: S t a

a be
t
b

c

( ) =
+

F
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I
KJ  

Hazard: h t c

ae b
t
b

( ) =
+−

 

Quantile t b qq
a
b

c= − −L
NM

O
QP

RST
UVW

− −

ln 1 1
1b g  

Mean: b ca
bln ( )d i+ −γ ψ  

Median: ln a
b

c b2 1
1

−L
NM

O
QPe j  

Mode: b a
bclnd i  

Variance: b2[ψ′(1) – ψ′(c)] 

Constraints: a > 0, b > 0, c > 0 

References: Christensen (1984) 

See also:  LARGEEXTREME 
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DANIELS 

This is the parameterless Daniel's distribution. 

Parameters: none 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: t ≥ 0 

PDF: f t t( ) = + −1 2b g  

SDF: S t t( ) = + −1 1b g  

Hazard: h t t( ) = + −1 1b g  

Quantile: t q
qq =

−1
 

Mean: ∞ 

Median: 1 

Mode: 0 

Variance: ∞ 

References: Christensen (1984), Daniels (1945) 
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DISK 

The disk distribution begins at mode a and monotonically approaches zero at a + 4b, somewhat akin to a shifted 

negative exponential distribution. 

Parameters: a (location), b (scale) 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: a ≤ t ≤ a + 4b 

PDF: f t
b b

t a
b

t a
b b
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b
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Mean: a + b 

Median: ≈ a + 0.7944 b 

Mode: a 

Variance: 2b2/3 

Constraints: b > 0 

References: Borel (1925), Christensen (1984) 
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EXPONENTIAL 

The exponential is commonly used in reliability engineering, queuing theory and biology.  The 'memoryless' property 

of the exponential distribution is an important characteristic.  It says, in effect, that for a survivor, future times to failure are 

completely independent of the past.  Another way to express the property is that the hazard of failure is constant. 

Parameter: λ (hazard and 1/scale). 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te 

Range: t ≥ 0 

PDF: f(t) = λ exp(–λt) 

SDF: S(t) = exp(–λt) 

Hazard: h(t) = λ 

Quantile: tq = –ln(1 – q)/λ 

Mean: 1/λ 

Median: ln(2)/λ 

Mode: 0 

Variance: 1/λ2 

References: Christensen (1984), Evans et al. (1993), Nelson (1982) 

See also: The SHIFTEXPONENTIAL distribution is a 2 parameter (location-scale) version of this 
distribution. 
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GAMMA 

This is the gamma distribution, also known as the Pearson Type III distribution. 

Parameters: λ (hazard and 1/scale), c (shape) 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: t ≥ 0 

PDF: f t t
c e

c c

t( )
( )

=
−λ
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1
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SDF: S t
c t

c
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,
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Γ
Γ
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b g  

Hazard: h t t
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c

q
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χ
λ
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Mean: c/λ 

Mode: 
( ) / ,c c

c
− >

≤
RST

1 1
0 1

λ
 

Variance: c/λ2 

Constraints: λ > 0, c > 0 

Reduced models: Reduces to an exponential distribution when c = 1.  Reduces to an Erland distribution when 
parameter c is an integer.  This distribution is the SHIFTGAMMA distribution with a = 0 and 
1/b = λ. 

References: Christensen (1984), Elandt-Johnson and Johnson (1980), Evans et al. (1993), Kalbfleisch and 
Prentice (1980). 

See also: EXPONENTIAL, SHIFTGAMMA, GENGAMMA 



PDFs and their Characteristics 

 147 

GAMMAFRAIL 

This model has a constant hazard for individuals, but gamma-distributed frailty (heterogeneity) among individuals.  

The model is used primarily because the PDF, SDF and hazard functions have simple forms. 

Parameters: λ (hazard and 1/scale), c (shape) 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: t ≥ 0 

PDF: f t c
t c

c
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Hazard: h t c
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F
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I
KJλ

1 1  

Mean: c
cλ( )− 1

 

Variance: c
c c

3

2 21 2λ ( ) ( )− −
 

Constraints: λ > 0, c ≥ 0 

References: 

See also: EXPONENTIAL, GAMMA 
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GENGAMMA 

This is the three parameter (shifted) gamma distribution, also known as the Pearson Type III distribution. 

Parameters: a (location), b (scale, inverse of the hazard), c (1st shape), d (2nd shape). 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: t ≥ a 

PDF: f t
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Variance: b2c 

Constraints: b > 0, c > 0, d > 0 

Reduced models: Reduces to the shifted gamma distribution when d = 1.  Reduces to the shifted exponential 
when c = 1 and d = 1.  Reduces to the shifted Weibull distribution when c = 1.  Reduces to the 
Chi-squared distribution with v degrees of freedom when a = 0, b = 2, c = v/2, and d = 1. 

References: Christensen (1984), Evans et al. (1993), Kalbfleisch and Prentice (1980). 

See also: SHIFTEXPONENTIAL, GAMMA, SHIFTGAMMA, CHISQUARED, SHIFTWEIBULL 
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GENGUMBEL 

This is the three-parameter generalized Gumbel distribution. 

Parameters: a (location), b (scale), c (shape) 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: -∞ < t < ∞ 

PDF: f t a
b c

ct
b

ae
t
b( )

( )
exp= − −L
NM

O
QP

−

Γ
 

SDF: S t
c ae

c

x
b

( )
,

( )
=

−γ e j
Γ

 

Hazard: f t a

b c ae

ct
b

ae
x
b

t
b( )

,
exp= − −L
NM

O
QP−

−

γe j
 

Mean: b[ln(a) – ψ(c)] 

Median: bln(a/c) 

Variance: b2ψ′(c) 

Constraints: a > 0, b > 0, c > 0 

References: Ahuja and Nash (1967), Christensen (1984) 

See also: GUMBEL 
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GEOMETRIC 

This is the discrete geometric distribution,.  The distribution describes the times up to and including the first success 

in a sequence of Bernoulli trials.  The geometric distribution is the discrete analogue of the negative exponential distribution. 

Parameters: p (probability) 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: t ≥ 1, t is an integer 

PDF: f(t) = p(1 – p)t – 1 

SDF: S(t) = (1 – p)t 

Mean: 1/p 

Mode: 1 

Variance: (1 – p)p2 

Constraints: 0 ≤ p ≤ 1 

References: Evans et al. (1993) 

See also: BERNOULLITRIAL, EXPONENTIAL, NEGBINOMIAL, HYPERGEOMETRIC 
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GOMPERTZ 

This is the Gompertz distribution, which is sometimes used as a model of senescent mortality (with b > 0) and infant 

mortality (with b < 0). 

Parameters: a (scale), b (shape) 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: t ≥ 0 

PDF: f t a bt a
b

e N N

b

e b
bt a

b
( ) exp ( )

,

= + −L
NM

O
QP =

≥

−
F
HG
I
KJ <

R
S|

T|
−1

1 0

1 0
1  

SDF: S t a
b

e Nbt( ) exp ( )= −LNM
O
QP1  

Hazard: h(t) = a exp(bt) 

Constraints: a ≥ 0 

Reduced models: When b = 0, the PDF is exponential with parameter a. 

References: Christensen (1984) 

See also: EXPONENTIAL, MAKEHAM, MIXMAKEHAM, SILER 
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HORSESHOE 

This is the horseshoe distribution.  The distribution is a mirrored power function; it discontinuous at the mean, and 

the mirror-like symmetrical is down the mean.  Except when c is zero, the distribution is always bimodal. 

Parameters: a (location), b (scale), c (shape) 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: (a – b) ≤ t ≤ (a + b) 

PDF: f t c
b

x a
b

c

( ) = + −1
2

 

SDF: S t

x a
b

x a

x a
b

x a

c

c
( )

,

,

=

− −F
HG
I
KJ

L
N
MM

O
Q
PP ≥

+ − −F
HG

I
KJ

L
N
MM

O
Q
PP ≤

R

S
|||

T
|||

+

+

1
2

1

1
2

1

1

1

 

Quantile t
a b q q

a b q q
q

c

c
=

+ − ≥

− − ≤

R
S|
T|

+

+

−

−

2 1 1 2

1 2 1 2

1

1

1

1

b g
b g

( )

( )

, /

, /
 

Mean: a 

Median: a 

Mode: a ± b 

Variance: b2(c + 1)/(c + 3) 

Constraints: b > 0, c ≥ 0 

Reduced models: Reduces to a uniform distribution when c = 0.  Reduces to the symmetric quad when c = 2, the 
symmetric quart when c is 4, and the symmetric sextic when c = 6. 

References: Christensen (1985) 

See also: POWER 
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HYPERBOLICSECANT 

This is the hyperbolic secant distribution.  The distribution is symmetric about a. 

Parameters: a (location), b (scale) 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: t ≥ 0 

PDF: f t
b

t a
b

( ) = −F
HG
I
KJ

1
π

sech  

SDF: S t t a
b

( ) arctan exp= − −F
HG
I
KJ

L
NM

O
QP1 2

π
 

Quantile: t a b q
q = + F

HG
I
KJ

L
NM

O
QPln tan π

2
 

Mean: a 

Median: a 

Mode: a 

Variance: b2π2/4 

Constraints: b > 0 

References: Christensen (1984), Perks (1932), Talacko (1956) 
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HYPERGEOMETRIC 

This is the hypergeometric distribution. 

Parameters: p (probability), m, n 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: integer t ≥ 0 

PDF: f t

np
t

n np
m t

n
m

( ) =

F
HG
I
KJ

−
−
F
HG
I
KJ

F
HG
I
KJ

 

SDF: S t

np
i

n np
m i

n
m

i

t

( ) =

F
HG
I
KJ

−
−

F
HG
I
KJ

F
HG
I
KJ

=
∑

0

 

Mean: mp 

Mode: 
np m

n
+ +

+
1 1

2
b gb g

 

Variance: 
mp p n m

n
+ −

−
1

1
b gb g

 

Constraints: t ≥ 0, m – n + np ≤ t ≤ min(m, np), 0 ≤ p ≤ 1, 1 ≤ m ≤ n, np is an integer. 

References: Laplace (1774) 

See also: GEOMETRIC 
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HYPER2EXP 

This is a two-point hyperexponential distribution, also called a mixed exponential distribution.  It arises when the 

entire system fails when either of two constant-hazard components fails. The distribution has been used previously as a model 

of fetal loss (Wood 1994; Holman 1996) and CPU service times (Kishor et al. 1982). 

Parameters: p (initial proportion in subgroup 1); λ1 (constant hazard in subgroup1); λ2 (constant hazard in 
subgroup 2). 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: t ≥ 0 

PDF: f(t) = pλ1 exp(–λ1t) + (1 – p) λ2 exp(–λ2t) 

SDF: S(t) = p exp(–λ1t) + (1 – p) exp(–λ2t) 

Hazard: h t p t p t
p t p t

( ) exp( ) ( ) exp( )
exp( ) ( )exp( )

= − + − −
− + − −

λ λ λ λ
λ λ

1 1 2 2

1 2

1
1

 

Mean: p p
λ λ1 2

1+ −( )  

Mode: 0 

Variance: 2 2 1 1

1
2

2
2

1 2

2
p p p p

λ λ λ λ
+ − − + −L

NM
O
QP

( ) ( )  

Constraints: 0 ≤ p ≤ 1; λ1≥ 0; λ2≥ 0 

Reduced models: When λ λ1 2=  and p is fixed to any value between 0 and 1, the PDF is exponential with 
parameter λ1. 

References: Christensen (1984), Holman (1995), Kishor (1982) 

See also: EXPONENTIAL, HYPO2EXP 
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HYPO2EXP 

This is a 2-point hypoexponential distribution.  It describes a two stage process in which two independent 

exponentially distributed components must both fail for the entire system to fail. It arises by taking the convolution of two 

independent and exponentially distributed components. The distribution has been used to describe I/O operations in computer 

systems (Kishor et al. 1982). 

Parameter: λ1 (hazard for the first component), λ2 (hazard for the second component) 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: t ≥ 0 

PDF: f t
t t

( )
exp( ) exp( )

=
− − −

−
λ λ λ λ

λ λ
1 2 1 2

2 1
 

SDF: S t t t( ) exp( ) exp( )= − − −
−

λ λ λ λ
λ λ

2 1 1 2

2 1
 

Hazard: h t
t t

t t
( )

exp( ) exp( )
exp( ) exp( )

=
− − −

− − −
λ λ λ λ
λ λ λ λ

1 2 1 2

2 1 1 2
 

Mean: 1 1

1 2λ λ
+  

Variance: 1 1

1
2

2
2λ λ

+  

Constraints: λ1≥ 0; λ2≥ 0 

References: Christensen (1984), Kishor (1982) 

See also: EXPONENTIAL, HYPER2EXP 
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INVBETA1 

This is the inverted beta type 1 distribution. 

Parameters: a, b, c 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: t ≥ c 

PDF: f t
c t c

a b t

a b

a b( )
( , )

=
− −

+
b g 1

Β
 

SDF: S(t) = Βc/t(a, b) 

Mean: 
c a b

a
a( )+ −

−
>

1
1

1  

Mode: 
c a b

a
b

c b

( )+
+

>

≤

R
S|
T|

1
1

1
 

Variance: bc a b
a a

a
2

2
1

1 2
2( )+ −

− −
>

b g b g
 

Constraints: a ≥ 0, b > 0, c ≥ 0 

References: Christensen (1984) 

See also: INVBETA2 
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INVBETA2 

This is the inverted beta type 2 distribution. 

Parameters: a, b, c 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: t ≥ 0 

PDF: f t c t
a b t c

b a

a b( )
,

=
+

−

+

1

Βb gb g
 

SDF: S(t) = βt/(t + c)(a, b) 

Mean: ca
b

b
−

>
1

1  

Mode: 
c a

b
a

a

( )−
+

>

≤

R
S|
T|

1
1

1

0 1
 

Variance: ac a b
b b

b
2

2
1

1 2
2( )+ −

− −
>

b g b g
 

Constraints: a > 0, b > 0, c ≥ 0 

References: Christensen (1984) 

See also: INVBETA1 
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INVCHI 

This is the xxx distribution. 

Parameters: . 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: t ≥ 0 

PDF: f t e
b a

b
t

b
t a a

( )
/

/
= F

HG
I
KJ

− − +
2

22 1 2 12
2Γb g  

SDF: S t
a

a

b
t

( )
/ ,

/
=
L
NM

O
QPγ 2

2
4

2d i
b gΓ

 

Mean: S t
b a

a
a( )

/
=

−L
NM
O
QP >

Γ

Γ

1
2

2 2
1b g  

Mode: b
a + 1

 

Variance: S t b
a

b a

a
a( )

/
,=

−
−

−L
NM
O
QP >

2
2

2

2

2

1
2

2 2
2

Γ

Γb g
 

Constraints: a > 0, b > 0 

References: Christensen (1984) 

See also: CHI 
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INVGAMMA 

This is the inverted gamma distribution, also called the Person type V distribution. 

Parameters: b (scale), c (shape). 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: t ≥ 0 

PDF: f t e
b c

b
t

b t c

( )
( )

/
= F

HG
I
KJ

− +

Γ

1

 

SDF: S t c b t
c

( ) ( , / )
( )

= γ
Γ

 

Hazard: h t e
b c b t

b
t

b t c

( )
( , / )

/
= F

HG
I
KJ

− +

γ

1

 

Quantile: t b
cq

q
=

−

2
21

2χ ( )
 

Mean: b / (c – 1),   a > 1 

Mode: b / (c + 1) 

Variance: b2(c – 1)-2(c – 2)-1,  a > 2 

Constraints: a > 0, b > 0 

References: Christensen (1984), Evans et al. (1993), Pearson (1895) 

See also: GAMMA, INVBETA1, INVBETA2 
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INVGAUSSIAN 

This is the inverse Gaussian distribution, which includes the Wald distribution as a special case. 

Parameters: b (scale), c (shape) 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: t > 0 

PDF: f t b
t

b
c t

t
b

c( ) exp= − −FHG
I
KJ

L
N
MM

O
Q
PP2 23 2

2

π
 

SDF: S t t bc
c bt

e t bc
c bt

c( ) /= − −F
HG
I
KJ −

− −F
HG

I
KJ1 2Φ Φ  

Mean: bc 

Mode: bc c c1 9 4 3 22+ +FH IK/ /  

Variance: b2c3 

Constraints: b ≥ 0, c ≥ 0 

Reduced models: Approaches the Normal distribution as b → ∞.  Reduces to the Wald distribution when b = 
1/c. 

References: Christensen (1984), Evans et al. (1993), Schrödinger (1915), Tweedie (1947), Wald (1947) 

See also: RANDOMWALK 
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LAPLACE 

This is the Laplace distribution, also known as a double-exponential distribution.  The distribution is discontinuous 

at a, and declines to the left and right exponentially. 

Parameters: a (location), b (scale) 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: t ≥ 0 

PDF: f t e
b

t a
b

( ) =
− −

2
 

SDF: S t
e t a

e t a

t a
b

a t
b

( )
,

,

=
≥

− <

R
S
||

T
||

− −

− −

1
2

1
21

 

Mean: a 

Median: a 

Mode: a 

Variance: 2b2 

Constraints: b ≥ 0 

References: Christensen (1984), Evans et al. (1993), Laplace (1774) 

See also: EXPONENTIAL, SUBBOTIN 
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LARGEEXTREME and GUMBEL 

Parameters: a (location) and b (scale) 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: -∞ < t < ∞ 

PDF: f t
b

t a
b

t a
b

( ) exp exp= − − − − −F
HG
I
KJ

L
NM

O
QP

1  

SDF: S t t a
b

( ) exp exp= − − − −F
HG
I
KJ

RST
UVW1  

Hazard: h t

t a
b

b t a
b

( )
exp

exp exp
=

− −F
HG
I
KJ

− − −F
HG
I
KJ

L
NM

O
QP −

L
NM

O
QP

1
 

Mean: a – kb k ≈ 0.57721... is Euler's constant  

Median: a – blog[log(2)] 

Mode: a (≈36.8th percentile) 

Variance: b2π2/6 

Constraints: b ≥ 0 

References: 
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LINEARHAZARD 

The linear hazard rate distribution is so-called because the hazard increases monotonically with time. 

Parameters: λ (constant hazard), b (scale). 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: t ≥ 0 

PDF: f t bt t bt( ) ( ) exp( )= + − −λ λ 1
2

2  

SDF: S t t bt( ) exp( )= − −λ 1
2

2  

Hazard: h(t) = λ + bt 

Constraints: λ ≥ 0, b > 0 

References: Lee (1992) 
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LNGAMMA 

This is the log-gamma distribution. 

Parameters: a (location), b (scale, inverse of the hazard), c (shape) 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: t ≥ a 

PDF: f t

t a
b

e

b c

c t a
b

( )

ln( )

( )

ln( )

=

−F
HG

I
KJ

− − −1

Γ
 

SDF: S t
c t a

b
c

( )
, ln( )

=

−F
HG

I
KJΓ

Γb g  

Hazard: h t

t a
b

e

b c t a
b

c t a
b

( )

ln( )

, ln( )

ln( )

=

−F
HG

I
KJ

−F
HG

I
KJ

− − −1

Γ
 

Constraints: b ≥ 0, c ≥ 0 

References: 

See also: GAMMA 
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LNLOGISTIC 

This is the log-logistic distribution. 

Parameters: a (location), b (scale). 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te 

Range: –∞ < t < ∞ 

PDF: f t

e
b

e t

e t

a
a

a

b

b

( )
( )

=
+LNM

O
QP

−
− −

−

1

1

1

2
1

 

SDF: S t e ta b( ) = + − −
1

1

 

Hazard: h t

e
b

e t

e t

a
a

a

b

b
( )

( )
=

+

−
− −

−

1

1

1

1
 

Constraint: b > 0 

References: ? 

See also: LOGISTIC 
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LOGISTIC 

The logistic distribution is also called the sech-squared distribution. 

Parameters: a (location), b (scale). 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te 

Range: –∞ < t < ∞ 

PDF: 

f t

t a
b

b t a
b

b
t a

b

( )
exp

exp

=
− −F
HG
I
KJ

+ − −F
HG
I
KJ

L
NM

O
QP

= −F
HG
I
KJ

1

1
4 2

2

sech2

 

SDF: 
S t t a

b

t a
b

( ) exp

tanh

= + −L
NM
O
QP

RST
UVW

= − −F
HG
I
KJ

L
NM

O
QP

−

1

1
2

1
2

1

 

Hazard: h t
b

t a
b

( ) exp= + − −L
NM
O
QP

RST
UVW

−
1 1

1

 

Quantile: t a b q
qq = − −F
HG
I
KJln 1  

Mean: a 

Median: a 

Mode: a 

Variance: π2b2/3 

Constraint: b > 0 

References: Christensen (1984), Evans et al. (1993) 

See also: LNLOGISTIC 
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LOGNORMAL or LNNORMAL 

This is the lognormal distribution, sometimes called the Cobb-Douglas, the Galton-McAlister, or the Kapteyn-Gibrat 

distributions.   

Parameters: a (location), b (scale). 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te 

Range: t ≥ a 

PDF: f t
tb

e

t a
b

( )

ln( )

=

− −L
N
MM

O
Q
PP1

2

2

22

π
 

SDF: S t
t a
b

( )
ln( )

= −
−L

NM
O
QP1 Φ  

Mean: aexp(b2/2) 

Median: a 

Mode: a/exp(b2) 

Variance: a2exp(b2/2)[exp(b2/2) – 1] 

Constraints: b > 0 

Notes: This distribution is related to the SHIFTLOGNORMAL distribution as follows.  The two-
parameter LNNORMAL cumulative density is found from the Normal density by taking Φ[ln(t 
– a)/b] whereas in the three parameter SHIFTLOGNORMAL we take Φ{ln[(t – a)/b]/c}. 

References: Evans et al. (1993), Nelson (1982) 

See also: NORMAL, SHIFTLOGNORMAL 
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LOGSERIES 

This is the logarithmic series distribution.  This distribution can be derived from both a power series distribution and 

a negative binomial distribution. 

Parameters: p (probability) 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: integer t ≥ 1 

PDF: f t p
t p

t
( )

ln( )
= −

−1
 

SDF: S t
p

p
t

t

j

t

( )
ln( )

= +
− =

∑1 1
1 1

 

Mean: −
− −

p
p pln( )( )1 1

 

Mode: 1 

Variance: −
+

−
F
HG

I
KJ

− −

p p
p

p p

1
1

1 1 2

ln( )
ln( )( )

 

Constraints: 0 ≤ p ≤ 1 

References: Christensen (1984), Evans et al. (1993), Fisher (1943) 

See also: POWERSERIES, NEGBINOMIAL 
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LOWMAX 

This is the Lowmax distribution, which is a generalized Pareto distribution. 

Parameters: a (location), b (scale), c (shape). 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: a + b ≤ t < ∞ 

PDF: f t b c
t a

c

c( )
( )

=
− +1  

SDF: S(t) = [(t – a)/b]–c 

Quantile: tq = a + b(1–q)-1/c 

Mean: a + bc/(c – 1),  c > 1  

Median: a bc+ 2  

Mode: a + b 

Variance: b c
c c

c
2

22 1
2

( )( )
,

− −
>  

Constraints: b ≥ 0, c > 0 

Reduced models: Reduces to the Pareto distribution when a = 0; 

References: Christensen (1984) 

See also: PARETO 
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MAKEHAM 

This is the Makeham-Gompertz (also called the Gompertz-Makeham) distribution frequently used as a competing 

hazards model for mortality.  The a1 parameter is interpreted as accidental mortality component, and the a2 and b parameters 

make up the senescent mortality component. 

Parameters: a1, a2 and b 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: t ≥ 0 

PDF: f t a a e a t a
b

ebt bt( ) exp ( ) ,= + − + −L
NM

O
QP1 2 1

2 1e j  

SDF: S t a t a
b

ebt( ) exp ( )= − + −L
NM

O
QP1

2 1  

Hazard: h(t) = a1 + a2 exp(bt) 

Constraints: a1 ≥ 0, a2 ≥ 0 

Reduced models: a1 = 0 reduces to a Gompertz PDF with parameters a2 and b.  b = 0 and either a1 or a2 are 
constrained, reduces to an exponential with parameter a1 + a2. 

References: Elandt-Johnson and Johnson (1980) 

See also: EXPONENTIAL, GOMPERTZ, MIXMAKEHAM, SILER 
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MAXWELL 

This is the two-parameter Maxwell-Boltzmann distribution.  It is used to model the distribution of particles at 

equilibrium in statistical mechanics. 

Parameters: a (location), b (scale). 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: t ≥ 0 

PDF: f t
b

t a
b

e
t a

b( ) = −F
HG
I
KJ

− −F
HG
I
KJ4 2

2

π
, 

SDF: S t t a
b

t a
b

e
t a

b( ) = −F
HG
I
KJ −

−F
HG
I
KJ

− −F
HG
I
KJerf 2

2

π
, 

Mean: a b+ 2
π

 

Mode: a + b 

Variance: b2 3
2

4− πd i  
Constraints: b ≥ 0 

References:  Christensen (1984), Maxwell (1860a,b), Rao (1973) 

See also: RAYLEIGH, CHISQUARED, MAXWELL 
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MIXMAKEHAM 

This is the mixed-Makeham distribution, which can be used to model the human lifespan 

Parameters: p (initial proportion in risk group 1), λ1 (constant hazard in subgroup 1), λ2 (constant hazard in 

subgroup 2), λ3 (senescent hazard), b (senescent shape) 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: t ≥ 0 

PDF: 

f t Np t
b

e e

N p t
b

e e

N

b

e b

bt bt

bt bt

b

( ) exp

exp ,

,

= − + −L
NM

O
QP +

+ − − + −L
NM

O
QP +

=

≥

−
F
HG
I
KJ <

R
S|

T|
−

λ λ λ λ

λ λ λ λ

λ

1
3

1 3

2
3

2 3

1

1

1 1

1 0

1 0
3

c h c h

c h c h  

SDF: S t Np t
b

e N p t
b

ebt bt( ) exp exp= − + −L
NM

O
QP + − − + −L

NM
O
QPλ λ λ λ

1
3

2
31 1 1c h c h  

Hazard: h t p t p t ebt( ) ( ) [ ( )]= + − +λ λ λ1 2 31  

 where p t
p t

b
e

p t
b

e p t
b

e

bt

bt bt
( )

exp

exp exp
=

− + −L
NM

O
QP

− + −L
NM

O
QP + − − + −L

NM
O
QP

λ λ

λ λ λ λ

1
3

1
3

2
3

1

1 1 1

c h

c h c h
 

Constraints: 0 ≤ p ≤ 1; λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0 

Reduced models: Reduces to a Makeham-Gompertz if p = 0 or 1, reduces to an 2 point hyperexponential 
exponential if λ3 = 0, reduces to an exponential if λ3 = 0 and p = 0 or 1, reduces to a Gompertz 
if λ1 = 0 and λ2 = 0 . 

References:  

See also: MAKEHAM, GOMPERTZ, SILER, EXPONENTIAL 
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NEGBINOMIAL 

This is the negative binomial distribution, also known as the Pascal distribution when t is an integer. 

Parameters: p (probability), n (count). 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: t ≥ 0 

PDF: f t
t n

n
p pn t( ) =

+ −
−

F
HG

I
KJ −

1
1

1b g  (this is wrong--need continuous version) 

SDF: S(t) = βp(n, t + 1) 

Mean: n(1 – p)/p 

Mode: Floor[p(n – 1)/(1 – p)] 

Variance: n(1 – p)/p2 

Constraints: 0 ≤ p ≤ 1, n >  0 

Reduced models: Reduces to a Pascal distribution when t is an integer.  Reduces to the geometric distribution 
when n = 1. 

References: Christensen (1984), Evans et al. (1993) 

See also: GEOMETRIC, POWERSERIES, BINOMIAL 
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NORMAL or GAUSSIAN 

This is the commonly-used normal distribution, also called the Gaussian distribution and Laplace's second law of 

error.  The normal is odd (but certainly possible) as a failure time distribution because times can take any value from -∞ to ∞. 

Parameters: µ is a location parameter, σ > 0 is the scale parameter.   

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te 

Range: –∞ < t < ∞ 

PDF: f t t( ) exp ( )= − −L
NMM

O
QPP

1
2 2

2

2σ π
µ

σ
 

SDF: S t
t

( ) = −
−FH IK1 Φ

µ

σ
, 

Mean: µ 

Median: µ 

Mode: µ 

Variance: σ2 

Notes:  An accelerated failure time specification of covariates is created for the normal distribution by modeling µ as 
FORM = LOGLIN and specifying a COVAR list.  A probit model is estimated when for every 
observation, either tu=NEGINFINITY or te = INFINITY. 

References: Christensen (1984), Evans et al. (1993) 

See also: LOGNORMAL, BIVNORMAL 
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PARETO 

Parameters: b  (scale), c (shape). 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: b ≤ t < ∞ 

PDF: f t b c
a

c

c( ) = +1  

SDF: S(t) = [t/b]–c 

Quantile: tq = b(1–q)-1/c 

Mean: bc/(c – 1),  c > 1  

Median: bc 2  

Mode: b 

Variance: b c
c c

c
2

22 1
2

( )( )
,

− −
>  

Constraints: b ≥ 0, c > 0 

References: Christensen (1984), Evans et al. (1993) 

See also: LOWMAX 
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PASCAL 

This is the Pascal distribution, which is the discrete version of the negative binomial distribution. 

Parameters: p (probability), n (count). 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: integer t ≥ 0 

PDF: f t
t n

n
p pn t( ) =

+ −
−

F
HG

I
KJ −

1
1

1b g  

SDF: S(t) = βp(n, t + 1) 

Mean: n(1 – p)/p 

Mode: Floor[p(n – 1)/(1 – p)] 

Variance: n(1 – p)/p2 

Constraints: 0 ≤ p ≤ 1, integer n >  0 

Reduced models:  Reduces to the geometric distribution when n = 1. 

References: Christensen (1984), Evans et al. (1993) 

See also: NEGBINOMIAL, GEOMETRIC, POWERSERIES, BINOMIAL 
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POISSON 

This is the discrete Poisson distribution. 

Parameters: λ (hazard) 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: integer t ≥ 0 

PDF: f t e
t

t
( )

!
=

−λ λ
 

SDF: S t
t
t

( )
,

=
+
+

Γ
Γ

1
1
λb g

b g  

Mean: λ 

Mode: Floor(λ) 

Variance: λ 

Constraints: λ > 0 

References: Christensen (1984), Evans et al. (1993) 

See also: POWERSERIES 
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POWERFUNCTION 

Parameters: a (location), b (scale), c (shape) 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: a ≤ t ≤ a + b 

PDF: f t c
b

t a
b

c

( ) = −F
HG
I
KJ

−1

 

SDF: S t t a
b

c

( ) = − −F
HG
I
KJ1  

Quantile: tq = a + bq1/c 

Mean: a + bc/(c + 1) 

Median: a b c+ −2 1/  

Mode: 
a b c
a b c
a c

+ ≥
+ =

<

R
S|
T|

,
/ ,

,

1
2 1

1
 

Variance: b c
c c

2

22 1( )( )+ +
 

Constraints: b > 0, c ≥ 0 

Reduced models: Reduces to the uniform distribution when c = 1. 

References: Christensen (1984), Evans et al. (1993) 

See also: REVPOWERFUNCTION, LOGISTIC, WEIBULL, GUMBEL, BETA, PARETO 
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RAISEDCOSINE 

This is the raised cosine distribution. 

Parameters: a (location), b (scale) 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: –πb + a ≤ t ≤ πb + a 

PDF: f t

t a
b

b
( )

cos
=

+ −F
HG
I
KJ1

2
 

SDF: S t t a
b

t a
b

( ) sin= − −F
HG
I
KJ −

−F
HG
I
KJ

1
2

1 1
π π

 

Mean: a 

Median: a 

Mode: a 

Variance: b2(π2/3 – 2) 

Constraints: b ≥ 0 

References: Christensen (1984) 



PDFs and their Characteristics 

 181 

RANDOMWALK 

This is the random walk distribution. 

Parameters: b (scale), c (shape) 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: t > 0 

PDF: f t
bt

c t
b

b
t c

( ) exp= − −FHG
I
KJ

L
N
MM

O
Q
PP

1
2 2

12 2

π
 

SDF: S t bc t
bt

e bc t
bt

c( ) = − −F
HG
I
KJ −

− −F
HG

I
KJ1 2Φ Φ  

Mean: b (1 + c) 

Mode: b c b2 1 4 2+ −/ /  

Variance: b2 (2 + c) 

Constraints: b > 0, c > 0 

References: Christensen (1984), Wise (1966) 

See also: INVGAUSSIAN 
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RAYLEIGH 

Parameter: b (scale) 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: t > 0 

PDF: f t t
b

t
b

( ) exp= −
L
NMM
O
QPP2

2

22
 

SDF: S t t
b

( ) exp= −
L
NMM
O
QPP

2

22
 

Hazard: h(t) = t/b2 

Median: b log( )4  

Mode: b 

Constraints: b > 0 

References: 
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REVPOWERFUNCTION 

This is the reversed power distribution. 

Parameters: a (location), b (scale), c (shape) 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: a ≤ t ≤ a + b 

PDF: f t c
b

a b t
b

c

( ) = + −F
HG

I
KJ

−1

 

SDF: S t t a
b

c

( ) = − −F
HG

I
KJ1  

Quantile: tq = a + b[1–(1-q)1/c] 

Mean: a + b/(c + 1) 

Median: a b c+ − −1 2 1/e j  

Mode: 
a c
a b c
a b c

,
/ ,
,

>
+ =
+ <

R
S|
T|

1
2 1

1
 

Variance: b c
c c

2

22 1( )( )+ +
 

Constraints: b > 0, c ≥ 0 

Reduced models: Reduces to the uniform distribution when c = 1. 

References: Christensen (1984). 

See also: POWERFUNCTION 
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RINGINGEXP0 

This is the ringing exponential distribution at phase 0 degrees. 

Parameters: a (location), b (scale), c (shape) 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: t ≥ a 

PDF: f t c
b c

e t a
b

ct a
b( ) cos= +

+
−F
HG

I
KJ

− −1 2
1 2

2

b g  

SDF: S t e
c

t a
b

c c t a
b

c

t a
b

( ) cos sin=
+

−F
HG

I
KJ −

−F
HG

I
KJ

L
N
MM

O
Q
PP

− −

1 2 2
22  

Mean: a
b c c

c c
+

+ +

+ +

1 2

1 3 2

2

2

e j
 

Mode: a 

Variance: 
b c c c

c c

2 2 3 4

2 2

1 7 16 4

1 3 2

+ + +

+ +

e j
e j

 

Constraints: b > 0, c ≥ 0 

References: Christensen (1984) 

See also: RINGINGEXP180 
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RINGINGEXP180 

This is the ringing exponential distribution at phase 180 degrees. 

Parameters: a (location), b (scale), c (shape) 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: t ≥ a 

PDF: f t c
bc

e t a
b

ct a
b( ) sin= + −F
HG

I
KJ

− −2 1
2

2  

SDF: S t e
c

c t a
b

c c t a
b

c

t a
b

( ) sin sin= + −F
HG

I
KJ +

−F
HG

I
KJ

L
N
MM

O
Q
PP

− −

2

2 2
2  

Mean: a
b c

c
+

+
+

3 2
1 2
b g

 

Mode: a
b c

c
+

2 2

2

arctane j
 

Variance: 
b c

c

2 2

2

3 4

1 2

+

+

e j
b g

 

Constraints: b > 0, c > 0 

References: Christensen (1984) 

See also: RINGINGEXP0 
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SHIFTEXPONENTIAL 

The exponential is commonly used in reliability engineering, queuing theory and biology.  The 'memoryless' property 

of the exponential distribution is an important characteristic.  It says, in effect, that for a survivor, future times to failure are 

completely independent of the past.  This form of the exponential distribution provides for a location parameter.  Also, this 

version uses a scale parameter b, rather then a hazard parameter λ (b = 1/λ). 

Parameter: a (location), b (scale = 1/λ). 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te 

Range: t ≥ a 

PDF: f(t) = exp(–(t – a)/b)/b 

SDF: S(t) = exp(–(t – a)/b) 

Hazard: h(t) = 1/b 

Quantile: tq = a – bln(1 – q) 

Mean: a + b 

Median: a + bln(2) 

Mode: a 

Variance: b2 

Constraints: b > 0 

References: Christensen (1984), Evans et al. (1993), Nelson (1982) 

See also: The EXPONENTIAL distribution is a 1 parameter (hazard) version of this distribution. 
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SHIFTGAMMA 

This is the three parameter (shifted) gamma distribution, also known as the Pearson Type III distribution. 

Parameters: a (location), b (scale, inverse of the hazard), c (shape) 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: t ≥ a 

PDF: f t

t a
b

e

b c

c t a
b

( )
( )

=

−F
HG
I
KJ

− − −1

Γ
 

SDF: S t
c t a

b
c

( )
,

=

−F
HG

I
KJΓ

Γb g  

Hazard: h t

t a
b

e

b c t a
b

c t a
b

( )
,

=

−F
HG
I
KJ

−F
HG

I
KJ

− − −1

Γ
 

Quantile: t a cq
b

q= + 2
2 2χ ( )  

Mean: a + bc 

Mode: a + b(c – 1),  c > 1 

 a,   c ≤ 1 

Variance: b2c 

Constraints: b ≥ 0, c ≥ 0 

Reduced models: Reduces to a shifted exponential distribution when c = 1.  Reduces to an Erlang distribution 
with integer parameter c.  Reduces to a Chi-squared distribution with v degrees of freedom 
with a = 2, b = v/2.  Reduces to a gamma distribution with a = 0 and b = 1/λ. 

References: Christensen (1984), Elandt-Johnson and Johnson (1980), Evans et al. (1993), Kalbfleisch and 
Prentice (1980). 

See also: SHIFTEXPONENTIAL, GAMMA, GENGAMMA, CHISQUARED 
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SHIFTLOGNORMAL 

This is a three-parameter shifted lognormal distribution, which is a reparameterization of the LOGNORMAL 

distribution. 

Parameters: a (location), b (scale), c (shape). 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te 

Range: t ≥ a 

PDF: f t
t a c

e c
t a

b
( )

( )

ln

=
−

− −F
HG
I
KJ

L
N
MM

O
Q
PP1

2

1
2 2

2

π
 

SDF: S t
c

t a
b

( ) ln= −
−F
HG
I
KJ

L
NM

O
QP1

1
Φ  

Mean: a + bexp(c2/2) 

Median: a + b 

Mode: a + bexp(c2/2) 

Variance: b2exp(c2)[exp(c2 + 2)] 

Constraints: b > 0, c > 0 

Notes: This distribution is related to the SHIFTLOGNORMAL distribution as follows.  The two-
parameter LNNORMAL cumulative density is found from the Normal density by taking Φ[ln(t 
– a)/b] whereas in the three parameter SHIFTLOGNORMAL we take Φ{ln[(t – a)/b]/c}. 

References: Nelson (1982) 

See also: NORMAL, LOGNORMAL 
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SHIFTWEIBULL 

This is the three-parameter Shifted Weibull distribution. 

Parameters: a (location) b (scale and characteristic life= 63rd percentile), c (shape). 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: t ≥ a 

PDF: f t c
b

t a
b

t a
b

c c

( ) exp= −F
HG
I
KJ − −F

HG
I
KJ

L
N
MM

O
Q
PP

−1

 

SDF: S t t a
b

c

( ) exp= − −F
HG
I
KJ

L
N
MM

O
Q
PP  

Hazard: h(t) = ctc–1b–c 

Mean: a + bΓ(1 + 1/c)  

Median: a b+ ln( )2  

Mode: 
a b c c
a c

c+ − >
≤

RS|T|
1 1 1

1
,

,
 

Variance: b c c2 21 2 1 2Γ Γ( ) ( )+ − +{ }  
Constraints: b > 0,  c > 0 

Reduced models: Reduces to the exponential distribution when c = 1, reduces to the Rayleigh distribution when 
c = 2. 

References: Christensen (1983), Nelson (1982) 

See also: WEIBULL 
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SILER 

This is the Siler distribution frequently used as a competing hazards model for mortality (see Gage 1989). 

Parameters: a1, b1 ("infant mortality" component), a2 (constant), a3, b3 (senescent mortality component). 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: t ≥ 0 

PDF: f t a e a a e a
b

e a t a
b

eb t b t b t b t( ) exp ( ) ( ) ,= + + − − − + −
L
NM

O
QP

− −
1 2 3

1

1
2

3

3

1 3 1 31 1e j  

SDF: S t a
b

e a t a
b

eb t b t( ) exp ( ) ( )= − − − + −
L
NM

O
QP

−1

1
2

3

3
1 11 3  

Hazard: h(t) = a1 exp(–b1t) + a2 + a3 exp(b3t) 

Constraints: a1 ≥ 0, a2 ≥ 0, a3 ≥ 0, b1 ≥ 0, b3 ≥ 0 

Reduced models: a1 = 0 reduces to a Gompertz-Makeham. a1 = 0, a2 = 0 reduces to a Gompertz.  Reduces to an 
exponential in a number of ways. 

References: 

See also: EXPONENTIAL, GOMPERTZ, MAKEHAM, MIXMAKEHAM 
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SMALLEXTREME 

Parameters: a (location) and b (scale) 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: -∞ < t < ∞ 

PDF: f t b t a
b

t a
b

( ) exp exp= − − −F
HG
I
KJ

L
NM

O
QP

−1  

SDF: S t t a
b

( ) exp exp= − −F
HG
I
KJ

RST
UVW  

Hazard: h t b t a
b

( ) exp= −L
NM
O
QP

−1  

Mean: a – kb k=0.57721... is Euler's constant  

Median: a – b log[log(2)] 

Mode: a (63.2nd percentile) 

Variance: b2π2/6 

Constraints: b ≥ 0 

References: Evans et al. (1993), Nelson (1982) 
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STERILE or IMMUNE 

This distribution is used to form degenerate distributions of the forms f(t) = (1 – p)f1(t) and S(t) = (1-p)S1(t) + p.  

This is done by using the MIX function with STERILE and specifying a mixture of f1(t) and the STERILE distribution.  Given 

failure times tu and te and, perhaps, the left truncation limits tα and tω, this distribution returns: 

0 if an exact failure or an interval censored failure occurs: te < tω 

1 if a right censored observation occurs: te ≥ tω 

In words, the distribution returns 0 if there is no possibility that the observation may have been "sterile" (because 

some failure was observed), and returns 1 if there is a possibility that the observation was a "sterile" observation (right 

censored observation).  This distribution has no intrinsic parameters, and covariates cannot be modeled on the hazard function 

of this distribution.   

Example.  Suppose individuals fail with an underlying normal distribution, but the population is contaminated by an 

unknown fraction, p, of non-susceptible individuals.  The mlemlemlemle code is: 
MODEL 
  MIX 
    PARAM  p  LOW=0  HIGH=1  FORM=NUMBER  END, 
    PDF NORMAL( last_alive  first_dead ) 
      PARAM mu      LOW=100  HIGH=200  START=150  END 
      PARAM sigma   LOW=0.1  HIGH=20   START=10   END 
    END {pdf} 
    , 
    PDF STERILE( last_alive  first_dead ) END 
END 

Call Ln the likelihood from the normal PDF.  Then, the likelihood for an exact failure or interval censored failure will 

be pLn.  For right censored observations, the likelihood will be pLn + (1–p). 

References: Holman (1995, 1998), Nelson (1982) 
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SUBBOTIN 

This is the Subbotin distribution, which includes a number of important distributions as special cases, including the 

uniform, Laplace, and normal distributions.  The distribution becomes discontinuous at the median when c < 1. 

Parameters: a (location), b (scale), c (shape) 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: -∞ < t < ∞ 

PDF: f t
b c

ec

t a
b

c

( )
( / )/=

++

− −
1

2 1 11 1

1
2

Γ
 

SDF: S t

t a
c

t a
b

c

c

( )

sgn( ) ,

/
= −

− −F
HG

I
KJ1

2

1 1
2

1

γ

Γb g  

Mean: a 

Median: a 

Mode: a 

Variance: 
b c

c

c2 22 3
1

/ /
/
Γ

Γ
b g
b g  

Constraints: b ≥ 0, c > 0 

Reduced models: Approaches the rectangular distribution as c → ∞, reduces to the Laplace distribution when c 
is 1, and reduces to the normal distribution when c is 2. 

References: Christensen (1984), Subbotin (1923) 

See also: NORMAL, LAPLACE, UNIFORM 
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UNIFORM or RECTANGULAR (Continuous) 

The continuous uniform distribution has no parameters.  However, truncation limits tα and tω should be specified.  

When truncation limits are not specified (i.e. only one or two time variables are specified), then the standard uniform 

distribution is assumed and used: tα = 0 and tω = 1. 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: tα ≤ t < tω 

PDF: f(t) = 1/(tω – tα) 

SDF: S t t t
t t

( ) = −
−

ω

ω α
 

Hazard: h(t) = 1/(tω – t) 

Mean: (tω – tα) / 2 

Median: (tω – tα) / 2 

Variance: (tω – tα)2 / 12 

References: Evans et al. (1993), Nelson (1982) 
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VONMISES 

This is the von Mises distribution, which is the analog of a normal distribution on a circular range. 

Parameters: a (location), b (scale) 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: 0 < t < 2π 

PDF: f t
b t a

b
( )

exp cos( )
( )

=
−

2 0πΙ
 

SDF: S t

t b b jt ja j

b

j
j( )

( ) ( ) sin

( )
= −

+ − −

=

∞

∑
1

2

2

0
1

1

0

Ι Ι b g
πΙ

 

Mean direction: a 

Median: a 

Mode: a 

Antimode: a 

Circular variance: 1 – Ι1(b)/Ι1(b) 

Constraints: 0 < a < 2π, b > 0 

References: Evans et al. (1993), Rao (1973) 
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WEIBULL 

This is the Weibull distribution, sometimes called the generalized Rayleigh distribution. 

Parameters: b (scale and characteristic life= 63rd percentile), c (shape). 

Time variables: tu, te, tα, tω.  An exact failure is defined when tu = te. 

Range: t ≥ 0 

PDF: f t ct b t
b

c c
c

( ) exp= −FHG
I
KJ

L
N
MM
O
Q
PP

− −1  

SDF: S t t
b

c

( ) exp= −FHG
I
KJ

L
N
MM
O
Q
PP  

Hazard: h(t) = ctc–1b–c 

Mean: bΓ(1 + 1/c)  

Median: b ln( )2  

Mode: 
b c c

c

c 1 1 1
0 1

− >
≤

RS|T|
,

,
 

Variance: b c c2 21 2 1 2Γ Γ( ) ( )+ − +{ }  
Constraints: b > 0,  c > 0 

Reduced models: Reduces to the exponential distribution when c = 1, reduces to the Rayleigh distribution when 
c = 2. 

References: Christensen (1983), Evans et al. (1993), Nelson (1982) 

See also: SHIFTWEIBULL 
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NUMBERS, SYMBOLS, CONSTANTS, FUNCTIONS, AND CONVERSIONS 

Symbols 

t Used to denote the random variable, whether continuous or discrete.  Typically, this is a time 
variable. 

ρ A parameter that defines a correlation coefficient. 

σ A scale parameter that defines the standard deviation of the distribution. 

µ A location parameter that also defines the mean of the distribution. 

a A location parameter 

b A scale parameter 

c A shape parameter 

h A parameter that is directly interpretable as a hazard. 

p A parameter that is directly interpretable as a probability. 

tq The qth quantile: [1–S(tq)] = q. 

f(t) The probability density function (PDF). 

S(t) The survival distribution (SDF): 
0

( ) 1 ( ) ( )
t

t

S t f x dx f x dx
∞

= − =∫ ∫ . 

h(t) The hazard function: 
( )( )
( )

f xh t
S t

= . 

[ ]( )d g x
dx

 The first derivative of the function g(x) 

Constants 

π PI, The value pi ≈ 3.141 592 653 589 793 238 462 643 

e E, The base of the natural log ≈ 2.718 281 828 459 045 235 360 287 

γ EULERSC, Euler's constant ≈ 0.577 215 664 901 532 860 606 512 



NUMBERS, Symbols, constants, functions, and conversions 

 198 

Function definitions 

2 ( )q xχ  The Chi-squared q quantile: 2 2Pr ( )q x qχ χ ≤ =   

Φq The standard normal q quantile: Pr(x ≤ Φq) = q 

Φ(x) The standard normal cumulative density function: 

2

2

0

1( )
2

x u

x e du
π

−
Φ = ∫ . 

erf(x) The error function, ERF(x): ( )2

0

2erf ( ) 2 2 1
x

ux e du x
π

−= = Φ −∫ . 

Ιk(x) The modified Bessel function of the 1st kind, order k, BESSELI(k, x): 

 
( )21

4

0
( )

2 ! (1 )

j
k

k k
j

xxx
j j k

∞

=

Ι =
Γ + +∑ . 

Κk(x) The modified Bessel function of the 2nd kind, order k, BESSELK(k, x): 

 
( ) ( )( )
2sin( )

k k
k

x xx
i

π
π

−Ι − ΙΚ = . 

Β(ν, ω) The beta function BETAF(ν, ω):
1

1 1

0

( ) ( )( , ) (1 )
( )

z x dxν ω ν ων ω
ν ω

− − Γ ΓΒ = − =
Γ +∫ . 

Βp(ν, ω) The normalized incomplete beta function, IBETA(ν, ω):  

 

1 1

0

(1 )
( , )

( , )

p

p

x x dxν ω

ν ω
ν ω

− −−
Β =

Β

∫
 

βp(ν, ω) The complement of the normalized beta function (IBETAC): βp(ν, ω) = 1 – Βp(ν, ω). 

Γ(ν) The gamma function (GAMMAF): 1

0

( ) xx e dxνν
∞

− −Γ = ∫ . 

γ(ν, ω) The incomplete gamma function of the 1st kind: 1

0

( , ) xx e dx
ω

νγ ν ω − −= ∫ . 

 The IGAMMA(x, y) function returns γ(ν, ω)/Γ(ν) 

Γ(ν, ω) The incomplete gamma function of the 2nd kind: 1( , ) v xx e dx
ω

ν ω
∞

− −Γ = ∫ . 

 The IGAMMAC(x, y) function returns Γ(ν, ω)/Γ(ν) = 1 – γ(ν, ω)/Γ(ν) 

ψ(x) The digamma function. 
[ ]ln ( )

( )
d x

x
dx

ψ
Γ

= . 

ψ′(x) The trigamma function. 
[ ] [ ]2

2

( ) ln ( )
( )

d x d x
x

dx dx
ψ

ψ
Γ

′ = = . 
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ln(x) The natural (Napierian) log of x.  LN(x) and LOG(x) 

δ(x, y) Kronecker's delta function: 
1,

( , )
0,

x y
x y

x y
δ

=
=  ≠

.  DELTA(x, y). 

n
k

 
 
 

 Combinations of n taken k at a time = 
!

( )!
n n
k n r

 
=  − 

.  COMB(n, k) 
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The Greek alphabet 

Α α alpha Ι ι iota Ρ ρ rho 
Β β beta Κ κ kappa Σ σ sigma 
Γ γ gamma Λ λ lambda Τ τ tau 
∆ δ delta Μ µ mu Υ υ upsilon 
Ε ε epsilon Ν ν nu Φ φ phi 
Ζ ζ zeta Ξ ξ xi Χ χ chi 
Η η eta Ο ο omikron Ψ ψ psi 
Θ θ theta Π π pi Ω ω omega 

Metric prefixes 

10 deka (da) 10-1 deci (d) 
102 hecto (h) 10-2 centi (c) 
103 kilo (k) 10-3 milli (m) 
106 mega (M) 10-6 micro (µ) 
109 giga (G) 10-9 nano (n) 
1012 tera (T) 10-12 pico (p) 
1015 peta (P) 10-15 femto (f) 
1018 exa (E) 10-18 atto (a) 

Temperature conversions 

 a °C b °K c °F 
a °C a a = b – 273.15 a = (c – 32)/1.8 
b °K b = a + 273.15 b b = (c + 459.67)/1.8 
c °F c = 1.8a + 32 c = 1.8b – 459.67 c 
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Selected Systéme International d'Unités 

Quantity SI Unit Derivation Other units 
acceleration m/s2   
angular acceleration rad/s2   
angular velocity rad/s   
capacitance (electrical) farad, F A×s/V  
charge (electrical) coulomb, C A×s electrostatic units, esu = 3-1×10-9 C 
current (electrical) ampre, A   
density kg/m3   
energy, work, heat joule, J N×m calorie, cal = 4.184 J 

British thermal unit, BTU = 1055.87 J 
foot-pound, ft-lb = 1.35582 J 
electronvolt, eV = 1.60219× 10-19  J 
erg = 10-7 J 

field strength (electrical) V/m   
flux of light lumen, lm cd×sr  
force newton, N kg×m/s2 dyne, dyn = 10-5 N 
frequency hertz, Hz 1/s cycles per second, cps = 1 Hz 
illumination lux, lx lm/m2  
inductance herny, H V×s/A  
length meter, m  angstrom (A) = 10-10 M 
luminance candela/m2, cd/ 

m2 
  

magnetic field strength A/m  oersted, Oe = 4-1×103 A/m 
magnetic flux weber, Wb V/s maxwell, Mx = 10-8 Wb 
magnetic flux density tesla, T Wb/m2 gauss, G = 10-4 T 
magnetomotive force ampre, A   
mass kilogram, kg   
power watt, W J/s horsepower, hp = 745.7 W 
pressure N/m2  atmosphere, atm = 1.01325×105 N/m2 

bar = 105 N/m2 
kilopascals, kPa = 1000 N/m2 

velocity m/s   
voltage, electromotive 
force, electrical potential 

volt, V W/A  

Angles 

 '' ' ° radians grads 
'' 1 0.0166667 0.000277778 0.0159155 0.0176839 
' 60 1 0.0166667 0.954930 1.06103 
° 3600 60 1 57.2958 63.6620 

radians 62.8319 1.04720 0.0174533 1 1.11111 
grads 56.5487 0.942478 0.0157080 0.9 1 
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Time 

 second minute hour day week year 
second 1 0.0166667 0.000277778 1.15741E-05 1.65344E-06 3.17969E-08 
minute 60 1 0.0166667 0.000694444 9.92063E-05 1.90781E-06 
hour 3600 60 1 0.0416667 0.00595238 0.000114469 
day 86400 1440 24 1 0.142857 0.00274725 

week 604800 10080 168 7 1 0.0192308 
year 31449600 524160 8736 364 52 1 

Avoirdupois weight 

 kg lb ounce dram grain short ton long ton 
kg 1 2.20462 35.2740 564.383 15432.4 0.00110231 0.000984207 
lb 0.45359237 1 16 256 7000 0.000500000 0.000446429 

ounce 0.0283495 0.0625000 1 16 437.500 0.0000312500 2.79018E-05 
dram 0.00177185 0.00390625 0.0625 1 27.3438 1.95313E-06 1.74386E-06 
grain 6.47989E-05 0.000142857 0.00228571 0.0365714 1 7.14286E-08 6.37755E-08 

short ton 907.185 2000 32000 512000 14000000 1 0.892857 
long ton 1016.05 2240 35840 573440 15680000 1.12 1 

Long measure 

 meter inch foot yard rod fulong mile nautical mile leagues 
meter 1 39.370 3.2808 1.0936 6.0149 240.59 1924.8 2221.6 5774.3 
inch 0.02540 1 0.083333 0.027778 0.15278 6.111111 48.889 56.428 146.67 
foot 0.30480 12 1 0.33333 1.8333 73.33333 586.67 677.14 1760 
yard 0.91440 36 3 1 5.5 220 1760.0 2031.4 5280 
rod 0.16625 6.5455 0.54545 0.18182 1 40 320 369.35 960 

fulong 0.0041564 0.16364 0.013636 0.0045455 0.025 1 8 9.2337 24 
mile 0.0005195

5 
0.020455 0.0017045 0.00056818 0.0031250 0.125 1 1.1542 3 

nautical 
mile 

0.0004501
3 

0.017722 0.0014768 0.00049227 0.0027075 0.1082992 0.86639 1 2.5992 

leagues 0.0001731
8 

0.0068182 0.00056818 0.00018939 0.0010417 0.0416667 0.33333 0.38474 1 

fluid flow (volume/time) 

 m3/s Mgal/day ft3/sec gal/min acre-ft/day 
m3/s 1 22.8 35.3 15850 70.0 

Mgal/day 0.0438 1 1.55 694 3.07 
ft3/sec 0.0283 0.656 1 448 1.98 

gal/min 6.31×10-5 0.00144 0.00223 1 0.00442 
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acre-ft/day 0.0143 0.326 0.504 226 1 
 

Power (energy/time) 

 joule/sec ft-lbforce/sec kWatt horsepower Btu/sec 
joule/sec 1 0.738 0.001 0.00134 9.48×10-4 

ft-lbforce/sec 1.36 1 0.00136 0.00182 0.00128 
kWatt 1000 738 1 1.34 0.948 

horsepower 746 550 0.746 1 0.707 
Btu/sec 1055 778 1.05 1.41 1 

 

Kinematic Viscosity 

 m2/s cm2/sec ft2/sec cenitstoke 
m2/s 1 104 10.7 106 

cm2/sec 10-4 1 0.00107 100 
ft2/sec 0.0929 929 1 9.34×104 

cenitstoke 10-6 0.01 1.07×10-5 1 
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ERROR AND WARNING MESSAGES 

A number of error and warning messages are produced by mlemlemlemle.  Warning messages are given for models, parameters 

and other iterative functions that might not completely converge.  Error messages cause mlemlemlemle to stop running.  They can be 

roughly divided into those that come from the run-time routines, the symbol table routines, the parsing routines, and the 

mathematical library.  Finally, mlemlemlemle has a number of help messages and other messages that occur in response to improper 

command line options. 

Messages from command line options 

The following message is printed when command line options are not recognized and at least one of the options 

is taken as an input file.  For example, typing mle xxx yields: 
Error: File "xxx" does not exist 
 
Usage: mle [-v] [-p] [-i] [-dd] [-ds] [-dp] [-di] [-dl] [-d #] [mlefile] 
  -v sets verbose on. Iteration histories are printed 
  -p only parses the mle file 
  -i runs mle interactively 
  -dd turns on data debugging 
  -ds turns on symbol table debugging 
  -dp turns on parser debugging 
  -di turns on integration debugging 
  -dl turns on likelihood debugging 
  -d sets debugging to level # 
  mlefile is the name of the file with the program 
 
Usage: mle -h [name1 name2 . . . .] 
  help for PDFs, functions, symbols, parameter transforms 
  -h matches words exactly, -H searches within words 
 
Usage: mle -pn n1 n2 . . . . 
  parses n's and returns values and type  

File <name> does not exist.  Try again. 
Typing  mle on the command line will result in the message  
mle Program file to run? 

Should you type a file name that does not exist, the following message appears: 

  File asd does not exist.  Try again. 
mle Program file to run? 

Ensure the proper directory and file extension is being used.  Note that mle does not automatically append .mle to 

the input file. 
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Warning messages 

Warning messages come from routines that iteratively attempt to find a solution of parameters or other 

functions.  Warning messages will not result in termination of the mle run. 

Warning FINDMIN reached maximum iterations 

Warning FINDZERO reached maximum iterations 
The FINDMIN or FINDZERO function was not evaluated to the specified tolerance in the specified number of 

iterations.  You can increase the number of iterations to the function (one way is by increasing the value of FIND_MAXITS) 

or decrease the convergence criterion (one way is by decreasing the value of FIND_EPS). 

Warning: gamma SDF (by continued fractions) did not completely converge 

Warning: gamma SDF (by series) did not completely converge 
These two messages suggest that some evaluation of the Euler's incomplete gamma function was not very precise. 

Warning: beta CDF did not converge 
This message suggests that some evaluation of the incomplete Beta function was not very precise. 

Warning: Upper [Lower] Interval for param x did  not converge to x.xxx in yyyy iterations 
This message arises when mle has troubles finding the upper or lower limit of a likelihood confidence interval.  The 

number of iterations should be increased (set CI_MAXITS to a higher value), or the convergence criterion should be relaxed 

(set CI_CONVERGE to a larger value). 

Warning: Upper [Lower] Interval for param x not bound between xxx and yyy. 
This message arises when a confidence interval is larger then the upper and lower limits of the parameter.  The HIGH 

or LOW limits for the parameter should be changed so that the confidence limit is within the limits of the parameters. 

Warning: the matrix is singular 
This message indicates that the variance-covariance matrix could not be computed because the observed Fisher’s 

information matrix was singular.  This occurs when one or more parameters have very large standard errors, or changes in the 

parameter do not affect the likelihood.  Some suggestions are: reduce the number of parameters, ensure all parameters affect 

the likelihood, solve the likelihood to a higher precision, transform one or more parameters so that the parameter estimate is 

not near a mathematical limit.  This last situation occurs, for example, when a probability is modeled untransformed (between 

0 and 1) and the parameter estimate is near 0 or 1.  Using a logistic specification for the parameter will sometimes fix the 

problem. 

Run-time errors 

Error (run time): Tried assigning null string to char var <name> 
A null string (i.e. a string of length zero specified by "") cannot be assigned to a character variable. 

Error (run time): Unimplemented or unknown METHOD: <name>) 
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The requested maximization method (set by METHOD=<name>) is not recognized. 

Error (run time): Unimplimented integration method: <name> 
The requested integration method (set by INTEGRATE_METHOD=<name>) is not recognized. 

Error (run time): Bad string in STRING2REAL 
A string argument to the STRING2REAL function could not be converted into a real number. 

Error (run time): Bad string in STRING2INT 
A string argument to the STRING2INT function could not be converted into an integer. 

Error (run time): Bad real ident. <name> is type <type> 

Error (run time): Bad integer identifier type found 
An argument to an integer function was not an integer. 

Error (run time): Bad string identifier type found 
An argument to a string function was not a string or character. 

Error (run time): Calling boolean func <name> with [real, integer, string/char, boolean] args 

Error (run time): Type mismatch for arg n  calling func <name> 
The type (integer, real, boolean, string, character) for argument n of function <name> was incorrect. 

Error  (run time): Opening [INFILE, DATAFILE, MLERC] file xxxx: <message> 
An error occurred while opening a file.  The <message> can be one of the following: 

File was not found 

Path was not found 

Too many open files 

File access denied 

Invalid file reference 

Not enough memory 

Invalid environment 

Invalid drive letter 

Can't remove current directory 

Can't rename files across drives 

Disk read error 

Disk write error 

Disk is write-protected 

Unknown device 

Disk drive is not ready 

Disk seek or sector error 

Unknown media 

The printer is out of paper 

Error trying to write to the output device 

Error trying to read an input device 
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A hardware failure occurred 

Errors from the parser 

Error messages from the parser always contain information on the line and column where the error occurred. 

Error found while parsing <id> at line <line#> column <column#> 

Expected a positive constant instead of "<text>" 
A positive constant is expected in the FIELD and LINE specifications of the DATA statement. 

Boolean expression was expected 
A boolean expression was expected but not found.  For example, as the first expression in the 

IF...THEN...ELSE...END function must be a boolean expression. 

"<name>" must be previously declared for use here 
A variable used in an expression had not been previously declared.  All variables must be declared, either as a 

predeclared variable, in a PARAM function, in the DATA statement, or in an ASSIGN statement before being used in an 

expression. 

"<name>" exists and cannot be declared as a PARAM 
An attempt was made to declare <name> as a parameter, but it was previously declared. 

<name> doesn't exists, so it can't be reduced. 
The parameter <name> found in a REDUCE statement does not exist. 

Bad argument type to [function] <func>.  Expected <type> but found <type> 
An argument to the named function is not correct. 

<variable> already exists.  It cannot be a DATA variable. 
A variable defined in the DATA statement already exists. 

Bad type in assign statement 
The resulting type on the right-hand side of the assignment is incompatible with the left-hand side. 

Can't assign value of type <type>  to variable of type <type>. 
The two types are incompatible. 

Bad number format found while scanning "<text>" 
The text was supposed to be converted into a number, but could not be properly converted.  Usually there is an 

invalid character. 

Character constant is too long 
A character constant had more than one character. 

Unclosed comment at end of file 
This results when a comment is not properly closed. 

Error: bad syntax at: line <line#> column <column#> 
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The bad token is:<id> 

One of the following was expected:  
This error occurs when improper syntax is found. 

Error messages from data routines 

Error (data): Data transformation, bad function type 
The function defined for a data transformation does not return a real or integer type. 

Error (data): Unexpected end of file <name> reading observation <n> line <n> of <n>, field <n> of 
<n> 

The file ended when an observation was only partially read. 

Error (data): Unexpected end of line <name> reading observation <n> line <n> of <n>, field <n> of 
<n> 

The line ended when an observation was only partially read. 

Bad value <n1> line <n2> field <n3>. Can't convert: <text> to a number. 
The value for observation n1, on line n2 in field n3 couldn't be properly converted to a number. 

Error (data): No data file assigned.  Use DATAFILE procedure' 
The data file was not assigned using DATAFILE procedure.  Place the statement DATAFILE("<name>") before the 

DATA statement. 

Error messages from function calls: 

A number of errors arise from improper values being passed to function calls.  Frequently the remedies are to place 

proper constraints on parameter values, clean the input data, transform data, or add a small positive number to all failure 

times.  The following messages arise from these difficulties 

Error (math): Attempted division by zero 

Error (math): Attempted to take the square root of a negative number: <-nnnn> 

Error (math): Bad BIVNORMAL param rho. Expected:-1<=r<=1 but = <nnn> 

Error (math): Bad <name> should be > 0 and < 1 but = <nnn> 

Error (math): Bad <name> should be >=1 but = <nnn>  

Error (math): Bad <name> should be >= 0 but = <nnn>  

Error (math): Bad <name> should be > 0 but = <nnn> 

Error (math): Bad <name> cannot be =0 but is 

Error (math): Bad <name> should be > -1 and < 1 but = <nnn> 
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Error (math): Bad <name> should be >= -1 and <= 1 but = <nnn> 

Error (math): Attempted log of negative number: <nnn>  

Error (math): Bad Logit(<nnn>) 

Error (math): Bad arg to: POWER(<nnn>, <nnn>) 

Error (math): Integer overflow in FACT 

Error (math): Integer overflow in COMBINATION 

Error (math): Integer overflow in PERMUTE 

Error (math): IBETA: arg is not 0 <= t <= 1,  = <nnn> 

Error (math): Bad random seed: <nnn> 

Error messages from symbol table routines 

Error (sym table): Wrong type: can't assign <name> (<type>) to <name> (<type>). 

An attempt was made to assign incompatible variables. 

Error (sym table): Variable of type <type> is too large 

There was not enough memory to allocate a variable. 
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