
mle

A Programming Language for Building Likelihood Models

Version 2

Darryl J. Holman

Table of Contents

 1

mle

A Programming Language for Building Likelihood Models

Version 2

© Copyright 1991–2000

Darryl J. Holman

Department of Anthropology
Center for Studies in Demography and Ecology

Center for Statistics and the Social Sciences
The University of Washington

Box 353100
Seattle, WA 98195

holman@pop.psu.edu

The software and manual for mle version 2 is distributed in electronic form free of charge for personal and academic use.
Permission to use, copy, and distribute this software and documentation is hereby granted for personal and non-commercial
academic use provided that the above copyright notice appears on all copies and that both the copyright notice and this
permission notice appear in the supporting documentation. Other uses of this manual or software are prohibited unless written
permission is granted by the author. This software may not be sold or repackaged for sale in whole or in part without
permission of the author.

This software is provided "as is", without warranty. In no event shall the Author be liable for any damages, including but not
limited to special, consequential or other damages. The Author specifically disclaims all other warranties, expressed or
implied, including but not limited to the determination of suitability of this product for a specific purpose, use, or application.
The user is responsible for ensuring the accuracy of any results. Sound engineering, scientific, and statistical judgement is the
user's responsibility.

Suggested citation: Holman, Darryl J. (2000) mle: A Programming Language for Building Likelihood Models. Version 2.
http://faculty.washington.edu/~holman/mle.

mle List: There is an email list for mle users to receive update and bug notices. To subscribe, send an email message to
majordomo@pop.psu.edu with the text "subscribe mle" as the body of the email message.

Table of Contents

 2

TABLE OF CONTENTS

TABLE OF CONTENTS ..2

INTRODUCTION ...9
AN EXAMPLE..10
BASIC OUTLINE OF AN MLE PROGRAM ..13

Assignment Statement ..14
Data Statement...16
Model Statement ..16
Procedure Statements ..16
Other Statements..17

A NOTE ABOUT PARAMETERS..17
DIFFERENCES BETWEEN VERSION 1 AND VERSION 2..18

Changes and new features in version 2 ...18
Converting version 1 programs to version 2 ...21

RUNNING AN MLEMLEMLEMLE PROGRAM...23
INTRODUCTION ...23
COMMAND LINE OPTIONS..23

Help options...24
Other options ...26

DATA SETS ...27
INTRODUCTION ...27
READING DATA FROM A FILE ...27

Naming the data file...27
The DATA statement ..28
Dropping or keeping observations ..28
Frequency of observations...29
Transformations...29
Creating dummy variables...30
Skipping initial lines in the data file ..30
Delimiters in the data file ..31

CREATING OBSERVATIONS WITHOUT A FILE ..31
PRINTING OBSERVATIONS AND STATISTICS..31
NUMBER FORMATS ...32
AN EXAMPLE OF CREATING A DATA FILE ...33

THE MODEL STATEMENT...35
INTRODUCTION ...35
STRUCTURE OF THE MODEL STATEMENT..35

Runlist ..36
EXPRESSIONS USED IN MODEL STATEMENTS ..37

The PARAM function ...38
Setting parameter information ...41

The PDF functions...41
PDF time arguments ..43
The Hazard parameter..43

The DATA function ..45

Table of Contents

 3

The LEVEL function ..46
The LEVELDELTA function ..48

STATEMENTS AND PROCEDURES ..49
INTRODUCTION ...49
LIST OF STATEMENTS ..49

Assignment statements ...49
BEGIN...END statement ..50
The DATA statement ..50
FOR statement ...51
IF statement ...51
MODEL statement ...52
Procedure statement ..52
REPEAT statement...52
WHILE statement...53

LIST OF PROCEDURES..53
DATAFILE(s) ...53
HALT ..53
OUTFILE(s) ..54
PRINT(a1, a2, . . .) ..54
PRINTLN(a1, a2, . . .) ...54
SEED(i) ...54
WRITE(a1, a2, . . .) ...54
WRITELN(a1, a2, . . .) ..55

FUNCTIONS..56
INTRODUCTION ...56

The DERIVATIVE function..56
The FINDMIN function..57
The FINDZERO function ...57
Identifiers and expressions ..58

Algebraic, boolean and logical expressions...58
Operator precedence..59

The IF function ..59
The INTEGRATE function ...61
The LEVEL function ..64
The PARAM function ...65

Setting Parameter Information...67
The PDF function ..68

PDF time arguments ..69
The Hazard Parameter ...70

The PREASSIGN and POSTASSIGN functions ...72
The PRODUCT function..73
Simple functions...74
The SUMMATION function ...74
List of simple functions ..75

ABS(x) ..75
ADD(x, y)..75
ANDF(x, y)..76
ARCCOS(x) ..76
ARCCOSH(x)..76
ARCCOT(x) ..76
ARCCOTH(x) ...76
ARCCSC(x)...77
ARCCSCH(x)..77
ARCSEC(x)...77
ARCSECH(x) ..77
ARCSIN(x)..77
ARCSINH(x)...77
ARCTAN(x) ..78
ARCTANH(x) ...78

Table of Contents

 4

BESSELI(x, y)...78
BESSELJ(x, y) ..78
BESSELK(x, y) ...78
BESSELY(x, y) ...78
BETA(ν, ω) ...79
BOOL2STR(x) ..79
CEIL(x) ...79
COMB(x, y)...79
COMP(x)...80
COMPN(x, n) ..80
CONCAT(x1, x2) ..80
COS(x) ..80
COSH(x)..80
COT(x) ..81
COTH(x) ...81
CSCH(x)..81
DEC(x) ..81
DEFALULTOUTNAME...81
DELTA(x, y) ...81
DIVIDE(x, y)...82
DMSTOD(x, y, z)..82
DMSTOR(x, y, z) ..82
DMYTOJ(x, y, z)...82
DTOR(x) ...82
ERF(x)...83
ERFC(x) ..83
EXP(x)...83
FACT(x) ..83
FISHER(x) ..84
FISHERINV(x) ...84
FLOOR(x) ...84
FRAC(x)..84
GAMMA(x)...85
GCF(x, y)...85
HEAVISIDE(x) ...85
IBETA(p, ν, ω)..85
IBETAC((p, ν, ω)..86
IDIV(x, y)..86
IGAMMA(x, y) ...86
IGAMMAC(x1, x2)...86
IGAMMAE(x1, x2) ...86
INC(x) ...87
INT(x)..87
INT2STR(x) ..87
INVERT(x)..87
IRAND(x, y)..87
ISEQ(x, y) ...88
ISEVEN(x) ..88
ISGE(x, y) ...88
ISGT(x, y)..88
ISLE(x, y) ..88
ISLT(x, y) ..88
ISNE(x, y) ...88
ISNEAR(x, b, δ) ..89
ISODD(x) ..89
JULIAND(x)..89
JULIANM(x)...89
JULIANY(x)..89
LCM(x, y)..90
LEAPYEAR(y)..90
LEFTSTRING(x, y)...90
LN(x)...90
LNFACT(x)...91
LNGAMMA(x) ...91

Table of Contents

 5

LOG(x) ..91
LOG10(x) ..91
LOGBASE(x, y) ..91
LOGISTIC(x) ..92
LOGIT(x) ..92
LUNARPHASE(j) ...92
MAX(x, y) ...92
MIN(x, y)...92
MIX(p, x, y) ..93
MODULO(x, y) ...93
MONTHDAYS(m, y) ..93
MULTIPLY(x, y) ..93
NEGATE(x) ..93
NOTF(x)..94
ORD(c) ..94
ORF(x, y)...94
PERMUTATIONS(x, y)..94
POLARTORECTX(r, a) ..95
POLARTORECTY(r, a) ..95
POWER(x, y) ..95
PUT(x)...95
RAND..95
REAL2STR(x, l, s) ..95
RECTTOPOLARA(x, y) ...96
RECTTOPOLARR(x, y) ...96
RECTTOSPHERER(x, y, z)..96
RECTTOSPHEREA1(x, y, z)..96
RECTTOSPHEREA2(x, y, z)..96
REMAINDER(x, y)...97
RIGHTSTRING(x, y) ..97
ROOT(x, y)..97
ROUND(x) ..97
RRAND(x, y) ..98
RTOD(x) ...98
SEC(x)...98
SECH(x) ..98
SGN(x) ..98
SHIFTLEFT(x, y) ..98
SHIFTRIGHT(x, y) ...99
SIGN(x, y) ...99
SIN(x)..99
SINH(x)...99
SPHERETORECTX(r, a1, a2) ..99
SPHERETORECTY(r, a1, a2) ..100
SPHERETORECTZ(r, a1, a2)...100
SQR(x) ..100
SQRT(x) ..100
STANDARDIZE(x, µ, σ) ..100
STRING2INT(s)..101
STRING2REAL(s) ..101
SUBSTRING(x, y, z)...101
SUBTRACT(x, y)..101
TAN(x) ..101
TANH(x) ...102
TOLOWER(x) ...102
TOUPPER(x) ..102
TRIM(x) ..102
TRIML(x)..102
TRIMR(x)..103
TRUNC(x)...103
WEEKDAY(x) ..103
XORF(x, y)..103
YEARDAY(x) ...104

CALCULATOR MODE ...104

Table of Contents

 6

SOME EXAMPLE PROGRAMS ..105
SURVIVAL ANALYSIS—EXACT MEASUREMENTS ...105
SURVIVAL ANALYSIS—EXACT FAILURE AND RIGHT CENSORED OBSERVATIONS ...106
SURVIVAL ANALYSIS—INTERVAL CENSORED OBSERVATIONS ..107
CURRENT STATUS ANALYSES..108
SURVIVAL ANALYSIS—WITH LEFT-TRUNCATED OBSERVATIONS ..109
SURVIVAL ANALYSIS—RIGHT-TRUNCATED OBSERVATIONS ..110
SURVIVAL ANALYSIS—WITH LEFT-AND RIGHT-TRUNCATED OBSERVATIONS..111
SURVIVAL ANALYSIS—ACCELERATED FAILURE TIME...112
SURVIVAL ANALYSIS—HAZARDS MODEL ...113
SURVIVAL ANALYSIS—IMMUNE SUBGROUP ...113
LINEAR REGRESSION IN THE LIKELIHOOD FRAMEWORK...115

SOME DETAILS ...118
MAXIMIZERS...118

Conjugate gradient method ...119
Simplex...119
Direct method ..120
Simulated annealing method..120
Stopping criteria ..122
Looping through methods ..123

OUTPUT OPTIONS ..123
DATA reports...123
MODEL reports ...123

Standard error report ...124
Variance-covariance matrix...124
Confidence interval report ...125
Printing distributions ...126
Other printing options ...126

INTEGRATION METHODS ...126
LOGISTIC EQUATIONS..127
THE INTERACTIVE DEBUGGER...127
PREDEFINED VARIABLES AND CONSTANTS ..128

PDFS AND THEIR CHARACTERISTICS...133
ARCSINE ..133
ASYMPTOTICRANGE ..134
BERNOULLITRIAL ...134
BETA...135
BINOMIAL ...136
BIRNBAUMSAUNDERS...137
BIVNORMAL ...138
CAUCHY...139
CHI ..140
CHISQUARED..141
COMPOUNDEXTREME..142
DANIELS ..143
DISK..144
EXPONENTIAL..145
GAMMA..146
GAMMAFRAIL ..147
GENGAMMA ...148
GENGUMBEL ..149
GEOMETRIC..150
GOMPERTZ..151
HORSESHOE..152
HYPERBOLICSECANT...153
HYPERGEOMETRIC...154

Table of Contents

 7

HYPER2EXP...155
HYPO2EXP...156
INVBETA1..157
INVBETA2..158
INVCHI ...159
INVGAMMA...160
INVGAUSSIAN ..161
LAPLACE ...162
LARGEEXTREME AND GUMBEL..163
LINEARHAZARD ..164
LNGAMMA ..165
LNLOGISTIC..166
LOGISTIC ...167
LOGNORMAL OR LNNORMAL ...168
LOGSERIES..169
LOWMAX...170
MAKEHAM ..171
MAXWELL...172
MIXMAKEHAM...173
NEGBINOMIAL ...174
NORMAL OR GAUSSIAN..175
PARETO..176
PASCAL ..177
POISSON...178
POWERFUNCTION ...179
RAISEDCOSINE...180
RANDOMWALK..181
RAYLEIGH...182
REVPOWERFUNCTION ...183
RINGINGEXP0...184
RINGINGEXP180...185
SHIFTEXPONENTIAL...186
SHIFTGAMMA...187
SHIFTLOGNORMAL...188
SHIFTWEIBULL ..189
SILER ..190
SMALLEXTREME ...191
STERILE OR IMMUNE...192
SUBBOTIN ...193
UNIFORM OR RECTANGULAR (CONTINUOUS)...194
VONMISES...195
WEIBULL ...196

NUMBERS, SYMBOLS, CONSTANTS, FUNCTIONS, AND CONVERSIONS..197
SYMBOLS..197
CONSTANTS ..197
FUNCTION DEFINITIONS...198
THE GREEK ALPHABET ...200
METRIC PREFIXES ...200
TEMPERATURE CONVERSIONS...200
SELECTED SYSTÉME INTERNATIONAL D'UNITÉS ...201
ANGLES ..201
TIME...202
AVOIRDUPOIS WEIGHT ..202
LONG MEASURE..202
FLUID FLOW (VOLUME/TIME)...202
POWER (ENERGY/TIME) ..203
KINEMATIC VISCOSITY ...203

Table of Contents

 8

ERROR AND WARNING MESSAGES..204
MESSAGES FROM COMMAND LINE OPTIONS ..204
WARNING MESSAGES..205
RUN-TIME ERRORS..205
ERRORS FROM THE PARSER...207
ERROR MESSAGES FROM DATA ROUTINES ...208
ERROR MESSAGES FROM FUNCTION CALLS: ..208
ERROR MESSAGES FROM SYMBOL TABLE ROUTINES..209

Error (sym table): Wrong type: can't assign <name> (<type>) to <name> (<type>). ..209
Error (sym table): Variable of type <type> is too large ...209

REFERENCES...210

Introduction

 9

INTRODUCTION

mlemlemlemle is a simple programming language for building and estimating parameters of likelihood models. The language

was originally intended for building and estimating the parameters of survival models, but the language has evolved to be

general enough to estimate parameters for many other types of likelihood models. Indeed, the language attempts to be a

general purpose tool for likelihood estimation.

This chapter provides an overview of mlemlemlemle. The basic concepts of the programming language are introduced and some

examples are given. Details, and more formal descriptions of the mlemlemlemle programming language, are saved for later chapters.

Examples of mlemlemlemle programs and program fragments are sprinkled throughout this manual. A later chapter is devoted to

examples of different type of likelihood models.

This manual gives only a superficial treatment of topics like probability theory, probability models, and maximum

likelihood methods. In order to write mlemlemlemle programs, you will need a basic understanding of these topics. Some helpful,

generally applied, introductions to maximum likelihood estimation can be found in Edwards (1972), Hilborn and Mangel

(1997), Holman and Jones (1998), Nelson (1982), Pickles (1985), Wood et al. (1992).

Programs written in mlemlemlemle are, in many respects, similar to those written in SAS, S+, SPSS, BMDP, or many other

statistical programming languages. The language consists of keywords like MODEL, END, DATA, and so on. Like all

languages, mlemlemlemle has rules of syntax that must be strictly followed to produce a valid program. The resulting mlemlemlemle program is

translated into actions (like parameter estimation) by the mlemlemlemle interpreter.1

The mlemlemlemle interpreter typically works with three files: the mlemlemlemle program file, the data file, and the output file.

The program file. This is the program that you have written in the mlemlemlemle programming language. The first line of this

file begins with the word MLE and the program ends with a matching END. In between these two comes the program, which

includes naming the data file and the output file, describing how to read in and transform data into a series of observations,

and specifications of one or more likelihood models along with parameters to find. Parameter estimates are then found by an

iterative search that maximizes the likelihood given a set of observations. The resulting parameter estimates are then written

to an output file.

The mlemlemlemle program is created as an ordinary text file using almost any editor. You can create and edit the mlemlemlemle program

using the EDIT command (in DOS), vi, pico, or emacs (in Unix), or any other editor that will read and write a file as ASCII

text. Word processors, such as Microsoft Word, can be used as well, but you must remember to save your work using the

"text (with line breaks)" option.

The data file. This file contains lines of observations. The observations are read, and perhaps transformed, when the

mlemlemlemle program is run. The observations are then used with the likelihood function (specified in the mlemlemlemle program file) to find

parameter estimates. Data files are standard ASCII text files. Typically, one line in the file represents one observation

(although a single observation can span more than one line, and one line can represent multiple identical observations).

1 Notice that mlemlemlemle has two distinct meanings in this document. First, it is a programming language for building likelihoods. Second, it is the

name of the computer program that interprets the language and finds maximum likelihood estimates of model parameters.

Introduction

 10

Within each observation is a series of fields that are separated by spaces, tabs, commas, or some other user-specified

delimiter. One or more of these fields are read into variables.

The output file. This is where results are written. The name of the output file is specified in the mlemlemlemle program file.

The program file also specifies what kind of result will be written to the output file, and how much of the details will be

included.

You can also specify that mlemlemlemle write partial results and messages to the screen (or standard output as it is called). This

is helpful for monitoring progress while estimation is taking place.

An Example

Figure 1 is a simple mlemlemlemle program that illustrates the most important parts of the mlemlemlemle programming language. The

problem at hand is to estimate the distribution of gestational ages at birth given the observations shown in Figure 2. These

observations are counts of gestational ages at birth that were recorded at a resolution of one week for all but the first and last

rows of observations. We will use survival analysis to estimate the parameters (µ and σ) of the normal distribution that best

describes these data.

This is an example of survival analysis with interval censored observations. In this example, observations are given

as frequencies within each interval; that is, each line in the data file represents many observations.

MLE
 TITLE = "Distribution of gestational age" {Data are from Hammes
 and Treloar(1970) Am J Pub
 Health 60:1496-1505}
 MAXITER = 50 {Maximum number of iterations allowed}
 EPSILON = 0.0000001 {Criterion for convergence of the model}
 DATAFILE("hammes.dat") {Opens the input data file}
 OUTFILE("hammes.out") {Opens the output file}

 DATA
 {Data are interval censored and are
 in units of days as per Table 2 of Hammes and Treloar}
 topen FIELD 1 {time at opening the interval}
 tclose FIELD 2 {time at closing the interval}
 frequency FIELD 3 {Frequency from Menstrual History Program}
 END {data}

 MODEL
 DATA {function to loop through all observations}
 PDF NORMAL(topen, tclose) {Define the parametric distribution}
 PARAM mean LOW = 100 HIGH = 400 START = 270 END
 PARAM stdev LOW = 0.1 HIGH = 100 START = 20 END
 END {pdf}
 END {data}
 RUN
 FULL {run the model with both parameters free}
 END {model}

END {of program}

Figure 1. Program to estimate parameters for the distribution of gestational ages at birth.

Introduction

 11

Structure. There are four basic constructs in a typical mlemlemlemle program. They are assignment statements, procedure

statements, the DATA statement and one or more MODEL statements. Assignment statements allow you to define and change

program variables, some that affect the behavior of the DATA and MODEL statements. The DATA statement describes the format

of the input data file, and provides simple data transformations and mechanisms to drop observations. The MODEL statement

defines the likelihood function along with the parameters to be estimated. A second part of each MODEL statement is the RUN

statement that specifies how the model is to be estimated.

Program constants and variables. A number of variables (e.g. MAXITER) are pre-defined in mlemlemlemle. Frequently, you

will want to change the value of these variables in order to fine tune the behavior of the program, how the language is

interpreted, the type of output produced, etc. In the example program, the value of MAXITER is changed from the default

value of 100 to a maximum of 50. MAXITER is the maximum number of iterations allowed for finding the parameters. Notice

the TITLE variable is also assigned to a string variable (i.e. a series of characters). The TITLE variable is simply written to

the output file. The variable EPSILON is assigned a value as well. This variable determines how precisely the parameters are

to be found: normal convergence occurs when the change in the log-likelihood from one iteration to the next falls below this

value.

Comments. These can be placed throughout the body of a program by enclosing the text in curly brackets, { and }.

Likewise, the curly brackets can be used to effectively remove large sections of code. A second way to comment out all or

part of a single line is to put a pound sign # at the point where you want the comment to begin. mlemlemlemle ignores all text that

follows the pound-sign through the end of the line.

Reading data. The data file specified in Figure 1, called hammes.dat, is shown in Figure 2. Data files are standard

ASCII text files of numbers. The numbers are organized into a series of fields. Each filed is usually delimited by white space

(tabs or spaces as used in Figure 2) or commas. You can specify your own list of delimiters by changing the value of the

variable called DELIMITERS (see the DATA chapter for details).

The data in Figure 2 are structured as three columns of

numbers. The first field is the last observed gestational age

prior to birth. The second field is the observed gestational age

after a birth was observed. These two times form an interval

within which the birth occurred (i.e. the birth occurred at some

unknown time within this interval). The third field is the

number of births that were observed within the interval.

The way in which the data file is read is specified by

the DATA statement in Figure 1. The three variables, TOPEN,

TCLOSE, and FREQUENCY, that come between DATA and its

matching END, are read in for each observation (i.e. each line

in Figure 2). In fact, each of these variables will be created as

an array, each having twenty elements. Each element

corresponds to a line read in from the data file.

The variable called frequency is a special name

because mlemlemlemle will treat variables with the name frequency (and

0 141 0
141 196 9
197 217 11
218 224 2
225 231 12
232 238 17
239 245 22
246 252 40
253 259 69
260 266 134
267 273 324
274 280 653
281 287 724
288 294 382
295 301 125
302 308 47
309 315 26
316 322 10
323 329 1
329 -1 6

Figure 2. Data file read by the program in Figure 1. The first
two columns define an interval within which a birth occurred.
Note the last row has -1 to denote an opened (right censored)
observation. The third column is the number of pregnancies that
terminated within each interval.

Introduction

 12

freq as well) as a count of repeated observations. Thus, the contribution to the likelihood from each observation will be the

same as if the number of observations specified by frequency had been read in from the file.

Likelihood model. The next part of the program is the MODEL statement. The MODEL statement consists of two parts:

an expression that comes between the MODEL and RUN part that defines the likelihood, and a list of one or more run

specifications that come between the RUN and END part of the statement.

Within the MODEL...RUN part of the statement is a single function that defines the likelihood. In this example, we

are specifying the likelihood:

(1) L S t S topen close
frequency

i

N

i i

i= −
=

∏ (| ,) (| ,)µ σ µ σ
1

where N is the number of age categories (i.e. the number of lines of observations), frequency is the frequency of observations

per age category, S() is a survival density function for the normal distribution, topen and tclose are the two times read from the

data file into the variables topen and tclose, and µ and σ are the parameters that will be explored to maximize the

likelihood.

Notice that the first part of the likelihood expression is a DATA...END function. This function specifies that

observations are to be "fed" to the likelihood one at a time, corresponding to the product (∏) shown in the likelihood above.

It is very important that you do not confuse the DATA function, found within the MODEL statement, with the DATA statement

discussed above. The DATA function loops through all observations that were previously read in by the DATA statement.

Within the DATA...END function comes the rest of the likelihood, which is shown to the right of the ∏ in likelihood (1) given

above. The likelihood within the data function is called for each observation in turn. The resulting individual likelihood is

computed, the log of that likelihood is taken, multiplied by the FREQUENCY for the current observation, and added to the total

likelihood. In other words, the DATA...END function returns the total log-loglikelihood, given a series of observations and

an expression for an individual likelihood.

Nested within the DATA function is the PDF function, which makes up the parametric model for the likelihood

function. A NORMAL distribution is specified, and we pass it two arguments (topen, tclose). These two arguments (which

were read from column 1 and 2 of the data file) different from each other, so the PDF function returns the area under a normal

PDF between the two points. The area corresponds to the probability of observing an birth within the interval. If we had only

specified a single argument or if both arguments had been equal to each other, the PDF function would have returned the

probability density at that point. Within the PDF NORMAL function call are two PARAM functions. These functions define

parameters that will be changed in order to maximize the likelihood. Naturally, you are able to specify limits, starting values,

etc. for these parameters.

Between the RUN and the END part of a MODEL statement comes a list specifying how to run the model. The full

model is run by specifying FULL. Various reduced forms of the model can be run by specifying a REDUCE command. More

details on this are given below and in a later chapter.

Introduction

 13

Running. The mlemlemlemle program is run by typing the line mle hammes.mle at the command line prompt (see Chapter 2

for details). The output that results from the example program and data file is given in Figure 3. The first section of the

output provides summary statistics for each of the variables read from the input data file. The parameter estimates are given

in two ways: once with estimated standard errors, and once with likelihood confidence intervals. The standard error report

also shows a t-test of the hypothesis that the mean parameter estimate is zero.

Basic Outline of an mlemlemlemle Program

The easiest way to write an mlemlemlemle program is to begin with a working program like that given in Figure 1, or at least an

outline like that given in Figure 4. Every program begins with the word MLE and ends with the matching word END.2 Any text

2 Throughout this manual, mlemlemlemle programs are shown with indentation to show, for example, the matching MODEL and END. This so-called

pretty-printing is not necessary; mlemlemlemle is a free-format language. Nevertheless, the use of indentation and copious commenting will greatly
aid in proper program development and debugging. This manual uses two spaces to indent each natural "level". Key words that are a
part of mlemlemlemle are always upper-case letters and user-defined words are lower-case (again, this is not required since mlemlemlemle is not case sensitive).
Finally, a matching END is usually followed by a comment denoting what key-word the end matches. This last convention is
particularly useful for complex programs that involve many nested functions.

Distribution of gestational age
Parameter file: hammes.mle
Input data file name: hammes.dat
Output file name: hammes.out
 3 variables read.

18 lines read from file hammes.dat
18 Observations kept and 0 observations dropped for each variable.

ROW topen tclose frequency
MEAN 258.722222 253.555556 144.111111
VAR 5338.56536 6032.37908 51267.3987
STDEV 73.0654868 77.6683918 226.423052
MIN 0.00000000 -1.0000000 0.00000000
MAX 329.000000 329.000000 724.000000
New model: Distribution of gestational age

METHOD = DIRECT
Maximum Iterations MAXITER = 50
Convergence at EPSILON = 0.0000001000

Results with estimated standard errors:
 Log Likelihood = -5915.1352 after 4 iterations. Delta(LL)=0.00000000
PDF NORMAL with 2 free parameters
 Name Form Estimate Std Error t against
 mean 279.7654969512 0.267153495349 1047.20882123 0.0
 stdev 13.04605798312 0.126880990969 102.821217611 0.0

Variance/covariance matrix:
0.07137099008 0.00860300945
0.00860300945 0.01609878587

Likelihood CI Results:
 Log Likelihood = -5915.1352 after 4 iterations. Delta(LL)=0.00000000
PDF NORMAL with 2 free parameters
 Name Form Estimate Lower CI Upper CI
 mean 279.7654969512 279.1863052702 280.3447034638
 stdev 13.04605798312 12.64289497881 13.47052893809

Figure 3. Output generated by the program in Figure 1.

Introduction

 14

after the final END is ignored. Between the MLE and its matching END comes the body of an mlemlemlemle program. Four types of

statements occur within the body: the DATA statement, one or more MODEL statements, procedure calls, and assignment

statements. Each type of statement is briefly discussed below.

Assignment Statement

Assignment statements may be placed anywhere within the body of the mlemlemlemle program—that is, within the MLE and its

matching END.3 A great number of pre-defined variables are available in mlemlemlemle that change or fine-tune the behavior of the

program. Assignment statements are used to change the value of these variables. Some brief examples are:
MAXITER = 100 {Set the maximum number of iterations}
EPSILON = 0.0000001 {Set the criterion for convergence}
PRINT_OBS = TRUE {prints all observations after transformations}

The assignment statement is generically defined as <variable name> = <expression>. The <variable name> name can be a

preexisting variable (e.g. MAXITER, EPSILON), or is a user-defined variable.

The <expression> that follows the equal sign can be a simple constant,

another variable, or a complex mathematical expression. The details of the

syntax and the many functions that can be used to make up expressions are given

in a later chapter. The following are some example of assignment statements

using expressions:
pie = PI
bmi_max = weight_max/height_max^2
total = e1_count + e2_count + e3_count + e4_count
last_sge = IF linear THEN max_age ELSE SQRT(max_age) END
area = PDF NORMAL(-2, 2) 1, 3 END {gives area

from -2 to 2 for N(1, 3)}
one = SIN(total)^2 + COS(total)^2

These are all examples of assignments that return real number results.

There are, in fact, five different types supported by mlemlemlemle: real, integer, boolean,

string, and character. Variables can be defined for each type. Additionally,

expressions can be created for each of these types.

Real. Variables of this type represent the continuous real number line.4 Many mathematical functions like SIN(),

EXP(), and BESSELI() return real values, and so the variable to which these functions are assigned must be type REAL as

well. Real variables can always take on integer values, but integer variables must use the ROUND() or TRUNC() functions to

convert a real number to an integer value.

Integer. Variables of this type can only take on whole number values over a machine-dependent range of numbers.

For example, on DOS computers this range is [-2,147,483,648, 2,147,483,647]. Arguments of some functions require

3 Normally assignment statements do not occur within the DATA...END and MODEL...END statements. Assignment-like statements

occur within the DATA statement for transformations. Additionally, the PREASSIGN and POSTASSIGN functions allow a list of one or
more assignment (or other) statements to be used. Finally, within the MODEL statement, there are several other uses for assignment-like
statements, like to define start, highest, and lowest values of parameters.

4 Be aware, however, that the computer representation for real numbers is not strictly continuous. Occasionally this leads to difficulties
with round-off errors.

MLE
 DATAFILE("...")
 OUTFILE("...")
 TITLE = "...
 MAXITER = 100

 DATA
 <Data specification>
 END

 MODEL
 <Expression>
 RUN
 <Run specification>
 END
 <Additional MODELs>
END

Figure 4. The structure of an mlemlemlemle program

Introduction

 15

INTEGER type variables. For example, the INC(x) function requires that x is an integer type. A number of functions

(ROUND, TRUNC) can convert real types into integer types.

Boolean. Variables of this type take on one of two states: TRUE or FALSE. No other value is allowed or recognized.

Boolean expressions are frequently used to test conditions. For example, the IF...THEN...ELSE...END function evaluates

the first expression (between the IF and THEN) to either TRUE or FALSE and decides which of the remaining two expressions

will be evaluated and returned.

String. Variables of this type hold a sequence of character constants. When written as a constant in a program,

these constants consist of a sequence of characters, enclosed within double-quotes ("). String variables are typically used to

assign file names, titles, etc. A few functions take on string (or character) variables and return a string. For example, the

CONCAT(s1, s2) function will add together two string variables and return it as a longer string.

Character. Variables of this type take on the value of a single character. When written as a constant in a program,

character constants consist of a single character enclosed within single quotes ('). Character constants are not typically used

within a user's program, but are available if needed. Usually, character constants and variables can be used anywhere a string

variable is allowed.

When a variable is first used in an assignment statement, its type is determined based on the type returned from the

expression on the right-hand side of the assignment. Here are some examples to illustrate the point:
large_data = N_OBS > 5000 {large_data will be type BOOLEAN}
subtitle = "Analysis: " + DEFAULTOUTNAME {subtitle will be type STRING}
nine = 3 * 3.0 {nine will be REAL}
five = 2 + 3 {five will be INTEGER}

You can explicitly define the type for a variable when it is first referenced in an assignment statement. Here are some

examples:

c:STRING = 'x' {c would default to CHAR, but will be a STRING variable}
nine:REAL = 3 * 3 {nine would default to INTEGER, but will be a REAL variable}
t:BOOLEAN = TRUE {t is explicitly declared as boolean, although this is the default}
ang:REAL = SIN(2*pi) {ang is explicitly declared as real, although this is the default}

Multidimensional arrays and matrices of all types are supported by mlemlemlemle. Arrayed variables must be explicitly defined

the first time the variable is mentioned in the program. The format is <var> : <type>[min1 TO max1, min2 TO max2, . . .

]. Some examples of declarations are:
s : STRING[1 TO 5] {Defines a one-dimensional array of strings}
r : REAL[1 TO 10, 1 TO 10] {Defines a 10 x 10 matrix}
b : BOOLEAN[0 TO 1, 0 TO 1, 0 TO 1] {Defines a 3 dimensional BOOLEAN array}

An entire array can be initialized to a single value in an assignment statements. Examples are:

s : STRING[1 TO 5] = "" {Defines s and initializes all values to an empty string}
r : REAL[1 TO 10, 1 TO 10] = 0 {Defines a 10 x 10 matrix and initializes everything to 0}

Arrayed variables are accessed by using brackets to denote subscrips. The following example creates an array of radian

angles for integral degree angles, and prints out a table of sine values:

r : REAL[0 TO 359]
FOR i = 0 TO 359 DO
 r[i] = DTOR(i)
 writeln("Sin(" i ") = " SIN(r[i]))
END

Introduction

 16

Data Statement

A single DATA...END statement is usually used in a program. The purpose of the statement is to read in an input file

and transform the data in the file into a set of observations. The DATA statement defines the format of the data file and

provides declarations for each variable that is to be read in from the file. Variables declared within a DATA statement are a

special array of real number. After the matching END is read, the DATA statement immediately reads in the file and performs

any of the transformations specified. Details on the DATA...END statement are given in a later chapter.

The ultimate purpose of a DATA statement is to create a series of observations. The observations will typically be

used to compute likelihoods. Within a MODEL statement, you can use the DATA function to evaluate the likelihood, one

observation at a time. Do not be confused by the fact that there is both a DATA statement and a DATA function. They

complement each other. Simply remember that a DATA statement is used as a statement, and there is typically one such

statement per mlemlemlemle program. The DATA function can only be used as part of an expression—typically only within the likelihood

expression of a MODEL statement. Each MODEL statement will usually have one DATA function included as part of the

likelihood specification. The DATA function corresponds to the product (∏) over all observations in the likelihood [e.g.(1)] or

the summation overall all observations (Σ) in a log-likelihood.

Model Statement

The MODEL...RUN...END statement defines the underlying probability model used by mlemlemlemle and also defines

constraints on which parameters are to be estimated. Between MODEL and RUN is a single expression that is the likelihood.

Within the likelihood is one or more PARAM...END functions. These define the parameters, whose values will be found to so

that the likelihood is maximized. One of the most important aspects of learning mlemlemlemle is the design and construction of the

expression for the likelihood. A later chapter gives a number of examples for different types of likelihoods.

A list of run specifications is given between the RUN and the END part of the MODEL statement, this provides a way of

evaluating the full model as well as a series of nested or reduced models. If all of the parameters (defined by PARAM...END

functions) are to be found, a simple FULL command is placed between the RUN and its matching END. Reduced models, where

one or more parameters are constrained to a constant or another parameter, are specified as REDUCE followed with a list of

one or more "reductions". For example, you might constrain a parameter called mean to be zero and only allow the parameter

called stdev to be found. Then you would put REDUCE mean = 0 between the RUN and the END. Any number of REDUCE

commands (along with one FULL) can be used in a single model. The various forms of the model will be evaluated in turn.

Additional details are given in a later chapter.

Procedure Statements

mlemlemlemle has a number of pre-defined intrinsic procedure statements. These are pre-defined procedures that perform some

specific task. Unlike a function call, procedures do not return some value as part of an expression. Hence, procedures are

called in the same context as an assignment statement. Here are some common examples of procedure statements:

Introduction

 17

DATAFILE("hammes.dat") {Tells mle to use the file hammes.dat as the data file}
OUTFILE("hammes.out") {Defines the output file for mle to use}
SEED(9734) {Seeds the random number generator}

Other Statements

mlemlemlemle provides a number of standard programming statements. The statements should be familiar to anyone with

computer programming experience in BASIC, FORTRAN, C, or Pascal. You will not ordinarily need to use these statements,

but they are provided in the event you do need them. The statements are illustrated below without any details. The full

details are given in a later chapter:
FOR x = 1 TO 10 DO
 y = x^2
 PRINTLN("x is ", x, " and x^2 is ", y) {PRINTLN() writes to the log file}
END {for}

i = 2
WHILE i < 1000 DO
 i = i^2
 WRITELN(i)
END {while}

SEED(234)
REPEAT
 PRINTLN("Still working")
 IF RAND <= 0.2 THEN
 DONE = TRUE
 ELSEIF IRAND(1, 100) = 100 THEN
 DONE = TRUE
 ELSE
 DONE = FALSE
 END {if}
UNTIL done

A Note About Parameters

The ultimate goal of putting together a likelihood model is to estimate one or more parameters of the model. The

PARAM...END function (described later) provides a method to define the parameters that are to be estimated. This use of the

word "parameter" can be confusing, so lets clear it up right from the start. In any mathematical language, we can refer to a

function's arguments as "parameters". For example, in the statement a = sin(b), sin() is a function with one "parameter". This

manual will avoid the word "parameter" in this general sense. Instead, the word argument will be used to refer to the

arguments of a function in a general sense. So, the sin() function has one argument.

As used in this manual, the word parameter in mlemlemlemle refers to an unknown quantity of a probability model whose value

is to be estimated. Parameters, in this sense, are frequently arguments to functions, but not all arguments are parameters.

Parameters are sometimes the constants defined within a function. For example, in the well-known equation for the slope of a

line, y = mx + b, we would call m and b the parameters of the equation, and x the argument. This is clearer when we rewrite

the equation for a slope as f(x | m, b) = mx + b, which is read, "f of x given m and b. . . ." This function has a single argument

x, and the parameters are m and b. Typically a series of x values are known, and the goal is to find the best values for

parameters m, and b. By "best", of course, we mean the best in some statistical sense. In mlemlemlemle, m and b would be called

parameters if and only if they were quantities to be estimated.

Introduction

 18

The one exception to the usage of the word parameter is for the built-in probability density functions in mlemlemlemle , where

we refer to the intrinsic parameters. For example, the normal distribution, f(t|µ, σ), has two intrinsic parameters, µ and σ.

Typically we wish to estimate these intrinsic parameters. If so, the intrinsic parameters µ and σ are also parameters.

As described later, most probability density functions take four arguments for the argument t so that the cumulative

density, survival density, area under the probability density, probability density, hazard function, and all of the above with

right and left truncation may be specified. Thus, in the syntax of mlemlemlemle , there is a natural delineation between arguments and

intrinsic parameters. Consider the following function call: PDF NORMAL(0, 4, 0, 40) 10, 20 END. This function call

has the four "time" arguments 0, 4, 0, and 40, which specifies a normal distribution truncated over the range 0 and 40, and the

area between 0 and 4 is returned. The two intrinsic parameters of the normal are passed as µ = 10 and σ = 20. There are no

"parameters" in this example, simply because there is no PARAM function specified.

Differences between Version 1 and Version 2

Changes and new features in version 2

There are a number of syntax differences and other changes between mlemlemlemle version 1 and version 2. Here is a summary

of the most important changes:

• General algebraic expressions are now recognized. Standard operators include: +, -, *, /, ^, and, or, xor, not,

mod, div, shl, shr, >, <, <>, =, ==, >=, <=. These operators can be used to build algebraic and boolean expressions

of nearly unlimited complexity. Both = and == are allowed for specifying boolean relationships. The standard

operator precedence, common to most programming languages, is recognized by mlemlemlemle:

Operator(s) Precedence Category
- + not high Uniary operators
^ Exponent operator
* / div mod and shl shr Multiplying operators
+ - or xor Adding operators
= (or ==) <> < > <= >= low Relational operators

The expression -23+4*-2^3 is equivalent to ADD(NEGATE(23), MULTIPLY(4, POWER(NEGATE(2), 3)))
which returns -55. Parenthesis can be used to override operator precedence. For example, 2*5 + 3*7 will evaluate
each multiplication before the addition. Addition can be forced to occur first with parenthesis as in 2*(5 + 3)*7.

• The DATA statement has been rewritten to have a more intuitive transformation mechanism. The transformation

looks like an assignment statement following the FIELD and LINE specification (if any). A list of DROPIF <expr>

and KEEPIF <expr> statements can then be specified (replacing the old DROP and KEEP statements). Here are some

examples:

DATA
 age FIELD 1 = age*365.25 + 270 {convert to days since conception}
 weight FIELD 2 = weight * 1000 DROPIF weight <= 0
 height FIELD 3 KEEPIF height > 0
 bmi = height/weight^2
END {data}

Introduction

 19

The formal specification for each variable is this

 <var> [FIELD x [LINE y]] [= <expr>] [DROPIF <expr> | KEEPIF <expr> ...]

The first example above reads a value in the first field of the data file and assigns the value to the variable age.
After that, the expression age*365.25 + 270 is evaluated and the result assigned to the variable age. The second
example reads the second field and assigns the value to the variable weight. Following that, the expression
weight*1000 is evaluated and assigned to the variable weight. Then the expression weight <= 0 is evaluated.
If TRUE, the observation is dropped. If not, the observation is kept.

• Observations can now be simulated or otherwise created within mlemlemlemle, without reference to a data file. This is done by

setting CREATE_OBS to some positive value. The following example will create 100 uniform random observations:

CREATE_OBS = 100
DATA
 v1 FIELD 1 = RAND
END {data}

• A number of useless functions that were used with the old data transformations have been eliminated, e.g.: ONE,

SECOND, ONEIF, RESPONSE, etc.

• A number of new functions have been added, e.g.: DEFAULTOUTNAME, FISHER, ISODD, STRING2REAL, INT2STR.

A fairly complete set of functions are now available to work with calendar dates. A full list of simple functions can

be generated by typing mle -h functions.

• The PREASSIGN and POSTASSIGN functions have been generalized so that any single statement is allowed in the

statement part of the function. By using a BEGIN ... END block, more than one statement can be used in the

assignment part of the functions. For example:

PREASSIGN
 BEGIN {This is the statement part}
 r : REAL[0 TO 359]
 FOR i = 0 TO 359 DO
 r[i] = DTOR(i)
 END {for}
 END {begin — this is the end of the statement part of the PREASSIGN}
 PDF NORMAL(a, b) c, d END {This is the function returned by PREASSIGN}
END {preassign}

• The conditional expressions in the IF THEN ELSE END and LEVEL functions take a boolean expression of any

complexity, e.g., IF (a = b) AND (c^2 + 2 <= 23) OR (d > 1) THEN ... ELSE ... END.

• The IF...THEN...ELSE...END function has been generalized so that multiple ELSEIF...THEN... conditions

may be added. The following assignment is an example:

status = IF height < 48 THEN
 -1
 ELSEIF (height >= 48) and (height <= 60) THEN
 0
 ELSE
 1
 END {if}

• Types can be optionally defined for variables when they are first encountered. Valid types are INTEGER, REAL,

CHAR, STRING, BOOLEAN. For example:

x : REAL = 23 {x would be integer, but is defined to be real}
c : STRING = '!' {c would be char, but is defined to be string}

Introduction

 20

• In general, types are handled better. Adding two integers together, for example, returns an integer. The

IF...THEN...ELSE...END function can return any type, but the type after the THEN must match the type after the

ELSE.

• Multidimensional arrays are supported for all types. Subscripted values are accessed as, for example, z[i, j, k].

Arrays are declared as

a : REAL[1 TO 5, -1 TO 1] = 0 {Declare and initialize matrix a}

• A new DERIVATIVE function numerically finds the value of a derivative at a specified point along some function.

For example, DERIVATIVE x = 2, 3*x^2 + 2*x + 4 END, which is the derivative of 3x2 + 2x + 4 evaluated at

x = 2, returns 14.0.

• The new FINDMIN function finds the value that minimizes a bounded function. An example is FINDMIN x (0,

2*PI) COS(x) END, which finds a minimum of the function cosine(x) between 0 and 2π. It returns

3.1415925395570 (π is an exact solution). The accuracy of the solution may be specified as a third argument within

the parenthesis.

• The new FINDZERO function finds the value of an argument for which the function goes to zero. An example is

FINDZERO x (0, PI) COS(x) END, which finds a value of x for which cosine(x) is zero. It returns

1.5707963267949 (which is close to the exact solution of π/2). The accuracy of the solution may be specified.

• An important syntactical change is that every PARAM function must have a matching END.

• The default FORM for the PARAM function is NUMBER if no covariates are specified and LOGLIN if one or more

covariates are specified.

• The COVAR specification part of the PARAM function has been generalized to COVAR <expr> <expr>. A typical

specification is

PARAM x LOW=0 HIGH=100 START=25
 COVAR z PARAM beta_z LOW=-5 HIGH=5 START=0 END
END

Nevertheless, other expressions are legal. For example
PARAM x LOW=0 HIGH=100 START=25
 COVAR z 1
END {param}

• The PARAM options HIGH, LOW, START, and TEST are treated like assignment statements which are evaluated just

prior to maximization. The right-hand side of the assignment can be any valid expression. For example,

PARAM a LOW = IF y > 3 THEN 0 ELSE 3 HIGH = x^2 + 2x - 4 START = y - 1 END

• The CONST part of the MODEL statement is longer supported.

• A number of procedures have been added that can be used wherever a statement is allowed, including

Introduction

 21

WRITE() {writes to standard output}
WRITELN() {writes a line to the standard output}
PRINT() {writes to the output file}
PRINTLN() {writes a line to the output file}
SEED() {seeds the random number generator}
DATAFILE() {defines the data file}
OUTFILE() {defines the output file}
HALT {halts the program}

• A variety of statements have been added that can be used wherever a statement is allowed, including

IF <bexpr> THEN <statements> ELSEIF . . . ELSE <statements> END
FOR <v> = <expr> TO <expr> DO <statements> END
BEGIN <statements> END
WHILE <bexpr> DO <statements> END
REPEAT <statements> UNTIL <bexpr>

Converting version 1 programs to version 2

Programs written in earlier versions of mlemlemlemle can be converted into later versions without much difficulty. The most

important things to change are given below.

• Change all INFILE = "mydata.dat" statements to DATAFILE("mydata.dat") procedure calls.

• Change all OUTFILE = "results.out" statements to OUTFILE("results.dat") procedure calls.

• Change all SEED = 5352 statements to SEED(5352) procedure calls.

• Eliminate all CONST blocks that may have been used at the beginning of MODEL statements. Instead, define the

constant outside of the MODEL statement. Alternatively, use a PREASSIGN function within the MODEL statement to

create temporary variables within that statement.

• Add an END after all PARAM functions.

• Some older versions of mlemlemlemle did not have or allow the DATA...END function within the MODEL statement. In more

recent versions, a DATA...END function is almost always required to cycle through all observations in the data set.

MODEL statements should usually look like this:

MODEL
 DATA
 {the rest of the likelihood goes here}
 END {data}
RUN
 FULL
END {model}

• Some older versions of mlemlemlemle used the keyword FREQ followed by a variable name within a PDF function to denote the

a frequency variable. These must be deleted. The special variable names FREQ and FREQUENCY should be used in

the DATA statement to denote frequencies of observations.

• The method of transforming variables within the DATA statement has changed in version 2. All transformations must

be re-coded following the new syntax (described earlier in this chapter and in a later chapter). Additionally, the

method of dropping or keeping variables within the DATA statement has changed. An example of the old syntax is

Introduction

 22

DATA
 v1 FIELD 1 DROP < 0
 v2 FIELD 2 ADD 10 MULTIPLY 2
 v3 FIELD 3 KEEP >= 24
 v4 FIELD 4 SUBTRACT 10 POWER 3 DROP <= 1
END {data}

and the corresponding new syntax is
DATA
 v1 FIELD 1 DROPIF v1 < 0
 v2 FIELD 2 = (v2 + 10)*2
 v3 FIELD 3 KEEPIF >= 24
 v4 FIELD 4 = (v4 - 10)^3 DROPIF v4 <= 1
END {data}

Running an mle Program

 23

RUNNING AN MLEMLEMLEMLE PROGRAM

Introduction

mlemlemlemle programs are usually run by typing mle followed by the name of the program file on the DOS or Unix command

line. The mlemlemlemle interpreter will then read in the program file and execute each statement as it is encountered. If mlemlemlemle encounters

any errors in the program, an error message is printed and execution terminates. Warning messages are printed from mlemlemlemle

without termination.

If mle is typed at the command line, but without the name of the program file, you will be asked for the name of the

program file. Here are some typical examples of how the mle is used:
c:\test> mle analysis.mle Runs mle on the file analysis.mle.
c:\test> mle -v test.mle Runs mle on the file test.mle. The verbose option is set.
c:\test> mle -p test.mle Parses the file test.mle and reports any syntax errors.
C:\test> mle mle will request the input file name.
MLE Program file to run? test.mle

If you type an erroneous command line option, or the file is not recognized by mle the following command line

synopsis is printed:
c:\test> mle -z analysis.mle There is no -z option.
Error: File "-z" does not exist

Usage: mle [-v] [-p] [-i] [-dd] [-ds] [-dp] [-di] [-dl] [-d #] [mlefile]
 -v sets verbose on. Iteration histories are printed
 -p only parses the mle file
 -i runs mle interactively
 -dd turns on data debugging
 -ds turns on symbol table debugging
 -dp turns on parser debugging
 -di turns on integration debugging
 -dl turns on likelihood debugging
 -d sets debugging to level #
 mlefile is the name of the file with the program

Usage: mle -h [name1 name2]
 help for PDFs, functions, symbols, parameter transforms
 -h matches words exactly, -H searches within words

Usage: mle -pn n1 n2
 parses n's and returns values and type

Command line options

The behavior of mlemlemlemle can be changed by using command line options. A list of valid command line options is given in

Table 1. A particularly useful command line parameter is -p (parse only) which tell mlemlemlemle to parse the program and report any

errors in the grammar. The statements within the program are not executed. Another very useful option is the -v (verbose)

Running an mle Program

 24

option, which tells mlemlemlemle to provide periodic status reports while it is running the program and estimating parameters. Among

other things, the status report prints out the likelihood and parameter values at each iteration.

Help options

mlemlemlemle predefines a large number of functions, variables, constants, and reserved words. The -h (help) option provides

short summaries of mlemlemlemle language parts, PDFs, and concepts. Typing mle -h yields

Table 1. Command line options.

Option Description
–v Sets VERBOSE to TRUE so that an iteration history and other information is printed to standard output.
–h

–h <name>

Help. Provides rudimentary information about PDFs, functions, variables, constants, reserved words, and
parameter transforms. When <name> is replaced by a PDF name, a transformation name, a function, or a
predefined variable, a brief help message is given. If <name> is not a known topic, a list of topics is
printed.

–H <name> Help. Provides rudimentary information like –h, but matches anything that contains the string <name>. If
<name> is not given, a very long list of all help messages will be given.

–i Runs mlemlemlemle interactively. That is, commands are typed directly in from the keyboard. Using interactive mode
is particularly useful for using mle mle mle mle as a probability calculator (see text). Currently, this option only works in
DOS.

–p Sets the internal variable PARSE to TRUE. The program file is parsed for errors.
–pn # ... mlemlemlemle supports reading numbers in unusual formats (dates, times, Roman, etc.). This command line option

provides a way to test the way number strings are parsed and converted into real numbers or integers.
–dd Sets the internal variable DEBUG_DATA to TRUE, which turns on data debugging. When set, details are

printed as each observation is read into a data set.
–ds Sets the internal variable DEBUG_SYM to TRUE, which turns on symbol table debugging. Information is

printed to standard output whenever variables and symbols (including internal variables) are created or
destroyed.

–dp Sets the internal variable DEBUG_PARSE to TRUE, which turns on parser debugging.
–di Sets the internal variable DEBUG_INT to TRUE, which turns on debugging for the integration routines.
–dl Sets the internal variable DEBUG_LIK to TRUE so that parameter estimates and a likelihood is written to

standard output for every likelihood evaluation.
–d # Sets the internal variable DEBUG to the value set by #. When # is greater than zero, additional information

is printed out. At values over 10, an enormous amount of output is generated. A useful value is 5. A value
of 0 turns off debugging.

Running an mle Program

 25

Type mle -h <keyword> to match keywords exactly.
Type mle -H <keyword> to match partial keywords.

 mle -h MLE gives a program outline.
 mle -h PROCEDURES lists procedures.
 mle -h PDFS lists PDF types.
 mle -h FORMS lists parameter forms.
 mle -h HAZARD gives an example of a hazard specification.
 mle -h SYMBOLS lists pre-defined variables.
 mle -h NUMBERS lists number formats.
 mle -h FUNCTIONS lists simple functions,
Help is available for the following types of functions/expressions:
IDENTIFIER ARRAY DATA DERIVATIVE FINDMIN
FINDZERO FUNCTION IF INTEGRATE LEVEL
LEVELDELTA PARAM PDF POSTASSIGN PREASSIGN
PRODUCT QUANTILE SUMMATION

Help is available for the following statements:
ASSIGNMENT, BEGIN, DATA, FOR, IF, MODEL, PROCEDURE, REPEAT, WHILE

It is particularly useful for printing out a list of intrinsic parameters for PDFs. For example, typing mle -h

weibull yields:
WEIBULL Distribution
4 Time variables: t(open), t(close), t(left trunc), t(right trunc)
Exact failure when t(open)=t(close)
t(open) and t(close) can SHIFT
Range: t: (Time) 0 <= t < +oo
2 intrinsic parameters:
 a: (Scale) 0 < a < +oo
 b: (Shape) 0 < b < +oo
a is the characteristic life ~= 63.2th % in units of a
f(t) = S(t)h(t); S(t) = exp[-(t/a)^b]; h(t) = [b*t^(b-1)]/(a^b)
mean = a*Gamma[(b+r)/b]; var = (a^2)*Gamma[(b+2)/b]-{Gamma[(b+r)/b]}^2
mode = a(1-1/b)^(1/b) for b>1; mode = 0 for b<=1; median = a*log(2)^0.5
 Gamma(x) is the gamma function
Covariate effects may be modeled on the hazard

which shows that there are two intrinsic parameters. Note that equations are given for the probability density, survival

function, or hazard function. At least one of these is given for other PDFs as well.

Here is another example: mle -h pi
Symbol: PI{REAL CONST} = 3.14159265359

And, a thrid example: mle -h besseli

Function BESSELI(x1, x2)
 returns the modified Bessel fcn I (integer order x1) of real x2

You get lists of related keywords in mle. For example, mle -h FUNCTIONS, will list all of the intrinsic simple

functions, and mle -h SYMBOLS which lists all variables in the symbol table. Typing mle -h function | more is a

useful way to examine all mlemlemlemle intrinsic functions because the more program will stop after each page of output.

The -H <name> option is similar to the -h option except that any function, variable, constant, or reserve word that

includes <name> as some part of the reserve word is printed. The -H option is particular useful when you cannot the exact

name for some keyword. Thus, mle -H integra lists all keywords with the string "integra":

Running an mle Program

 26

INTEGRATE v (expr1, expr2) expr3 END
INTEGRATE v (expr1, expr2, expr4) expr3 END
 v is the variable of integration.
 expr1 is evaluated for the lower limit of integration.
 expr2 is evaluated for the upper limit of integration.
 expr3 is the integrand, and may reference v.
 expr4 is an optional convergence criterion

 INTEGRATE_METHOD = I_TRAP_CLOSED uses closed trapazoidal integration
 INTEGRATE_METHOD = I_TRAP_OPEN uses open trapazoidal integration
 INTEGRATE_METHOD = I_SIMPSON uses open simpson integration
 INTEGRATE_METHOD = I_AQUAD (default) uses adaptive quadrature integration
 INTEGRATE_N is the number of iterations (default: 100)
 INTEGRATE_TOL is the convergence criterion (default: 1.0E-0006)

INTEGRATE_METHOD{INTEGER} = 3
INTEGRATE_N{INTEGER} = 100
INTEGRATE_TOL{REAL} = 0.00000100000

Other options

A number of command line options assist in debugging models, data files, program options, numerical methods, and

the mlemlemlemle program interpreter itself. The -dl option is useful for examining likelihoods every time a complete likelihood is

computed. More advanced debugging options assume some familiarity with the internal workings of parsers, symbol tables,

and an advanced understanding of likelihood estimation. The -d # option, in particular, generates a variety of debugging

messages. Details down to individual likelihoods (i.e. each observation) are generated with -d 10. At -d 11, the

likelihoods produced by each subexpression of a model for each observation is printed. The -di option offers help with

debugging problems of numerical integration in mlemlemlemle.

mlemlemlemle supports many formats for numbers. Each number begins with a numeral, but can contain additional symbols to

specify different meanings. A full discussion of the number formats is given in the data chapter. You can test the way in

which mlemlemlemle reads numbers by using the -pn option. The command line mle -pn 8x3017 22'16" 12k returns
"8x3017" is the integer 1551
"22'16"" is the real 0.0064771107796
"12k" is the real 12000.000000000

The debugging and help options send output to the screen (or standard output device). The standard DOS and Unix

redirection symbols ">" and "|" can be used to redirect the output to other devices. For example, the command mle -d 25

test.mle > test.dbg will create a (possibly large) file called test.dbg. The output file specified within the test.mle

program will not be affected.

On DOS computers mlemlemlemle can be run interactively using the -i command line option. When run interactively,

commands are typed directly into the command line. This option is particularly useful when mlemlemlemle is used as a "calculator",

which is described in the next chapter.

Data Sets

 27

DATA SETS

Introduction

As a first step in parameter estimation, a data set must be read in or created. This chapter discusses aspects of

creating a data set, including

• How to read a data set into mlemlemlemle

• The way data files should be set up

• How to transform variables

• How to drop observations

• The number formats recognized by mlemlemlemle

• An example of creating a data file

Data sets are read into mlemlemlemle from an input file. They consists of at least one, and usually many, observations. Each

observation is a collection of one or more variables. The mlemlemlemle data statement defines how observations are to be read from the

input file. The data statement also has mechanisms for doing transformations as the data are being read. In the current

implementation of mlemlemlemle the transformations and other data manipulations provided by the data statement are not particularly

powerful, but they are suitable for most applications. Other programs (spreadsheets or database managers, for example) can

be used for complicated data transformations, and the resulting data set can be then used by mlemlemlemle.

Reading data from a file

Naming the data file

Data sets are created using the DATA statement. The data statement typically works by reading observations from the

data file. This file must be named and opened using the procedure DATAFILE(). The value passed to DATAFILE() is

usually defined near the top of the program, before the DATA statement, as in the example in Chapter 1. The data statement

begins with the word DATA and is terminated by an END. So, if the name of the data file is MYDATA.DAT, you must include the

Data Sets

 28

statement DATAFILE("MYDATA.DAT") prior to the DATA statement. Full path names are permissible: you might call the

DATAFILE procedure as DATAFILE("C:\STATS\MLE\BONES\DATAFILE.DAT").

The DATA statement

The DATA...END statement reads in the data file. Within the DATA...END is a sequence of one or more variable

names. The grammar used for specifying each variable is:

 <variable name> [FIELD x [LINE y]] [= <expr>] [DROPIF <expr> | KEEPIF <expr> ...]

Variable name: Variables names begin with a letter and can then contain any combination of letters, numbers, the

underscore, and period characters. A variable name may be up to 255 characters long and all characters are significant.

Examples of valid variable names are: LAST_ALIVE, VARIABLE_14 , A_REALLY_LONG_VARIABLE_NAME, and A. Variable

names are not case sensitive so that abc is the same as ABC and aBc.

In the current version of mlemlemlemle, all variables created in the DATA...END statement are defined to be type real. This is

so even if the number format suggests an integer. Integer values will be read in and converted to real number values. Text

strings can exist within a text file, but must not be assigned to a variable.

mlemlemlemle pre-defines many built in constants and variables, so you should avoid variable names that exist for some other

purpose such as an mlemlemlemle constant (a list of all variables appears in a later chapter). Likewise, mlemlemlemle uses the period as an internal

delimiter for some purposes. Conflicts might arise if your variable names contain a period; you are free to use periods, but an

underscore might be a better choice.

Field: The term field refers to which column within an input file a variable is found in. In the hammes.dat file used

in Chapter 1, four fields (or columns) existed in the input file. The field specifier must be a positive integer constant.

Line: Sometimes observations are located across multiple lines. An example might be times to first birth for a

married couple in which female characteristics appear on the first line and the male characteristics occur on the second line.

When the LINE keyword is used, e.g. LINE 2, mlemlemlemle keeps track of the maximum number of lines specified this way. Then, all

observations are assumed to have the maximum number of lines. If the observations each take but one line, the statement

LINE 1 may be dropped—one line per observation is assumed as the default situation. The line specifier must be a positive

integer constant.

The remaining specification provides ways of transforming variables and dropping (or keeping) observations. The

next several sections discuss transformations and gives additional examples of declaring variables in the DATA section.

Dropping or keeping observations

A series of statements to drop (or keep) individual observations from the input file can be specified as the last items

in a variable declaration within the DATA statement. Here are some example of this:

Data Sets

 29

DATAFILE("test.dat")
my_drop_value = 100
DATA
 first_time FIELD 3 DROPIF first_time <= 0
 missing_data FIELD 4 DROPIF missing_data <> 1
 last_time FIELD 1 KEEPIF last_time > 0
 DROPIF (last_time == INFINITY) OR (first_time < last_time)
 alt_missing FIELD 5 KEEPIF alt_missing == missing_data
END

The DROPIF keyword specifies that a condition will be tested; if the condition is true, then the entire observation

will be dropped. The first DROPIF statement here specifies that the entire observation is to be dropped if first_time is less

then or equal to zero. The KEEPIF keyword is like DROPIF except that the observation will be kept if the condition is true,

and dropped otherwise. The formal grammar is KEEPIF <bexpr> and DROPIF <bexpr>, where <bexpr> is a boolean

expression. A boolean expression is one that evaluates to true or false. Typically, boolean expressions use relational

operators (>, >=, <, <=, ==, <>) and boolean operators (NOT, AND, OR, XOR). Functions that return boolean values can be used

as well.

Multiple KEEPIF and DROPIF statements can be used for a single variable. As mlemlemlemle reads in variables, each condition

is tested in sequence, until the end of the tests are reached or the observation deemed dropped (that is, boolean short-

circuiting will be used to drop variables at the first opportunity). The third example is a test that keeps the observation if

last_time is greater then zero; the second test will examine if the value is equal to INFINITY (a built-in constant) or less

than first_time, and drop the observation if either condition is true. Then, if the variable is to be dropped, the entire

observation is dropped. Note that the value of other variables in the current observation may be used in a DROPIF and

KEEPIF statement.

Frequency of observations

Data variables with either the name FREQUENCY or FREQ are taken as a field of frequencies for each observation. (If

both variable names are used, FREQUENCY is taken as the frequency variable). For example:
DATAFILE("test.dat")
DATA
 frequency FIELD 1 DROPIF frequency <= 0
 start_time FIELD 2
 last_time FIELD 3
END

will take the first field in "test.dat" as the frequency for each observation. The maximizer will automatically use the frequency

variable as a count of repeated observations.

Transformations

A number of simple data transformations may be made within mlemlemlemle. The transformations are done while the data are

being read from the input file. Examples of transformations are:
DATA
 event_time FIELD 5 = (event_time - 1900)*365.25 DROPIF event_time < 0
 direction FIELD 6 = COS(direction)
 winglength FIELD 8 = LN(winglength/2.25)
 estage = 3.7 + winglength*12.76 + winglength^2 * 1.14
END

Data Sets

 30

Transformations begin with '=' which is then followed by an expression. Expressions are discussed in more detail in

a later chapter. Basically, expressions in mlemlemlemle are similar or identical to expressions found in other computer languages and

spreadsheets.

In the first variable declaration of the example, event_time is read in from the input file. That initial value of

event_time is then used in the transformation, and a new value of event_time is computed as (event_time -

1900)*365.25. This result is assigned back to event_time. Following that, the DROPIF statement will conditionally

decide whether or not the observation is to be dropped.

Variables are read in the same order in which they are defined. This is true even if they are read over several lines.

Once a variable is defined, its value can be used in later transformations. Then, when reading in the data file, mlemlemlemle will take the

value of that variable for the current observation for use in the later transformation. An example might be:
DATA
 subject_id FIELD 1 DROPIF subject_id =1022 DROPIF subject_id = 3308
 births FIELD 6 DROPIF births = -1
 miscarriages FIELD 8 DROPIF miscarriages = -1
 abortions FIELD 9 DROPIF abortions = -1
 pregnancies = births + miscarriages + abortions KEEPIF pregnancies > 0
END

This data statement will read subject_id, then births, then miscarriages and then abortions. These variables will

then be added together and assigned to the variable pregnancies. An observation will be dropped if any of births,

miscarriages, or abortions are negative one (in this case, the "missing" code), or if two particular subject_ids are

found, or if pregnancies = 0.

Creating dummy variables

Dummy variables can be easily created. Suppose you are measuring the length of some study animal. You want to

create four dummy variables for the length range short [0 to 30 mm), medium [30 to 40 mm) long [40 to 50 mm) and very

long [50+ mm):
DATA
 length FIELD 5 DROPIF length <= 0
 is_short = IF length < 30 THEN 1 ELSE 0
 is_medium = IF (length >= 30) AND (length < 40) THEN 1 ELSE 0
 is_long = IF (length >= 40) AND (length < 50) THEN 1 ELSE 0
 is_verylong = IF length >= 50 THEN 1 ELSE 0
END

Skipping initial lines in the data file

Data files may have initial descriptive lines at the top that must be skipped. The INPUT_SKIP controls how many

lines to skip in a data file. For example, if the first four lines must be skipped, the line
INPUT_SKIP = 4

should appear before the DATA statement. It will direct mlemlemlemle to discard the first four lines of the data file. The default value is

zero so that no lines are skipped.

Data Sets

 31

Delimiters in the data file

Data files consist of a series of text elements separated by one or more delimiters. One or more delimiters must

appear between each record within a data file. The delimiters define the fields within each line in which variables reside. By

default, the characters space, tab, and comma are treated as delimiters. You can redefine the delimiters by changing the

variable DELIMITERS before the DATA statement. If, for example, you wanted the colon and semicolon character as the only

valid delimiters, you would add the line:
DELIMITERS = ":;"

Creating observations without a file

Rather than reading observations from a file, observations can be created. This is useful for simple simulation

programs using the random number generators in mlemlemlemle. To create variables, simply set the variable CREATE_OBS to some

positive number. That number of observations will be created. Here is an example:
CREATE_OBS = 10 {create 10 observations}
SEED(8936) {set the random number generator seed}
DATA
 var1 = RAND {random number from 0 to 1}
 var2 = IRAND(100, 200)
 var3 = sin(pi*RAND)
END

Yields the following set of data:
var1 var2 var3
0.46991484 157.0 0.98095861
0.76562640 117.0 0.24396827
0.80010137 173.0 0.73070002
0.92179122 139.0 0.86426399
0.43740313 197.0 0.88247371
0.01521996 136.0 0.09665617
0.46592947 136.0 0.39891672
0.02549209 198.0 0.78123339
0.49985020 185.0 0.36516675
0.83997806 193.0 0.48128269

Printing observations and statistics

Some other variables can be used to fine-tune the DATA statement.

The variable PRINT_DATA_STATS, when set to TRUE, prints summary statistics for each variable, including the

mean, variance, standard deviation, minimum and maximum. The default is TRUE, so this report can be suppressed with

PRINT_DATA_STATS = FALSE.

When PRINT_OBS is set to TRUE, each observation is printed to the output file. The report is printed after all

transformations have been done. The default value is FALSE, so you must have the statement PRINT_OBS = TRUE to print

the observations.

Data Sets

 32

The variable PRINT_COUNTS, when set to TRUE, prints out how many lines were read from the input file, how many

observations were kept, and how many observations were dropped. The default value is TRUE, so these reports can be

suppressed with PRINT_COUNTS = FALSE.

Number formats

The mlemlemlemle language is primarily designed for operations on numbers. With this in mind, a wide variety of number

formats, including some with automatic conversions, are supported. The standard formats for real and integer numbers are

recognized, so that "3.14159", "-12.14" and "0.001" are read as would be expected. Real numbers must have a leading zero,

so ".23" is not valid but "0.23" is. Real numbers can be in scientific notation so that "2.1E-23", "0.3E12", "-1e4", "12345e-

67 are valid numbers.

Table 2. Standard number formats.

Format Examples Conversion Result
d 1, 200 integer
 d.d, d. 3.1415, 3. real
ds, -ds, d.ds, -d.ds, 14%, 23.7M, 45.7da, 2n, 2.418E Metric suffix (see Table 3) real
dEd, dE-d, d.dEd, d.dE-d,
d.Ed, d.E-d

3e23, 511E-10, 31.416e-1, 7.0E-10,
12.e-6, 1.45E-3, 1.0E0

Standard exponential format.
xEy ⇒ x × 10y

real

0Rv 0RXLVII, 0rMXVI, 0rmdclxvi Roman numerals to integer integer
dXy 2x1001 (binary), 8X3270 (octal),

16xA4CC (hex), 32x3vq4h (base 32).
Converts y from base d (from
2 to 36) into integer.

integer

d:d:d, d:d:d.d, d:d, d:d.d 10:42, 14:55:32, 10:40:23.4, 16:53.2 24-hour time into hours.
Hours must be 0-24.

real

d:d:dAM, d:d:dPM, d:d:d.dAM,
d:d:d.dPM, d:dPM, d:dAM,
d:d.dAM, d:d.dPM

10:42AM, 2:55:32pm, 10:40:23.4am 12-hour time with AM and
PM suffixes into hours. Hours
must be 0-12.

real

dHd'd", dHd'd.d", dHd', dHd.d'',
dHd.d''

230h16'32", 14H32'6", 100h22',
30H32.2', 0h12', 0H12'3"

Degree/hour minute, second
format. Converted to real
angle/time.

real

d`d'd", d`d'd.d", d`d', d`d.d'', -
d`d'd", d`, d.d`, d°d'd", d°d'd.d",
d°d', d°d.d'', d°, d.d°

230`16'32", 14`32'6", 100`22', 30`32.2',
14`, 230°16'32", 14°32'6", 270°10'0",
30°18.2', 3.4°

Degree, minute, second
format, converted to radians.

real

d'd", d'd.d", d', d.d', d", d.d" 12'32", 166'12.9", 19', 14.7', 12", 607.3" Minute-second and second
format, converted to radians.

real

d_d/d 12_5/16, 3_2/3, 0_1/7 Fraction notation. real
dDdMdY 16d12m1944y, 1D6M1800Y Date converted to Julian day integer
dMdDdY 12m16d1944y, 6M1D1800Y Date converted to Julian day integer
dYdMdD 1944y12m16d, 1800Y6M1D Date converted to Julian day integer
dmmmy 14Dec1999, 30jun1961, 1MAY1944 Date converted to Julian day integer
d is a strings of one or more positive digits; s is a one or two character case-sensitive metric or percent suffix (see Table 3), v is a string of

one or more Roman numeral digits {IVXLCDM}, y is a string of one or more characters, mmm is a 3-character English month name.
E.g. jan, Feb, MAR, etc. The degree character (°) is available on some hardware platforms as ASCII code 230. On many Intel platforms,
holding down the <ALT> key and typing 230 on the numeric keypad gives the degree character.

The Greek letter micro (µ) is available on some hardware platforms as ASCII code 248. On many Intel platforms, holding down the
<ALT> key and typing 248 on the numeric keypad gives this character.

Data Sets

 33

Less common formats include numbers with metric and percent suffixes, numbers interpreted as time, numbers in an

angle notation (one format that converts degrees to radians), numbers in bases from 2 to 36, Roman numerals, numbers in

fraction notation, and several date formats. These formats are supported in data files as well as numeric constants within an

mlemlemlemle program. Table 2 is a comprehensive list of formats recognized by mlemlemlemle , and Table 3 is a list of suffixes permissible on

standard integer and real format numbers.

An example of creating a data file

The format of the data file is ordinary ASCII text, and the file can be created with any text editor. Word processors

can be used to create files as well, but the results must be saved as ASCII text. Nearly all word processors provide an ASCII

text option. An example of a typical data file can be seen in Chapter 1, but here we will examine a more complicated data

file and write the mlemlemlemle program to read and process the file.

The current version of mlemlemlemle creates variables of type real, and attempts to read real numbers for each variable. Even

so, any delimited text can appear in fields that are not assigned to variables. Consider how we would create a DATA statement

to read the numeric values for the following file:
Last First,MI Age Amount More Rate Time
Smith James,A 42 12000 TRUE 18% 4.2
Jones David,J 38 8000 FALSE 12% 3.1
Connor Mary 50 11000 TRUE 19% 2.1

First of all, notice that there is a header on the first line of the file. This line should be discarded by setting INPUT_SKIP=1.

From there, the data files has one line per observation, with each variable corresponding to one column. Some data files place

one observation across multiple lines, so that the LINE option in the DATA statement must be used. We will not need to use

the LINE specification here.

This file consists of seven fields delimited by space characters. Since the space character is one of the default

delimiters, we do need to change the delimiters to recognize the space as such. But, since we have commas embedded in the

text that should not to be taken as delimiters, we must redefine delimiters to exclude the comma and include the space (and

the tab character, if necessary). The numeric values appear in fields 3, 4, 6, and 7. We do not need to do anything with fields

1, 2, and 5. Let us say that we want to convert time from years into months. Here is the complete mlemlemlemle code to read and

process this file (but no analyses are specified):
MLE
 DATAFILE("THEDATA.DAT")
 PRINT_OBS = TRUE {print out each observation}
 INPUT_SKIP = 1 {get rid of the header line}
 DELIMITERS = " " {spaces only--treat commas as text}
 DATA
 age FIELD 3
 amount FIELD 4 DROP <= 0
 rate FIELD 6 {% is a legal number suffix in mle}
 time FIELD 7 MULTIPLY 12
 END
END

Data Sets

 34

Running mlemlemlemle on this file produces the output to the screen (or standard output) since no OUTFILE procedure was

called. Here are the results:
3 lines read from file THEDATA.DAT
3 Observations kept and 0 observations dropped.

NAME age amount rate time
 1 42.0000000 12000.0000 0.18000000 50.4000000
 2 38.0000000 8000.00000 0.12000000 37.2000000
 3 50.0000000 11000.0000 0.19000000 25.2000000

MEAN 43.3333333 10333.3333 0.16333333 37.6000000
VAR 37.3333333 4333333.33 0.00143333 158.880000
STDEV 6.11010093 2081.66600 0.03785939 12.6047610
MIN 38.0000000 8000.00000 0.12000000 25.2000000
MAX 50.0000000 12000.0000 0.19000000 50.4000000

Table 3. Standard metric suffixes for integer and real numbers.

Suffix Name Conversion Suffix Name Conversion
da deka ×10 d deci ×10-1
h hecto ×102 c, % centi, percent ×10-2
k kilo ×103 m milli ×10-3
M mega ×106 µ, u micro ×10-6
G giga ×109 n nano ×10-9
T tera ×1012 p pico ×10-12
P peta ×1015 f femto ×10-15
E exa ×1018 a atto ×10-18

The MODEL statement

 35

THE MODEL STATEMENT

Introduction

The model statement is the meat of the mlemlemlemle programming language. It specifies the likelihood, defines parameters,

and specifies which parameters are to be estimated. A complete understanding of how models are built in mlemlemlemle requires an

understanding of the structure of the MODEL statement, an understanding of parameters and how they are specified, an

understanding of how expressions are specified and are built into likelihoods, and an understanding of the specification for

running models.

This chapter discusses the MODEL statement. It is assumed that you understand the basics of expressions and data

types for the mlemlemlemle language. Chapter 1 provided much of the necessary background. This chapter covers several topics that

are closely related to building typical likelihood models in mlemlemlemle: the PARAM function, the PDF function, and the DATA and

LEVEL functions.

Structure of the MODEL statement

The basic structure of the MODEL statement looks like this:
MODEL
 <expression>
RUN
 <run list>
END

The single <expression> in the MODEL statement defines the likelihood that is to be maximized. (Expressions are

described in some detail here, other details are given in other chapters). Here is an example of a simple model for finding the

two parameters for a normal PDF from interval censored observations.
{1} MODEL
{2} DATA
{3} PDF NORMAL(topen, tclose)
{4} PARAM mu LOW = 5 HIGH = 14 START = 8 END
{5} PARAM sigma LOW = 0.1 HIGH = 5 START = 1.2 END
{6} END {pdf}
{7} END {data}
{8} RUN
{9} FULL
{10} END

Everything beginning with the DATA function on line 2 to the END on line 7 is a single expression. That expression

defines a likelihood. Values for the parameters mu and sigma will be found that maximize this likelihood. The likelihood in

this example is the product of interval censored observations between topen and tclose, and is equivalent to

The MODEL statement

 36

1

(| ,) (| ,)
i i

N

open close
i

L S t S tµ σ µ σ
=

 = − ∏

for N observations and with S(t) defined as the survival function for a normal distribution

The expression that defines the likelihood within a model statement can become much more complicated than this

example. A likelihood that is made up of a more complicated expression is given in Example 1. Here the <expression>

begins with the DATA function and ends with a matching END just before the RUN. Within the DATA function, the MIX function

is immediately called, and the MIX function contains three arguments separated by commas. Each of these three arguments of

the MIX function contains an expression. Here, we see one parameter (a mixing proportion) and two function calls:

PDF...END. The likelihood, in symbols, is

 { }1 1 1 1 2 2 2 2
1

(| ,) (| ,) (1) (| ,) (| ,)
i i i i

N

open close open close
i

L p S t S t p S t S tµ σ µ σ µ σ µ σ
=

   = − + − −   ∏

for N observations and with S1(t) defined as the survival functions for a normal distribution.

Runlist

Sometimes parameters are constrained for the purpose of hypothesis testing or modifying the model. Parameters

may be held constant, or fixed to the value of another parameter. These are called fixed parameters, and an estimate will not

be found for them. The runlist in mlemlemlemle provides the mechanism for fixed parameters primarily to reduce models from more

complicated to simpler forms. For example, in a slope function, we may have reason to believe that the slope m is one.

Perhaps this is because of the nature of the physical system we are modeling. We could first fit our collection of x values to

the model with parameter m free, and secondly fit it with m held constant to 1. Statistical criteria can then be used to

determine whether m deviates from the value we expected it to be.

The run list defines which parameters are free and allows the user to test reduced models. The run list begins with

the word RUN and ends with a matchin END. Between the RUN and the END comes a list that specifies how the model is to be

run. When FULL is specified, all free model parameters for the model are estimated. The REDUCE keyword provides a

mechanism to constrain parameters of the model. The REDUCE keyword is followed by a list of constraints. Parameters may

be constrained to other parameters, to constants or to variables. More than one REDUCE keyword may occur in a single run

list. Generically, a runlist looks like this:
RUN
 FULL
 REDUCE <reduce list>
 REDUCE <reduce list>
 ...
END

The <reduce list> is a set of one or more parameter constraints that look like assignment statements. Parameters so

constrained will not be estimated. The following example includes one full and three reduced runs.

The MODEL statement

 37

MODEL
 DATA
 PDF NORMAL(topen, tclose)
 PARAM mean ...
 COVAR sex PARAM b_sex ... END
 END {param}
 PARAM stdev ... END
 END {pdf normal}
 END {data}
RUN
 FULL {Runs the model with no constraints}
 REDUCE mean = 4 {One constraint}
 REDUCE mean = 4 b_sex = 0 {Constrains 2 parameters}
 REDUCE mean = oldmean {Fixes mean to another param or variable}
END

In this example, parameters will be estimated four times. For the first case (FULL) three parameters will be estimated. For the

second case, the mean parameter will be constrained to 4 so that only two parameters will be estimated. For the third case,

only on parameter is free to be found, and for the fourth case, two parameters are free.

mlemlemlemle provides a mechanism for accessing results from previous runs within the same model. Thus, in the previous

example, the parameter mean and stdev are really called mean.1 and stdev.1 when the full model is run. Likewise, the

parameters are called mean.4 and stdev.4 for the last run. For a reduce statement like REDUCE mean = stdev, mlemlemlemle will

assume the parameters refer to the current run. That is, mlemlemlemle treats them as REDUCE mean.1 = stdev.1 (assuming this is the

first entry of the run list).

Expressions used in MODEL statements

Expressions are used in many ways within mlemlemlemle, so that you should become thoroughly acquainted with expressions

before attempting to develop mlemlemlemle programs. For example, the likelihood within a MODEL statement is a single (sometimes

complicated) expression. Expressions are used to define limits of integration, summations, and products, they can be used to

define start, high, low, and test values for parameters, and many other things. The right-hand side of an assignment is an

expression, as are data transformations in the DATA statement. Boolean expressions are used in IF statements, DROPIF and

KEEPIF and elsewhere.

A brief summary of the types of functions defined in mlemlemlemle is given in Table 5. At the simplest level, an expression in

mle mle mle mle can be a numerical constant or a variable name. More complex expressions consist of algebraic operators (*,^,+, etc) and

function calls each with zero or more arguments. Most functions in mlemlemlemle are simple functions with a fixed number of

arguments, for example: PERMUTATIONS(x, y), ARCSIN(x), ABS(x), MIX(p, x, y).

A second class of functions are more complex, and have a more complicated syntax. These functions begin with a

keyword, and end with an END. Examples of some of these functions are the PARAM...END function, DATA...END function

(not to be confused with the DATA END statement described in a previous chapter), the PDF...END function, the INTEGRATE

a (b, c)...END function, and the IF THEN...ELSE...END function.

Suppose you want to integrate sin(x2 + 2x) from -√π to √π. Here is an example of how that could be coded:

INTEGRATE x (-SQRT(PI), SQRT(PI)) SIN(x^2 + 2*x) END. (The function evaluates to ≈ -1.525). Here it is with

comments:

The MODEL statement

 38

INTEGRATE x ({x is the variable of integration}
 -SQRT(PI), {This is the lower limit of integration}
 SQRT(PI) {This is the upper limit of integration}
) {Close of the argument list}
 SIN(x^2 + 2*x) {The function to be integrated}
END {End of the integrate function}

Any of the predefined probability density functions can be used as part of an expression. For example, if you wanted

the area between 8 and 12 under a normal distribution with µ=10 and σ=3, you could write that expression as
PDF NORMAL(8, 12) 10, 3 END

The PARAM function

mlemlemlemle has a general method for defining all parameters to be used in a likelihood model.5 The PARAM function defines a

parameter and its characteristics. The function should only be used within a MODEL statement. When models are “solved”,

free parameters are estimated by iteratively plugging new values in for those parameters until the values that maximize the

likelihood are found. In other words, free parameters are values that are to be estimated by mlemlemlemle —they are the unknowns in

likelihood models. If the parameter is not constrained to some fixed value in the RUN part of the model statement, mlemlemlemle will

estimate the value of that parameter.

In the simplest case, parameters are specified as
PARAM <p> HIGH = <expr>.LOW = <expr> START = <expr> TEST = <expr>..FORM = <formspec> END

where <p> is the name chosen for the parameter. The keywords HIGH, LOW, START, and TEST specify characteristics for the

parameter. HIGH and LOW specifies the minimum and maximum value allowed for the parameter. mlemlemlemle will not exceed these

values while trying to maximize the likelihood. START tells the maximizer what vaule to start with. TEST denotes the value

against which to test the parameter for significance. By default, TEST is zero. The TEST value does not change anything

about how the parameter is maximized. It is only used for a t-test as the parameter is being written to the output file.

5 The word parameter is used in a very specific way, as defined in Chapter 1. Parameters are the quantities to be estimated in a likelihood

model

MODEL {mixture of two normal distributions}
 DATA
 MIX(
 PARAM p LOW = 0 HIGH = 1 START = 0.5 END
 ,
 PDF NORMAL(topen, tclose)
 PARAM mu1 LOW = 5 HIGH = 14 START = 8 END,
 PARAM sigma1 LOW = 0.1 HIGH = 5 START = 1.2 END
 END {PDF}
 ,
 PDF NORMAL(topen, tclose)
 PARAM mu2 LOW = 0 HIGH = 6 START = 2 END,
 PARAM sigma2 LOW = 0.01 HIGH = 5 START = 1.2 END
 END {PDF}
) {mix}
 END {data}
RUN
 FULL
END {model}

Example 1. Model specification for estimating a mixture of two normal distributions with interval censored observations.

The MODEL statement

 39

The PARAM function allows covariate effects (and their associated parameters) to be modeled within the parameter

statement. This is done as follows:
PARAM x HIGH = <expr> LOW = <expr> START = <expr> TEST = <expr> FORM = <formspec>
 COVAR <expr> PARAM z .HIGH = ... END
 ...
END {param}

With covariates, the <expr> following COVAR is a covariate effect. Typically this is a variable like age, sex, income, etc. The

effect of the covariate is multiplied by the value of the PARAM function. The way in which covariates and parameters are

modeled is discussed in more detail below.

Here is an example of a likelihood hand-coded for an exponential PDF for exact failure times. PARAMs and built-in

simple functions, and algebraic expressions are all shown in this likelihood:
MODEL
 DATA
 PARAM lambda LOW = 0 HIGH = 1 START = 0.23 END * EXP(-lambda * t)
 END
RUN
 FULL
END

Notice that lambda is first defined as a parameter, and thereafter is used as an ordinary variable. As mlemlemlemle iteratively seeks a

solution, new values of lambda will be tried. As the likelihood itself is being computed, the PARAM function will simply

return the current estimate of lambda.

An alternative way to code this example is to define the parameter first and assign it to another variable:
MODEL
 PREASSIGN
 lam = PARAM lambda LOW = 0 HIGH = 1 START = 0.23 END
 DATA
 lam*EXP(-lam*t)
 END {data}
 END {preassign}
RUN
 FULL
END {model}

The PREASSIGN function is described in another chapter.

In Example 1, five parameters are defined, two each for the two PDF functions and one parameter that was added for

the first argument to the MIX function call.

Typically, parameters are defined for the intrinsic parameters of a PDF function. For example, the normal PDF has

two intrinsic parameters µ and σ. The first parameter specified in the parameter list will be treated as µ. The second will be

treated as σ. How can you know the proper order for parameters? Generally location parameters appear first (and are usually

denoted a in this manual), scale parameters are second and shape parameters are third. Even so, you can get a quick synopsis

of each type of PDF by using the -h option from the command line, e.g.: mle -h SHIFTWEIBULL

Parameters are also used to model effects of covariates on other parameters. Here is an example in which two

parameters, used in place of some fixed values of µ and σ for a normal distribution, are defined with two covariate

parameters, each:

The MODEL statement

 40

PDF NORMAL(topen tclose)
 PARAM mean LOW = 100 HIGH = 400 START = 270 TEST = 0 FORM = LOGLIN
 COVAR sex PARAM b_sex_mu LOW = -2 HIGH = 2 START = 0 END
 COVAR weight PARAM b_weight_mu LOW = -2 HIGH = 2 START = 0 END
 END
 PARAM stdev LOW = 0.1 HIGH = 100 START = 20 FORM = LOGLIN
 COVAR sex PARAM b_sex_sig LOW = -2 HIGH = 2 START = 0 END
 COVAR weight PARAM b_weight_sig LOW = -2 HIGH = 2 START = 0 END
 END
END

In this example, the first parameter of the normal distribution (µ) has two covariates and their corresponding

parameters modeled on it. The exact specification of how covariates and their parameters are modeled depend on the FORM of

the intrinsic parameter. In the example, the FORM = LOGLIN specifies that a log-linear specification is to be used. The log-

linear specification is µi = µ’exp(xiββββ), where µ’ is the estimated intrinsic parameter (mean in this case). Thus, for the ith

observation, the µ parameter of the normal distribution will be constructed as: µi=mean×exp(sexi×b_sex +

weighti×b_weight). The second parameter, stdev, has the same two covariates modeled on it, but the parameter names

are (and must be) different from the parameters modeled on mean.

Table 4. Forms and transformations for parameters.

Form Parameter (p’), covariates (xi), covariate
parameters (ββββ), and the value returned
by the PARAM function (pi)

Notes

NUMBER pi = p’ Default when no COVARs are modeled.
ADD pi = p’ + xiββββ Must be used with care when the resultant parameter is

constrained to positive values because pi might take on
negative values for some combinations of xiββββ

INVERT pi = 1/(p’ + xiββββ) The denominator must not be zero.
INVADD pi = 1/p’ + xiββββ p’ must not be zero.
INVMULTIPLY pi = xiββββ/p’ p’ must not be zero.
INVLOGLIN pi = exp(xiββββ)/p’ p’ must not be zero.
DIVIDE pi = p’/xiββββ xiββββ must not be zero.
POWER i

ip p β′= x

POWEREXP exp()i
ip p β′= x

EXPADD pi = exp(p’ + xiββββ) = exp(p’)exp(xiββββ) Constrains pi to positive values for all p’ and xiββββ.
MULTIPLY pi = p’× xiββββ A multiplicative specification.
EXCESS pi = p’exp(1 + xiββββ)
LOGLIN pi = p’exp(xiββββ) This is a common specification, especially for parameters that

are interpreted as hazards. When p’ is constrained positive,
the pi will also be positive. Like EXPADD but p’expadd =
exp(p’loglin). LOGLIN is the default specification whenever a
COVAR is defined.

LOGISTIC If ALTERNATE_LOGISTIC = FALSE,
 pi = 1/[1 + exp(p’ + xiββββ)].
If ALTERNATE_LOGISTIC = TRUE,
 pi = exp(p’ + xiββββ)/[1 + exp(p’ + xiββββ)]

Frequently used for parameters that are interpreted as
probabilities because, for all values of p’ + xiββββ, pi will be
constrained from zero to one. The alternative forms are
related to each other as p’form1=1– p’form2

LOGIT pi = ln[exp(p’ + xiββββ)/(1 + exp(p’ + xiββββ)] This specification is useful when pi can take on any value
from –∞ to ∞ and p’ + xiββββ is a probability.

The MODEL statement

 41

For some forms, the parameter itself is transformed. For example, when a parameter is a probability (as it is for the

MIX function in Example 1) the parameter can be defined as:
PARAM p LOW = -999 HIGH = 999 START = 0 FORM = LOGISTIC END

The logistic transformation permits the parameter p to take on any value from negative infinity to infinity, but the resulting

value passed used by the likelihood will be constrained to the range (0, 1). In other words, mle mle mle mle will estimate a parameter over

the range –999 to 999, but before that parameter is used in computation, it will undergo a logistic transformation as p = 1/[1 +

exp(p’)], so that the value of p will be a probability. mlemlemlemle currently provides a limited number of specifications for how

parameters and covariates are modeled (Table 4). Even so, this mechanism for modeling covariates on any parameter is

extremely general and provides the basis for building unique and highly mechanistic (Box et al. 1978) or etiologic (Wood

1994) models.

Setting parameter information

Four characteristics may be set for each parameter in addition to the FORM. They are: 1) the highest possible value

that can be tried for the parameter, 2) the lowest possible value that can be tried for the parameter, 3) the starting guess to help

mlemlemlemle out from the start, and 4) a test value against which the parameter will be tested when standard errors are computed. In the

previous example, the mean parameter was constrained to the range [100, 400] and the initial guess was 270.

Use care when setting the HIGH and LOW limits. Most importantly, limits must be constrained to valid ranges for the

intrinsic parameter. Thus, for the MIX mixing proportion parameter (the first of the three parameters) then, HIGH = 1 and

LOW = 0, should be defined as is appropriate for a probability—unless some FORM like FORM = LOGISTIC is used to

constrain the resulting parameter to between 0 and 1. Sometimes it is useful to impose narrower limits, perhaps to avoid

getting hung-up at a local maximum or to solve the model more quickly. Be careful, though. Limits that are too narrow may

exclude the global maximum—after all, the best parameter estimates for a set of data are presumably unknown. Excessively

narrow limits may cause problems when numerical derivatives for the variance-covariance matrix are computed, as well.

Also, likelihood confidence intervals will bump up and stop at the limits you set.

The TEST = xxx part of a PARAM function provides a value against which the parameter will be tested (in some

reports). In a sense, the TEST value is a null hypothesis value (h0). The test performed is ˆ ˆ() / ()ot p h SE p= − , where p̂ is

the maximum likelihood parameter estimate and ˆ()SE p is the standard error for the parameter estimate. The t-test is

provided for convenience only. mlemlemlemle does not make use of the test in any way.

The PDF functions

One of the most frequently used functions in the MODEL statement is the PDF function. The purpose of the PDF

function is to specify the component of a pre-defined probability density or distribution functions. Although the name is PDF,

the PDF function can return either the probability density function or specified areas under the PDF curve including the

The MODEL statement

 42

cumulative and survival density functions, and the hazard function. In addition, the PDF function can return areas or densities

that are left and right truncated. The structure of the PDF function call is:
PDF <PDF name> (<time variable1>, <time variable2>, ...)
 <intrinsic parameter 1>,
 <intrinsic parameter 2>,
 ...
 <optional HAZARD>
END

The name following PDF is the name of the built-in distribution. mlemlemlemle predefines over 60 density functions, including

most well-known ones like the normal, lognormal, weibull, gamma, beta, and exponential distributions. A complete summary

of built-in distribution is given in a later chapter.

Time variable list is a list of the time arguments passed to the PDF. Most univariate PDFs can take from one to four

‘time’ arguments.6 In fact, these four times describe a single observation in such a way as to incorporate a number of defects

in the observation process, including right censoring, left truncation, right truncation, cross-sectional observations. A

description of how the four arguments combine to specify a probability are given in the section that follows. Note that the

time arguments can be any expression, so that time shifts and transformations can be incorporated in this list.

6 These are called time variables in the context of survival analysis; however, they may represent other measurements (length, dose, height,

etc.).

Table 5. Brief summary of some types of functions in mlemlemlemle.

function Brief description
PDF Specifies a pre-defined probability or cumulative density function. Returns the value of the density or

distribution function as is appropriate to the arguments with which is was called.
INTEGRATE Integrates a function and returns the value of the integral.
IF THEN ELSE Evaluates a condition and returns the appropriate subfunction.
PREASSIGN Computes a subfunction and assigns the result to a variable. Then it computes and returns the second

subfunction.
POSTASSIGN Computes the first subfunction. Then it computes the second subfunction, assigns the result to a

variable, and then returns the value of the first subfunction.
PRODUCT Iterates over some limits and takes the product of a subfunction.
SUMMATION Iterates over some limits and sums a subfunction.

function calls A number of ordinary mathematical functions. Example: SQRT(x) and ADD(x, y).

quick conditionals ZEROIF, ONEIF, NEGONEIF, INFINITYIF, NEGINFINIF, NEGONEIF: return common values

conditional on simple tests.

constants, variables Pre-defined and user defined variables can be used as functions.
PARAM A parameter to be estimated.
DATA The data function cycles through all observations
LEVEL,

LEVELDELTA
Creates a nested or multilevel likelihood.

The MODEL statement

 43

Intrinsic parameter list provides specifications for the PDF’s intrinsic parameters. The order that the intrinsic

parameters are specified is important; it corresponds to how the PDF is defined within mlemlemlemle.. The PDFs chapter lists the order

for intrinsic parameters; alternatively, the command line mle -h can be used to determine the proper argument order. Note

that any expression can be used for an intrinsic parameter. That is, you do not need to use a PARAM function for the intrinsic

parameters, although this is the most common use. Here is an example in which the location parameter is fixed to a constant

for a shifted lognormal distribution:
PDF SHIFTLOGNORMAL (tooth_eruption_age)
 9, {shift the time back to conception}
 PARAM location LOW = 1 HIGH = 4 START = 2.5 END,
 PARAM scale LOW = 0.0001 HIGH = 3 START = 0.9 END
END

PDF time arguments

Most PDFs can have as few as one and as many as four time arguments specified. They are: tu, the last observation

time before an event; te, the first observed time after the event; tα, the left truncation time for the observation or the PDF; and

tω, the right truncation time for the observation or the PDF. Understanding how these four times act on the PDF statement is

critical to creating the desired and proper likelihood.

PDFs contribute to likelihoods in a number of ways. In survival analysis, for example, the likelihood for an exact

failure is given by the value of the PDF at the exact point of failure. For a right censored observation, the likelihood is given

by summing up (integrating) all possible PDF values from the last observation time until the maximum possible time. The

likelihood for a cross-sectional “responder” is the integral from zero to the time of first observation. Table 6 lists the

likelihoods that result from the four time variables for different conditions. For example, when tu=te or when only one time

variable is specified, mlemlemlemle returns the density at tu. This is the desired likelihood for an exact failure. Likelihoods for right and

interval censored observations, with and without left and right truncation are given in Table 6.

The Hazard parameter

For most parametric distributions (like the normal or lognormal distributions) the hazard function does not take on a

simple or closed form. For this reason, most studies have modeled the covariates as acting on the failure time for these

distributions. Nevertheless, there is no inherent reason why hazards models cannot be constructed using distributions without

a closed form for the hazards functions. Most of the PDFs included in mlemlemlemle provide a general mechanism for covariates to be

modeled as affecting the hazard of failure, rather than (or in addition to) affecting intrinsic parameters. Here is an example:
PDF NORMAL(topen tclose)
 PARAM mean LOW = 100 HIGH = 400 START = 270 TEST = 0 FORM = LOGLIN END,
 PARAM stdev LOW = 0.1 HIGH = 100 START = 20 END,
 HAZARD COVAR sex PARAM b_sex LOW = -2 HIGH = 2 START = 0 END
 COVAR weight PARAM b_weight LOW = -2 HIGH = 2 START = 0 END
END

The covariates sex and weight are modeled to effect on the hazard of failure. Parameters b_sex and b_weight provide

estimates of the effect.

The MODEL statement

 44

The HAZARD statement always provides a proportional hazards specification modeled directly on the hazard of the

PDF. Usually, the specification is loglinear, so that the hazard for the ith observation including the covariate effects defined

as hi(ti|xiββββ) = h(ti)exp(xiββββ), where h(t) is the baseline hazard for the specified PDF, and xiββββ is a vector of covariates xi and

parameters ββββ, so that xiββββ = xi1β1 + xi2β2+ xi3β3 Then, the survival function becomes Si(ti|xiββββ) = S(ti)exp(xββββ), and the

probability density function becomes fi(ti|xiββββ) = f(ti)S(ti)exp(xββββ)–1exp(xiββββ).

This particular hazards model specification is commonly used. By exponentiating the xiββββ array, the covariate effects

will never cause the hazard to go negative (hazards are never negative).

Table 6. Likelihoods returned by PDF for one, two, three, and four time variables under different conditions.

Example When Class Resulting Likelihood
LNNORMAL(te) Exact failure at te ()eL f t=

LNNORMAL(tu, te) tu=te Exact failure at tu=te () ()u eL f t f t= =

LNNORMAL(tu, te) te=oo
te < tu

Right censored or cross-sectional
non-responder at tu () ()

u

u
t

L f z dz S t
∞

= =∫

LNNORMAL(tu, te) tu = 0 Cross-sectional responder at te

0

() ()
et

uL f z dz F t= =∫

LNNORMAL(tu, te) tu ≠ te Interval censored over the interval
(tu, te). Includes, as a limiting case
cross-sectional responder and
right-censored.

() () ()
e

u

t

u e
t

L f z dz S t S t= = −∫

LNNORMAL(tu, te, tα) tu = te Left-truncated exact failure () ()
()

()

u u

t

f t f tL
S t

f z dz
α

α
∞= =

∫

LNNORMAL(tu, te, tα) tu ≠ te Left-truncated, interval censored
failure

() () () ()
()

()

u e u e

t

S t S t S t S tL
S t

f z dz
α

α
∞

− −= =

∫

LNNORMAL(tu, te, tα, tω) tu = te Left- and right-truncated, exact
failure

() ()
() ()

()

e e
t

t

f t f tL
S t S t

f z dz
ω

α

α ω

= =
−

∫

LNNORMAL(tu, te, tα, tω) tu < te

tα ≤ tu

tω ≥ te

Left- and right-truncated, interval
censored failure

() () () ()
() ()

()

u e u e
t

t

S t S t S t S tL
S t S t

f z dz
ω

α

α ω

− −= =
−

∫

LNNORMAL(tu, te, tα) tu=te=tα Hazard () ()
()

u
u

u

f tL h t
S t

== =

LNNORMAL(tu, te, tα, tω) tu=te=tα Right-truncated hazard () ()
() ()

u
u

u

f tL h t
S t S tω

== =
−

The MODEL statement

 45

A multiplicative form for the proportional hazards specification can also be specified by setting the constant

EXP_HAZARD = FALSE (it is TRUE by default). Then, the model is hi(ti|xiββββ) = h(ti)xiββββ, S(ti|xiββββ) = S(ti)xββββ, and f(ti|xiββββ) =

f(ti)S(ti)xββββ–1xiββββ. You must insure that xiββββ never goes negative.

The DATA function

The DATA...END function provides a mechanism to "feed" observations to the likelihood. This function specifies

that observations are to be "fed" to the likelihood one at a time, corresponding to the product (∏) over all observations shown

in likelihoods (or the Σ shown in loglikelihoods). The DATA function loops through all observations that were previously read

in by the DATA statement. In other words, the DATA...END function returns the total logloglikelihood or total likelihood,

given a series of observations and an expression for an individual likelihood or individual loglikelihood. The general form

for the DATA function is:
DATA <optional_form>
 <expression>
END

where optional_form is one of

• FORM = SUMLL — This takes the log of each individual likelihood and sums the loglikelihoods over the data. A

likelihood (rather than a loglikelihood) is specified for <expression>. This is the default value if no <formtype> is

specified.

• FORM = SUM or FORM = SUMMATION — Sums loglikelihoods over the data without first taking the log. This is used

when a loglikelihood is specified rather than a likelihood for <expression>.

• FORM = PROD or FORM = PRODUCT — Takes the product of likelihoods over the data and does not take the log of

the likelihood. This is used when a likelihood (rather than a loglikelihood) is specified for <expression> and some

function appears outside the data function that takes the log.

Here are three models that yield the same overall likelihood function, but uses different forms for the DATA function:
 MODEL
 DATA FORM = SUMLL {the default form}
 PDF NORMAL(topen tclose)
 PARAM mu LOW = 10 HIGH = 100 START = 30 END
 PARAM sigma LOW = 0.0001 HIGH = 10 START = 1 END
 END {pdf}
 END {data}
 RUN
 FULL
 END {model}

 MODEL
 DATA FORM = SUM {The loglikelihood is specified}
 LN(PDF NORMAL(topen tclose)
 PARAM mu LOW = 10 HIGH = 100 START = 30 END
 PARAM sigma LOW = 0.0001 HIGH = 10 START = 1 END
 END {pdf}
)
 END {data}
 RUN
 FULL
 END {model}

The MODEL statement

 46

 MODEL
 LN(
 DATA FORM = PRODUCT {The likelihood is specified}
 PDF NORMAL(topen tclose)
 PARAM mu LOW = 10 HIGH = 100 START = 30 END
 PARAM sigma LOW = 0.0001 HIGH = 10 START = 1 END
 END {pdf}
 END {data}
)
 RUN
 FULL
 END {model}

In theory, these three models will yield identical results. In practice, results may differ, particularly for the last model,

because of round-off errors. The last likelihood will producd a very small number before the log is taken of the entire

likelihood. There are several reasons for providing these three ways of specifying how the data is used within the likelihood:

• Some likelihoods are much easier to write as a loglikelihood.

• Many likelihoods include functions outside of the likelihood. In particular, some likelihoods take an expectation

outside of the individual likelihoods so that integration is done outside of the data function.

• Some multilevel or hierarchical likelihoods require this type of control.

There are two functions that are closely related to the DATA function: the LEVEL function and the LEVELDELTA

funciton. These two functions provides a mechanism by which multilevel or hierarchical models can be constructed.

The LEVEL function

The LEVEL function provides a mechanism by which multilevel or hierarchical models can be constructed. The

syntax of the LEVEL function is
LEVEL <boolean expression> THEN <optional_form>
 <expression>
END

The effect of the LEVELDELTA function is to test the <boolean expression> for each observaton and, while the condition is

true, form a product of likelihoods out of the observations. The <optional_form> is specified as it is for the DATA function,

but with one difference: the default form is .FORM = PRODUCT.

The best way to understand the effect of the level command is by an example. Consider the likelihood

 ,
1 1

() (| ,)
inN

i j
i j

L g z f t z dz
ω

α

θ
= =

 
=  

 
∏ ∏∫ .

This is a standard model for which a distribution of clustering (or heterogeneity), g(z), is estimated along with the parameters

(θθθθ). There are two levels that make up this model. Let us call the outer level denoted by the outer product the subject level—

that is, we have N subjects and this outer product is taken over those subjects. For each of N individuals, there are ni

observations. The inner level formed by the innermost product is the likelihood formed by ni repeated observations of the ith

subject.

The MODEL statement

 47

The rationale for this type of model is that the repeated observations for individuals violate the condition that the

likelihoods for each observation are independent. To fix this problem, we can compute an expected likelihood for each

individual’s observations. The integral computes the expected likelihood for each subject. Here is a concrete example

Say we have data in which levels are denoted by the number 1 or 2 as in
1 Tom Smith
2 23.4 26.8 . . .
2 19.2 22.9 . . .
2 26.8 -1 . . .
1 Steven Jones
2 19.5 23.7 . . .
2 26.8 -1 . . .
1 Martin Johnson
2 0 44.1 . . .
2 19.9 22.7 . . .
2 19.9 -1 . . .
...

where the observations beginning with a 2 correspond to the individual at the preceding 1, so that Tom Smith has three

observations beginning 23.4, 19.2, and 26.8. If we were to treat all observations, within and among individuals, as

independent, we could simply drop all of the level 1 lines, and form a likelihood as the product of all observations. But, if we

want to treat observations within individuals as correlated (non-independent), the we can integrate over a distribution of

common effects as shown in the likelihood above. Usually, we will estimate one or more parameters for the distribution g(z),

in addition to θθθθ.

If we assume that g(z) and f(t) are normal distributions, the likelihood in mlemlemlemle would be specified as

MLE
 DATAFILE(“example.dat”)
 OUTFILE(“example.out”)

 DATA
 lev FIELD 1
 topen FIELD 2
 tclose FIELD 3
 END

 MODEL
 DATA
 LEVEL lev = 2 THEN
 INTEGRATE z (-12, 12)
 PDF NORMAL (z)
 0, PARAM sigmaz LOW = 0.0001 HIGH = 3 START = 0.2 END
 END {pdf}
 *
 PDF NORMAL(topen tclose)
 PARAM mu LOW = 10 HIGH = 100 START = 30 END
 PARAM sigma LOW = 0.0001 HIGH = 10 START = 1 END
 HAZARD COVAR z 1
 END {pdf}
 END {integrate}
 END {level}
 END {data}
 RUN
 FULL
 END {model}
END {mle program}

The LEVEL statement advances through all of the individual level observations and computes the product of the

likelihoods for each individual. The DATA statement only "sees" observations that begin with a 1, because the LEVEL

statement "consumes" all of the observations that begin with a 2. The LEVEL statement returns a likelihood, which is the

product of likelihoods taken within each subject; the DATA statement takes those likelihoods, one per subject, takes the

natural log of each, and sums them over all subject.

The MODEL statement

 48

The LEVELDELTA function

The LEVELDELTA function is very similar to the LEVEL function. LEVELDELTA provides a mechanism by which

multilevel or hierarchical models can be constructed. The syntax of the LEVELDELTA function is
LEVELDELTA <expression> THEN <optional_form>
 <expression>
END

The effect of the LEVELDELTA function is to evaluate <expression> for each observaton and, while the expression does not

change, form a product of likelihoods out of the observations. The <optional_form> is specified as it is for the DATA

function, but with one difference: the default form is .FORM = PRODUCT.

The only real difference between the LEVELDELTA and the LEVEL function is how each function decides when to

"exit" the current level. The LEVELDELTA function simply looks for a change in the value of <expression> whereas LEVEL

evaluates a boolean function <bexpr> for each observation and terminates when the expression evaluates to FALSE. In the

example given under the LEVEL function, the only change necessary to use the LEVELDELTA function is replace the LEVEL

line with
 LEVELDELTA lev THEN

Statements and Procedures

 49

STATEMENTS AND PROCEDURES

Introduction

Previous chapters have described the MODEL statement and the DATA statement in some detail. A number of other

statements are supported by mlemlemlemle as well. These include assignment statements, intrinsic procedures, which look like functions

except that they do not return values, as well as looping statements (WHILE, REPEAT, FOR) and conditional statements (IF).

This chapter summarizes all of the statements supported by mlemlemlemle. In addition, a list of all procedures is given at the end of this

chapter.

List of statements

Assignment statements

Assignment statements serve two purposes. First, assignment statements are used to define new variables. Secondly,

assignment statements are used to assign a value to variables (whether new or pre-existing). The basic formats for assignment

statements are
<var> = <expression>
<var>:<type> = <expression>

The <var> is the name of a variable. If the variable does not exist, it will be created. If so, and the first form of

assignment is used, the type (INTEGER, REAL, etc.) returned from expression will define the type of the newly created

variable. Under the second form of assignment, the variable type is specified by the <type>, where type is a type of variable. .

The expression type must be compatible or an error will result. Some examples follow:
MLE
 y = SQRT(44.5) {evaluates to 6.6708...}
 z = BETA(1.2, 9*3/10 + 1) {evaluates to 0.185...}
 q = RAND {evaluates to a random number from 0 to 1}
 r:REAL = 2 {defines r as real, assigns the value 2.0}
 ru : REAL {Defines ru, but does not initialize it}
 s = "This is a string"
 RANDOMSEED = 2342 {Set random number seed, or use the SEED(2342) procedure}
 b = IF RAND < 0.2 THEN TRUE ELSE FALSE END
 ra : REAL[-180 TO 180] {Defines an array of type REAL with elements from -180 to 180}
 ia : INTEGER[0 TO 100, -1 TO 1] = 0 {Defines integer matrix and initialize elements to 0}
END

Statements and Procedures

 50

BEGIN...END statement

The BEGIN...END statement provides a means of providing multiple statements in contexts where only a single

statement is allowed. The format is
BEGIN
 <statements>
END

The DATA statement

The DATA...END statement define the format of the data file, defines variables to be read in, and provides for some

transformation of the variables. Details of the DATA statement is given in Chapter 3. Only an overview is given here. The

format for the DATA statement is:
DATA
 <variable> [FIELD x [LINE y]] [=<expr>] [DROPIF <expr> | KEEPIF <expr> ...]
 ...
END

<variable> is the name of the variable to be defined. The variable must not already exist. All DATA variables are

defined to be type real. Integer values will be read in and converted to real number values. Text strings can exist within a

fields of a text file, but must not be assigned to a variable.

Field: The term field refers to which column within an input file a variable is found in. In the hammes.dat file used

in Chapter 1, four fields (or columns) existed in the input file. The field specifier must be a positive integer constant.

Line: Sometimes observations are spread across multiple lines. When the LINE keyword is used, e.g. LINE 2, mlemlemlemle

keeps track of the maximum number of lines specified this way. Then, all observations are assumed to have that number of

lines. If the observations each take but one line, the statement LINE 1 may be dropped—one line per observation is assumed

as a default. The line specifier must be a positive integer constant.

<=expr> defines a transformation expression. The expression can refer to the variable being read, or any variables

that are defined before the current variable. The line newvar FIELD 3 = newvar^2 will read newvar from field three of

the data file. The value of newvar is then squared and assigned back to newvar.

<DROPIF> provides a mechanism to drop observations. The expression following DROPIF must evaluate to TRUE

or FALSE. If TRUE, the expression is dropped. The line newvar FIELD 3 DROPIF newvar <= 0 will drop all variables

in field three that are not positive.

<KEEPIF> provides another mechanism to drop observations. The expression following KEEPIF must evaluate to

TRUE or FALSE. If FALSE, the expression is dropped (that is, not kept). The line newvar FIELD 3 KEEPIF newvar > 0

will drop all variables in field three that are not positive. KEEPIF and DROPIF expressions can be far more complex, but must

return TRUE or FALSE.

Usually, data are read from a data file. The DATAFILE() procedure defines and opens this file. Thus
DATAFILE("test.dat")
DATA
 o_time FIELD 1 = o_time*365.25
 DROPIF (o_time > 100)
 c_time FIELD 3 = IF c_time = -1 THEN c_time ELSE c_time*365.25 END
 missing FIELD 4 DROPIF missing_data <> 1
 frequency FIELD 5 DROPIF frequency <= 0
END

Statements and Procedures

 51

The variable names FREQUENCY or FREQ are taken as a field of frequencies for each observation. (If both variable

names are used, FREQUENCY is taken as the frequency variable). The frequency of each observation is used to compute a

proper likelihood. If the FREQUENCY or FREQ keywords are missing, one is assumed.

FOR statement

The FOR statement provides a means of looping through statements. The format is
FOR <v> = <expr> TO <expr> DO
 <statements>
END

and

FOR <v> = <expr> DOWNTO <expr> DO
 <statements>
END

The variable <v> must either not be previously defined or, if it already exists, it must be an integer variable. Its

value will change as the FOR statement is executed. The first <expr> will be executed once and will define the starting value

of v. The second <expr> will be executed once and will define the last value of v. Here is an example that will print sine and

cosine tables in one degree increments as well as creating a table of radians for each degree:
r : REAL[0 TO 359]
FOR x = 0 TO 359 DO
 r[x] = DTOR(x)
 WRITELN(x " degrees (" r[x] " radians): SIN()=" SIN(r[x]) ", COS()=" COS(r[x]))
END

IF statement

The IF statement provides a means of conditionally executing statements. The following types of IF statements are

available:
IF <bexpr> THEN
 <statements>
END

This form will conditionally execute the <statements> only if <bexpr> evaluates to TRUE. An ELSE clause can be added to

the statement so that one of two sets of statements will always be executed:

IF <bexpr> THEN
 <statements>
ELSE
 <statements>
END

In addition, one or more ELSEIF clauses can be added to the statement to allow multiple conditions to be tested:

IF <bexpr> THEN
 <statements>
ELSEIF <bexpr> THEN
 <statements>
ELSEIF <bexpr> THEN
 <statements>
ELSE
 <statements>
END

Here is an example of using the IF statement:

Statements and Procedures

 52

IF SYSTEM = "MS-DOS" THEN
 PRINTLN("Run from an MS-DOS system")
 SEP = '\'
 DATAFILE("C:" + SEP + DIR + SEP + NAME)
ELSE
 PRINTLN("Run on a unix system")
 SEP = '/'
 DATAFILE(DIR + SEP + NAME)
END

MODEL statement

The MODEL...RUN...END statement defines the underlying probability model used by mlemlemlemle and also defines

constraints on which parameters are to be estimated. An overview of the MODEL statement is given here. Chapter 4 gives

details for the writing likelihood models using the MODEL statement.

The basic structure of the MODEL statement looks like this:
MODEL
 <expression>
RUN
 <run specifications>
END

Between MODEL and RUN is a single expression that is the likelihood. Within the likelihood is one or more

PARAM...END functions. These define the parameters, whose values will be found so that the likelihood is maximized. One

of the most important aspects of learning mlemlemlemle is the design and construction of the expression for the likelihood.

A list of <run specifications> is given between the RUN and the END part of the MODEL statement, this provides a

way of evaluating the full model as well as a series of nested or reduced models. If all of the parameters (defined by

PARAM...END functions) are to be found, a simple FULL command is placed between the RUN and its matching END.

Reduced models, where one or more parameters are constrained to a constant or another parameter, are specified as REDUCE

followed with a list of one or more "reductions". For example, you might constrain a parameter called mean to be zero and

only allow the parameter called stdev to be found. Then you would put REDUCE mean = 0 between the RUN and the END.

Any number of REDUCE commands (along with one FULL) can be used in a single model. The various forms of the model will

be evaluated in turn.

Procedure statement

mlemlemlemle supports a number of intrinsic procedures statements. Procedures are single word commands that include zero

or more arguments. Procedures perform some task given the list of arguments. Procedures do not return a value the way a

function does. A list of all procedures, with examples, can be found at the end of this chapter.

REPEAT statement

The REPEAT statement provides a means of looping through statements until some condition is met. The format is

Statements and Procedures

 53

REPEAT
 <statements>
UNTIL <bexpr>

The <statements> are executed and then the boolean expression<bexpr> is evaluated. If the result is FALSE, the

loop repeats and <statements> are executed again. When <bexpr> evaluates to TRUE, the loop terminates. A REPEAT

statement always executes the <statements> at least once.

WHILE statement

The WHILE statement provides a means of looping through statements while some condition is met. The format is
WHILE <bexpr> DO
 <statements>
END

The boolean expression <bexpr> is executed first. If the value is TRUE, the <statements> are executed once and

<bexpr> is evaluated again. The sequence continues until <bexpr> evaluates to FALSE. That is, when <bexpr> is FALSE,

the loop terminates.

List of procedures

There are a few intrinsic procedures available in mlemlemlemle. Procedures are single word commands that include zero or

more arguments. Procedures perform some task given the list of arguments. Procedures do not return a value the way a

function does. The following sections describes the procedures available in mlemlemlemle.

DATAFILE(s)

Purpose: Opens up a data file for the DATA statement. Closes any previous data files.

Arguments: A single string expression

Examples: DATAFILE("mydata.dat")
 DATAFILE(filename + '.' + datextension)

See also: OUTFILE

HALT

Purpose: Terminates execution of the program.

Arguments: None

Statements and Procedures

 54

OUTFILE(s)

Purpose: Opens up a standard output file to which results are printed. Closes any previous output files.

Arguments: A single string expression

Examples: OUTFILE("mydata.out")
 OUTFILE(DEFAULTOUTNAME)

See also: DATAFILE, Function DEFAULTOUTNAME

PRINT(a1, a2, . . .)

Purpose: Prints a message to the standard output file without including a carriage return at the end.

Arguments: Any number of arguments of any type.

Examples: PRINT("The value of x is ", x)
 PRINT("Sin(x) squared is ", SIN(x)^2)

See also: PRINTLN, OUTFILE, WRITE, WRITELN

PRINTLN(a1, a2, . . .)

Purpose: Prints a message to the standard output file and includes a carriage return at the end.

Arguments: Any number of arguments of any type.

Examples: PRINTLN("The value of x is ", x)
 PRINTLN("Sin(x) squared is ", SIN(x)^2)

See also: PRINT, OUTFILE, WRITE, WRITELN

SEED(i)

Purpose: Seeds the random number generator.

Arguments: A single positive integer argument.

Examples: SEED(13234)
 SEED(x)

See also: functions RAND, IRAND, RRAND, variable RANDOMSEED

WRITE(a1, a2, . . .)

Purpose: Writes a message to the terminal without including a carriage return at the end.

Arguments: Any number of arguments of any type.

Statements and Procedures

 55

Examples: WRITE("The value of x is ", x)
 WRITE("Sin(x) squared is ", SIN(x)^2)

See also: WRITELN, OUTFILE, PRINT, PRINTLN, function PUT

WRITELN(a1, a2, . . .)

Purpose: Writes a message to the terminal and includes a carriage return at the end.

Arguments: Any number of arguments of any type.

Examples: WRITELN("The value of x is ", x)
 WRITELN("Sin(x) squared is ", SIN(x)^2)

See also: WRITE, OUTFILE, PRINT, PRINTLN, function PUT

Functions

 56

FUNCTIONS

Introduction

This chapter describes all of the functions that are supported by mlemlemlemle. Functions serve the purpose of returning a

single value, be it a numeric value, a string value or a boolean value. Functions are used to build expressions, which are used

for calculations of all types.

This chapter is something of a catalog of the functions provided by mlemlemlemle. used All functions are listed in alphebetical

order. At the end of this chapter is a list of all, so called, simple functions.

The DERIVATIVE function

The DERIVATIVE function computes the numerical value of the derivative at a particular point. Formats are:
DERIVATIVE <variable> = <exp1>, <exp2> END
DERIVATIVE <variable> = <exp1>, <exp2>, <exp3> END
DERIVATIVE (<expr4>) <variable> = <exp1>, <exp2> END
DERIVATIVE (<expr4>) <variable> = <exp1>, <exp2>, <exp3> END

The <variable> is the variable of differentiation. The first expression evaluates to the point at which the derivative is

evaluated. The second expression is what will be differentiated. The optional third expression is the largest value of dx to

begin with. If the third expression is not given, an initial value for dx of 0.001 is used, which is reasonable for a wide range of

functions. This initial value can be changed by changing the value of the variable DIFF_DX. In finding the derivative,

successively smaller values of dx are used until reasonable precision is reached.

For example, DERIVATIVE x = 1, SIN(x) END computes the value of the derivative at x = 1 for the function

sin(x); it returns -0.841470984808. On Intel computers under DOS, this derivative requires about 4 function evaluations with

an initial dx = 0.001. If dx is changed to 0.1, as in DERIVATIVE x = 1, SIN(x), 0.1 END, the same answer is found

after 14 function evaluations. Likewise, if dx is set to 1E-7, 6 function evaluations are required.

The optional fourth expression evaluates to the degree of differentiation. If this value is not given or is ≤ 1, a first

degree derivative will be found [i.e. f'(x)]. Higher degrees derivatives are found if the forth expression is specified and are

greater than one. For example, SIN(x)'' evaluated at x = 1 is equal to -SIN(1) which is -0.841470984808. The expression

DERIVATIVE (2) x = 1, SIN(x) END returns the same numerical result.

High order derivatives tend to lose numerical precision. This can be seen in the following series, which should all

evaluate to 24.0:

DERIVATIVE (1) x = 1, 24*x END returns 24.000000000000
DERIVATIVE (2) x = 1, 12*x^2 END returns 23.999999999998
DERIVATIVE (3) x = 1, 4*x^3 END returns 24.000000000455
DERIVATIVE (4) x = 1, x^4 END returns 24.000026132114

Functions

 57

The derivative function finds numerical estimates at a point using an adaptive algorithm similar to that described by

Ridders (1982).

The FINDMIN function

The FINDMIN function iteratively finds the argument value that minimizes a bounded function. Formats are:
FINDMIN <variable> (<exp1>, <exp2>) <expr> END
FINDMIN <variable> (<exp1>, <exp2>, <expr3>) <expr> END
FINDMIN <variable> (<exp1>, <exp2>, <expr3>, <expr4>) <expr> END
FINDMIN <variable> (<exp1>, <exp2>, <expr3>, <expr4>, <expr5>) <expr> END

The <variable> is the argument that is changed to find the function minimum. The expression <expr> is the

function to be minimized. The first expression is the minimum boundary of the function. The second expression is the

maximum boundary of the function. The optional third expression is the starting value of <variable> to try. The optional

forth expression is the desired precision of the solution. If the forth expression is not given, its value will taken from the

variable FIND_EPS. The fifth expression is the maximum number of iterations allowed in finding the solution. If the fifth

expression is not given, the value will be taken from the variable FIND_ITERS.

For example, FINDMIN x (0, 2*PI) COS(x) END which returns 3.1415925395570 (π is an exact solution). A

more precise solution (but one that takes longer to find) is found by FINDMIN x (0, 2*PI, 1, 1E-15) COS(x) END

which returns 3.1415926535713.

Finding the argument that maximizes the function is done by simply negating <expr>.

The FINDZERO function

The FINDZERO function iteratively finds the argument for which a bounded function is zero. Formats are:
FINDZERO <variable> (<exp1>, <exp2>) <expr> END
FINDZERO <variable> (<exp1>, <exp2>, <expr3>) <expr> END
FINDZERO <variable> (<exp1>, <exp2>, <expr3>, <expr4>) <expr> END

The <variable> is the argument that is changed to find the zero value of the function. The expression <expr> is the

function to find zero for. The first expression is the minimum boundary of the function. The second expression is the

maximum boundary of the function. The optional third expression is the desired precision of the solution. If the third

expression is not given, its value will taken from the variable FIND_EPS. The forth expression is the maximum number of

iterations allowed in finding the solution. If the forth expression is not given, the value will be taken from the variable

FIND_ITERS.

For example, FINDZERO x (0, PI) COS(x) END returns 1.5707963267949, which is the correct value of π/2.

This function works for well-behaved functions that have a single continuous zero within the bounds. For example,

cos(x) goes to zero for four different x values in the interval [0, 4π]. FINDZERO x (0, 4*PI) COS(x) END returns

10.995574287564 (and may return other solutions depending on hardware and some variable values). Another pathological

example is functions with no zero in the specified interval. For example, cos(x) has no value of zero in the interval [2π/3,

4π/3]. FINDZERO x (2*PI/3, 4*PI/3) COS(x) END returns the value 2π/3; this is the closest value to zero found.

Functions

 58

Identifiers and expressions

A very simple type of function is a constant or a variable (or a previously declared parameter which looks like a

variable). Together these are called identifiers. mlemlemlemle predefines a number of built-in identifiers. Some predefined variables

allow you to change the behavior of mlemlemlemle. A later chapter discusses many of those variables. Some constants arise frequently

in numerical work, and are predefined for convenience. Some of these constants are given in Table 7.

Algebraic, boolean and logical expressions

Algebraic expressions are expressions created using a series of special operators. Operators include algebraic

symbols like +, –, *, /, ^, a series of algebraic keywords for integer operations,. DIV, MOD, SHL, SHR. The right hand side of

an assignment statement is an expression. Thus, the following right-hand-sides are valid expressions:
n = 2*3
n = (HOURS/60)^2
n = 12.5*first - 10*second
i = mask SHL 4
i = 23 DIV 4

Boolean expressions evaluate to either TRUE or FALSE. The operators for creating boolean expressions are >, <, >=,

<=, ==, <>, and boolean keywords, AND, OR, XOR, and NOT and some simple functions. These operators are used in the same

Table 7 Some predefined mathematical constants.

Constant name Meaning Value ≈
ATOMICMASSU atomic mass unit, 1/16 the mass of oxygen 1.6605655×10-27 kg
AVOGADROSN Na, Avogadro’s number; atoms or molecules in 1 mole 6.022045×10-23 (g×mol)-1
BOHRMAGNETON Bohr’s magneton. A spinning electron’s magnetic moment 9.274078×10-24 A×m2
BOHRRADIUS Bohr’s radius of the smallest electron orbit. 0.52917706×10-10 m
BOLTZMANNSC Boltzsmann’s constant, k = R/Na 1.380662×10-23 J/K
DEGREESPERRADIAN 180/π 57.295779513
E e, base of the Napierian logarithm 2.71828183
EULERSCONSTANT γ, Euler’s constant 0.57721566
GRAVITATIONALC Gravitational force magnitude between two masses 6.672×10-11 N×m2/kg2
LIGHTC Speed of light in a vacuum 2.99792458×108 m/s
LOG_10 ln(10) 2.3025850930
PI π, ratio of any circle’s circumference to its diameter 3.14159265
PLANCKINV2PI = h/(2π). See Planck’s constant 1.054588×10-34 J×s
PLANCKSC h, Planck’s constant relating frequency of radiation to a

quantum of energy.
6.626176×10-34 J×s

RADIANSPERDEGREE π/180 0.0174532925
RYDBERGC Rydberg’s constant relating the spectral lines of hydrogen 1.097373177×107 m-1
UNIVERSALGASC R, the universal gas constant 8.31441 m-1 (J×mol)/K

Number limits
oo The largest representable real number machine dependent
INFINITY The largest representable real number machine dependent
NEGINFINITY The most negative representable real number machine dependent
MACHINE_EPSILON The floating point precision machine dependent
SQRT_EPSILON The square root of MACHINE_EPSILON machine dependent
MAXINT The largest representable integer machine dependent

Functions

 59

way as they are in many other programming languages.
b = a <> 42^2
b = (a <> 12) AND (a >= 0)

The difference between boolean and logical expressions is that boolean expressions work with the values TRUE and

FALSE only, whereas logical expressions work with bits. For example, NOT TRUE is equal to FALSE; but NOT 767 is equal to

-768. How does this work? The number 767 is represented by the computer as the binary sequence

00000000000000000000001011111111. The logical NOT operator flips all 1s to 0s and 0s to 1s, so that the number

becomes 11111111111111111111110100000000. The first (left most) bit denotes a negative value, so the value is –768.

The logical AND, OR, and XOR functions act bit by bit, as well. Thus the binary values 2X101101 AND 2X111000 (which is

the same as 45 AND 56) evaluates to 40 (or 2X101000). The SHL and SHR operators shift bits to the left and right. So,

2X000111 SHL 3 (i.e. 7 SHL 3) evaluates to 56 (or 2X111000).

You might be wondering how mlemlemlemle decides whether an operator is boolean or logical. The answer is simple: if both

operands are boolean types, the operator will be boolean. If both operands are integers, the operator will be logical. If one

operator is boolean and one is logical, an error results. For the expression (x >= 4) OR (y <= 2), each of the expressions

in parenthesis will evaluate to TRUE or FALSE, so that the OR will be a boolean operator.

Operator precedence

The built in operators in mlemlemlemle follow a more or less standard precedence. That is, an expression like 4+2*3 will

evaluate 2*3 first and then add 4. The precedence of operators are defined in Table 9. Higher precedence operators will

always be evaluated before lower precedence operators

The IF function

The IF...THEN...ELSE...END function permits conditional tests. The simplest format for the IF function is
IF <boolean expression> THEN
 <expression>
ELSE
 <expression>
END

If the <boolean expression> must return a boolean type. If the function evaluates to true then the first <expression>

will be evaluated and returned as the value of the IF function. If the boolean function returns false, the second <expression>

will be evaluated and returned as the result of the IF function. The <expression> may be another IF function, so that multiple

IF...THEN...ELSE statements may be nested:

Functions

 60

IF <condition> THEN
 <expression>
ELSE
 IF <condition> THEN
 <expression>
 ELSE
 IF <condition> THEN
 <expression>
 ELSE
 <expression>
 END {3rd if...else}
 END {2nd if...else}
END {1st if...else}

An alternative to the above is to use a series of ELSEIF <boolean expression> THEN <expression> with the basic IF

statement. The above example can be written

IF <condition> THEN
 <expression>
ELSEIF <condition> THEN
 <expression>
ELSEIF <condition> THEN
 <expression>
ELSE
 <expression>
END

Here are some examples of IF functions used in assignment statements:
ind = IF (a^2 > 12) OR (a = 0) THEN a^2 ELSE 0 END

Table 8. Algebraic, boolean, and logical operators.

Operator Function Example Equivalent function
- uniary negation -x NEGATE(x)

+ uniary positive +x

^ power function x^y POWER(x, y)

* multiply function x*y MULTIPLY(x, y)

/ divide function x/y DIVIDE(x, y)

DIV integer divide function x DIV y IDIV(x, y)

MOD integer modulo function x MOD y MODF(x, y)

AND boolean and logical and function x AND y ANDF(x, y)

SHL logical shift left function x SHL y SHIFTLEFT(x, y)

SHR logical shift right function x SHR y SHIFTRIGHT(x, y)

+ addition x + y ADD(x, y)

- subtraction x - y SUBTRACT(x, y)

OR boolean and logical or function x OR y ORF(x, y)

XOR boolean and logical xor function x XOR y XORF(x, y)

== or = boolean “is equal” function x == y ISEQ(x, y)

<> boolean “not equal” function x <> y ISNE(x, y)

< boolean “less than” function x < y ISLT(x, y)

> boolean “greater than” function x > y ISGT(x, y)

<= boolean “less than or equal to” function x <= y ISLE(x, y)

>= boolean “greater than or equal to”
function

x >= y ISGE(x, y)

Functions

 61

message = IF not result THEN
 “The result is not valid”
 ELSE
 “The result is valid”
 END {if}

status = IF height < 48 THEN
 -1
 ELSEIF (height >= 48) and (height <= 60) THEN
 0
 ELSE
 1
 END

The INTEGRATE function

The INTEGRATE function does one-dimensional numerical integration. The integration method can be changed, and

the user is given control on precision with some methods. Typically, INTEGRATE is used to integrate a likelihood over some

distribution of unmeasured heterogeneity or to renormalize an improper (degenerate) density function. Two formats of

INTEGRATE are
INTEGRATE <variable name> (<lower_limit_expression> , <upper_limit_expression>)
 <expression>
END

and

INTEGRATE <variable name> (<lower_limit_expression> , <upper_limit_expression>,
 <tolerance_expression>)
 <expression>
END

The variable name is the name of a variable of integration, which can be referenced within the expression. Within the

parentheses that follow the variable are two expressions: one for the lower limit, and one for the upper limit of integration.

These expressions are evaluated once prior to integration; The resulting values are then constant during the integration

operations. The <expression> is the integrand, and can be any legal expression (including, perhaps, more INTEGRATE

functions). For example, consider a model in which observed exact times (t) to failure are distributed according to a Weibull

PDF, f(t). In addition we model the distribution of unmeasured heterogeneity, g(z) ~ N(0, σz
2). Assume that the effect of z on

f(t) is loglinear on a, so that the first parameter of the Gompertz distribution is a’=aez. The likelihood for the ith observation

is:

Table 9. Operator precedence.

Operator(s) Precedence Category
- + not high Uniary operators
^ Exponent operator
* / div mod and shl shr Multiplying operators
+ - or xor Adding operators
= (or ==) <> < > <= >= low Relational operators

Functions

 62

25

1 25

(| 0,) (| ,)
N

z
z i

i
L g z f t ae b dzσ

= −

= ∏ ∫

In this model, we would like to estimate the parameters a, b, and σz from a series of observations. The mle mle mle mle code to estimate

this model is

MODEL
 DATA
 INTEGRATE z (-25, 25)
 PDF NORMAL(z) {g(z): heterogeneity}
 0, PARAM s LOW = 0.0001 HIGH = 5 START = 1 END
 END {pdf normal}
 *
 PDF GOMPERTZ(t) {f(t): distribution of failures}
 PARAM a LOW=0.0 HIGH=0.9 START=0.073 FORM=LOGLIN
 COVAR z 1, PARAM b LOW = 0.0001 HIGH = 1.4 START = 0.5 END
 END {param a}
 END {pdf Gompertz}
 END {integrate}
 END {data}
END {model}

The INTEGRATE function is particularly useful for 1) estimating distributions of unmeasured heterogeneity as shown

in the example; 2) estimating multilevel models for which one can integrate out the non-independence of observations 3)

dealing with left or left-interval censoring as is described in the Examples chapter; and 3) computing survivorship in custom

likelihood when a closed form is not available for the PDF.

mlemlemlemle currently provides four different methods for performing numerical integration. Each method has its strengths

and weaknesses. It should be kept in mind that numerical integration is difficult and time consuming—particularly once

integrals become nested. One useful trick for successful integration is to set the limits of integration as narrow as possible

without “shutting out” non-zero areas of the function to be integrated. In the above example, the limits of integration were set

to ±25, because even with s = 5, the area under the distribution outside these limits is ignorable.

Adaptive quadrature. This is the default method, and it can be defined by setting INTEGRATE_METHOD =

I_AQUAD. The method is an eight point adaptive quadrature integration routine adapted from the routine QUANC8 (Forsythe

et al. 1977). The method will recursively integrate the function until a specified precision is reached. Precision is defined by

changing the INTEGRATE_TOL constant. By default INTEGRATE_TOL = 0.000001. This method works well for relatively

smooth functions, and is probably the best general integration routine incorporated into mlemlemlemle.

Simpson. This method uses Simpson’s rule to evaluate integrals to a predefined tolerance, and is defined by setting

INTEGRATE_METHOD = I_SIMPSON. The method is adapted from the routine QSIMP (Press et al. 1986). The function will

be integrated until a predefined precision is reached or a maximum number of iterations are reached. Precision is defined by

changing the INTEGRATE_TOL constant. By default INTEGRATE_TOL = 0.000001. The maximum number of iterations is

set with the constant INTEGRATE_N and is 100 by default. This method is useful for smooth functions.

Closed trapazoidal. This method uses a brute force extended trapazoidal function to evaluate integrals. The

function to be integrated must be evaluable at the limits of integration; otherwise the opened trapazoidal should be used. The

method is defined by setting INTEGRATE_METHOD = I_TRAP_CLOSED. The extended trapazoidal rule will be evaluated at a

predefined number of equally spaced points defined by INTEGRATE_N (the default is 100). The minimum allowable steps is

eight. The method does not provide an error tolerance. Even so, the error is on the order of INTEGRATE_N-4. This brute-

force method is useful for functions that are not smooth enough for adaptive quadrature or Simpson.

Functions

 63

Open trapazoidal. This method is similar to the closed trapazoidal method, except that the function to be integrated

is never evaluated at the limits of integration. The method is defined by setting INTEGRATE_METHOD = I_TRAP_OPENED.

Table 10. Likelihoods returned by PDF for one, two, three, and four time variables under different conditions.

 Example When Class Resulting Likelihood
1 LNNORMAL(te) Exact failure at te ()eL f t=

2 LNNORMAL(tu, te) tu=te Exact failure at tu=te () ()u eL f t f t= =

3 LNNORMAL(tu, te) te=oo
te < tu

Right censored or cross-sectional
non-responder at tu () ()

u

u
t

L f z dz S t
∞

= =∫

4 LNNORMAL(tu, te) tu = 0 Cross-sectional responder at te

0

() ()
et

uL f z dz F t= =∫

5 LNNORMAL(tu, te) tu ≠ te Interval censored over the interval
(tu, te). Includes, as a limiting case
cross-sectional responder and
right-censored.

() () ()
e

u

t

u e
t

L f z dz S t S t= = −∫

6 LNNORMAL(tu, te, tα) tu = te Left-truncated exact failure () ()
()

()

u u

t

f t f tL
S t

f z dz
α

α
∞= =

∫

7 LNNORMAL(tu, te, tα) tu ≠ te Left-truncated, interval censored
failure

() () () ()
()

()

u e u e

t

S t S t S t S tL
S t

f z dz
α

α
∞

− −= =

∫

8 LNNORMAL(tu, te, tα, tω) tu = te Left- and right-truncated, exact
failure

() ()
() ()

()

e e
t

t

f t f tL
S t S t

f z dz
ω

α

α ω

= =
−

∫

9 LNNORMAL(tu, te, tα, tω) tu < te

tα ≤ tu

tω ≥ te

Left- and right-truncated, interval
censored failure

() () () ()
() ()

()

u e u e
t

t

S t S t S t S tL
S t S t

f z dz
ω

α

α ω

− −= =
−

∫

10 LNNORMAL(tu, te, tα) tu=te=tα Hazard () ()
()

u
u

u

f tL h t
S t

== =

11 LNNORMAL(tu, te, tα, tω) tu=te=tα Right-truncated hazard () ()
() ()

u
u

u

f tL h t
S t S tω

== =
−

Functions

 64

The LEVEL function

The LEVEL function provides a mechanism by which multilevel or hierarchical models can be constructed. The

syntax of the LEVEL function is
LEVEL <boolean expression> THEN
 <expression>
END

The effect of the level statement is to test <boolean expression> and, while the condition is true, form a product of likelihoods

out of the observations. The best way to understand the effect of the level command is by an example. The likelihood

 ,
1 1

() (| ,)
inN

i j
i j

L g z f t z dz
ω

α

θ
= =

 
=  

 
∏ ∏∫

is a standard model for which a distribution of clustering (or heterogeneity), g(z), is estimated along with the parameters (θ).

There are two levels that make up this model. The outer level denoted by the outer product is the subject level—that is, we

have N subjects and this outer product is over those subjects. For each of N individuals, there are ni observations. The inner

level formed by the innermost product is the likelihood formed by ni repeated observations of the ith subject.

The rationale for this type of model is that the repeated observations for individuals violate the condition that the

likelihoods for each observation are independent. To fix this problem, we can compute an expected likelihood for each

individual’s observations. The integral computes the expected likelihood for each subject. Here is a concrete example

Say we have data in which levels are denoted by the number 1 or 2 as in
1 Tom Smith
2 23.4 26.8 . . .
2 19.2 22.9 . . .
2 26.8 -1 . . .
1 Steven Jones
2 19.5 23.7 . . .
2 26.8 -1 . . .
1 Martin Johnson
2 0 44.1 . . .
2 19.9 22.7 . . .
2 19.9 -1 . . .
...

where the observations beginning with a 2 correspond to the individual at the preceding 1, so that Tom Smith has three

observations beginning 23.4, 19.2, and 26.8. If we were to treat all observations, within and among individuals, as

independent, we could simply drop all of the level 1 lines, and form a likelihood as the product of all observations. But, if we

want to treat observations within individuals as correlated (non-independent), the we can integrate out a distribution of

common effects. The likelihood in mlemlemlemle would be specified as

Functions

 65

MLE
 DATAFILE(“example.dat”)
 OUTFILE(“example.out”)

 DATA
 lev FIELD 1
 topen FIELD 2
 tclose FIELD 3
 END

 MODEL
 DATA
 LEVEL lev = 2 THEN
 INTEGRATE z (-12, 12)
 PDF NORMAL (z)
 0, PARAM sigmaz LOW = 0.0001 HIGH = 2 START = 0.2 END
 END {pdf}
 *
 PDF NORMAL(topen tclose)
 PARAM mu LOW = 10 HIGH = 100 START = 30 FORM = LOGLIN
 COVAR z 1
 END {param}
 PARAM sigma LOW = 0.0001 HIGH = 10 START = 1 FORM = NUMBER END
 END {pdf}
 END {integrate}
 END {level}
 END {data}
 RUN
 FULL
 END {model}
END {mle program}

The PARAM function

mlemlemlemle has a general method for defining all parameters to be used in a likelihood model.7 The PARAM function defines a

parameter and its characteristics. When models are “solved”, free parameters are estimated by iteratively plugging new

values in for those parameters until the values that maximize the likelihood are found. In other words, free parameters are

values that are to be estimated by mlemlemlemle —they are the unknowns in likelihood models. If the parameter is not constrained to

some fixed value in the RUN part of the model statement, mlemlemlemle will estimate the value of that parameter.

Covariate effects (and their associated parameters) may be modeled within the parameter statement, as well.

Parameters are specified as
PARAM x HIGH = <expr>.LOW = <expr> START = <expr> TEST = <expr>..END

or

PARAM x HIGH = <expr>.LOW = <expr> START = <expr> TEST = <expr>
 COVAR <expr> PARAM z ... END
END {param}

Here is an example of a likelihood hand-coded for an exponential PDF for exact failure times. PARAMs, built-in

functions, and pre-defined parameters are all used in this likelihood:
MODEL
 DATA
 PARAM lambda LOW = 0 HIGH = 1 START = 0.23 END * EXP(-lambda * t)
 END
RUN
 FULL
END

7 The word parameter is used in a very specific way, as defined in Chapter 1. Parameters are the quantities to be estimated in a likelihood

model

Functions

 66

Notice that lambda is first defined as a parameter, and thereafter is used as an ordinary variable. As mlemlemlemle iteratively seeks a

solution, the value of lambda will be updated. As the likelihood itself is being computed, the PARAM function will simply

return the current estimate of lambda.

Sometimes parameters are constrained for the purpose of hypothesis testing. They may be held constant, or fixed to

the value of another parameter. These are called fixed parameters, and an estimate will not be found for them. mlemlemlemle provides

the mechanism for fixed parameters primarily to reduce models from more complicated to simpler forms. For example, in a

slope function, we may have reason to believe that the slope m is one. Perhaps this is because of the nature of the physical

system we are modeling. We could first fit our collection of x values to the model with parameter m free, and secondly fit it

with m held constant to 1. Statistical criteria can be used to determine whether m deviates from the value we expected it to be.

Typically, parameters are defined for the intrinsic parameters of a PDF function. For example, the normal PDF has

two intrinsic parameters µ and σ. The first parameter specified in the parameter list will be treated as µ. The second will be

Table 11. Forms and transformations for parameters.

Form Parameter (p’), covariates (xi), covariate
parameters (ββββ), and the value returned
by the PARAM function (pi)

Notes

NUMBER pi = p’ Default when no COVARs are modeled.
ADD pi = p’ + xiββββ Must be used with care when the resultant parameter is

constrained to positive values because pi might take on
negative values for some combinations of xiββββ

INVERT pi = 1/(p’ + xiββββ) The denominator must not be zero.
INVADD pi = 1/p’ + xiββββ p’ must not be zero.
INVMULTIPLY pi = xiββββ/p’ p’ must not be zero.
INVLOGLIN pi = exp(xiββββ)/p’ p’ must not be zero.
DIVIDE pi = p’/xiββββ xiββββ must not be zero.
POWER i

ip p β′= x

POWEREXP exp()i
ip p β′= x

EXPADD pi = exp(p’ + xiββββ) = exp(p’)exp(xiββββ) Constrains pi to positive values for all p’ and xiββββ.
MULTIPLY pi = p’× xiββββ A multiplicative specification.
EXCESS pi = p’exp(1 + xiββββ)
LOGLIN pi = p’exp(xiββββ) This is a common specification, especially for parameters that

are interpreted as hazards. When p’ is constrained positive,
the pi will also be positive. Like EXPADD but p’expadd =
exp(p’loglin). LOGLIN is the default specification whenever a
COVAR is defined.

LOGISTIC If ALTERNATE_LOGISTIC = FALSE,
 pi = 1/[1 + exp(p’ + xiββββ)].
If ALTERNATE_LOGISTIC = TRUE,
 pi = exp(p’ + xiββββ)/[1 + exp(p’ + xiββββ)]

Frequently used for parameters that are interpreted as
probabilities because, for all values of p’ + xiββββ, pi will be
constrained from zero to one. The alternative forms are
related to each other as p’form1=1– p’form2

LOGIT pi = ln[exp(p’ + xiββββ)/(1 + exp(p’ + xiββββ)] This specification is useful when pi can take on any value
from –∞ to ∞ and p’ + xiββββ is a probability.

Functions

 67

treated as σ. How can you know the proper order for parameters? Generally location parameters appear first (and are usually

denoted a in this manual), scale parameters are second and shape parameters are third. Even so, you can get a quick synopsis

of each type of PDF by using the -h option from the command line, e.g.: mle -h SHIFTWEIBULL

Parameters are also used to model effects of covariates on other parameters. Here is an example in which two

parameters, used in place of some fixed values of µ and σ for a normal distribution, are defined with two covariate

parameters, each:
PDF NORMAL(topen tclose)
 PARAM mean LOW = 100 HIGH = 400 START = 270 TEST = 0 FORM = LOGLIN
 COVAR sex PARAM b_sex_mu LOW = -2 HIGH = 2 START = 0 END
 COVAR weight PARAM b_weight_mu LOW = -2 HIGH = 2 START = 0 END
 END
 PARAM stdev LOW = 0.1 HIGH = 100 START = 20 FORM = LOGLIN
 COVAR sex PARAM b_sex_sig LOW = -2 HIGH = 2 START = 0 END
 COVAR weight PARAM b_weight_sig LOW = -2 HIGH = 2 START = 0 END
 END
END

In this example, the first parameter of the normal distribution (µ) has two covariates and their corresponding

parameters modeled on it. The exact specification of how covariates and their parameters are modeled depend on the FORM of

the intrinsic parameter. In the example, the FORM = LOGLIN specifies that a log-linear specification is to be used. The log-

linear specification is µi = µ’exp(xiββββ), where µ’ is the estimated intrinsic parameter (mean in this case). Thus, for the ith

observation, the µ parameter of the normal distribution will be constructed as: µi=mean×exp(sexi×b_sex +

weighti×b_weight). The second parameter, stdev, has the same two covariates modeled on it, but the parameter names

are (and must be) different from the parameters modeled on mean.

For some forms, the parameter itself is transformed. For example, when a parameter is a probability the parameter

can be defined as:
PARAM p LOW = -999 HIGH = 999 START = 0 FORM = LOGISTIC END

The logistic transformation permits the parameter p to take on any value from negative infinity to infinity, but the resulting

value passed used by the likelihood will be constrained to the range (0, 1). In other words, mle mle mle mle will estimate a parameter over

the range –999 to 999, but before that parameter is used in computation, it will undergo a logistic transformation as p = 1/[1 +

exp(p’)], so that the value of p will be a probability. mlemlemlemle currently provides a limited number of specifications for how

parameters and covariates are modeled (Table 4). Even so, this mechanism for modeling covariates on any parameter is

extremely general and provides the basis for building unique and highly mechanistic (Box et al. 1978) or etiologic (Wood

1994) models.

Setting Parameter Information

Four characteristics may be set for each parameter in addition to the FORM. They are: 1) the highest possible value

that can be tried for the parameter, 2) the lowest possible value that can be tried for the parameter, 3) the starting guess to help

mlemlemlemle out from the start, and 4) a test value against which the parameter will be tested when standard errors are computed. In the

previous example, the mean parameter was constrained to the range [100, 400] and the initial guess was 270.

Use care when setting the HIGH and LOW limits. Most importantly, limits must be constrained to valid ranges for the

intrinsic parameter. Thus, for the MIX mixing proportion parameter (the first of the three parameters) then, HIGH = 1 and

Functions

 68

LOW = 0, should be defined as is appropriate for a probability—unless some FORM like FORM = LOGISTIC is used to

constrain the resulting parameter to between 0 and 1. Sometimes it is useful to impose narrower limits, perhaps to avoid

getting hung-up at a local maximum or to solve the model more quickly. Be careful, though. Limits that are too narrow may

exclude the global maximum—after all, the best parameter estimates for a set of data are presumably unknown. Excessively

narrow limits may cause problems when numerical derivatives for the variance-covariance matrix are computed, as well.

Also, likelihood confidence intervals will bump up and stop at the limits you set.

The TEST = xxx part of a PARAM function provides a value against which the parameter will be tested (in some

reports). In a sense, the TEST value is a null hypothesis value (h0). The test performed is ˆ ˆ() / ()ot p h SE p= − , where p̂ is

the maximum likelihood parameter estimate and ˆ()SE p is the standard error for the parameter estimate. The t-test is

provided for convenience only. mlemlemlemle does not make use of the test in any way.

The PDF function

The purpose of the PDF function is to specify the component of a pre-defined probability density or distribution

functions in mlemlemlemle. Although the name is PDF, the PDF function can return either the probability density function or specified

Table 12. Brief summary of some types of functions in mlemlemlemle.

function Brief description
PDF Specifies a pre-defined probability or cumulative density function. Returns the value of the density or

distribution function as is appropriate to the arguments with which is was called.
INTEGRATE Integrates a function and returns the value of the integral.
IF THEN ELSE Evaluates a condition and returns the appropriate subfunction.
PREASSIGN Computes a subfunction and assigns the result to a variable. Then it computes and returns the second

subfunction.
POSTASSIGN Computes the first subfunction. Then it computes the second subfunction, assigns the result to a

variable, and then returns the value of the first subfunction.
PRODUCT Iterates over some limits and takes the product of a subfunction.
SUMMATION Iterates over some limits and sums a subfunction.

function calls A number of ordinary mathematical functions. Example: SQRT(x) and ADD(x, y).

quick conditionals ZEROIF, ONEIF, NEGONEIF, INFINITYIF, NEGINFINIF, NEGONEIF: return common values

conditional on simple tests.

constants, variables Pre-defined and user defined variables can be used as functions.
PARAM A parameter to be estimated.
DATA The data function cycles through all observations
LEVEL,

LEVELDELTA
Creates a nested or multilevel likelihood.

Functions

 69

areas under the PDF curve including the cumulative and survival density functions, and even the hazard function. In addition,

the PDF function can return areas or densities that are left and right truncated. The structure of the PDF function call is:
PDF <PDF name> (<time variable1>, <time variable2>, ...)
 <intrinsic parameter 1>,
 <intrinsic parameter 2>,
 ...
 <optional HAZARD parameter>
END

The name following PDF is the name of the built-in distribution. A brief summary for each built-in distribution is

given in Table 13. A more complete description of each distribution is given in the Appendix.

Time variable list is a list of the time arguments passed to the PDF. Most univariate PDFs can take from one to four

‘time’ arguments.8 In fact, these four times describe a single observation in such a way as to incorporate defects in the

observation process (right censoring, left truncation, right truncation, cross-sectional). A description of how the four

arguments combine to specify a probability are given in the section that follows. Note that the time arguments can be any

expression, so that time shifts and transformations can be incorporated in this list.

Intrinsic parameter list provides specifications for the PDF’s intrinsic parameters. The order that the intrinsic

parameters are specified is important; it corresponds to how the PDF is defined within mlemlemlemle.. The PDFs chapter lists the order

for intrinsic parameters; alternatively, the command line mle -h can be used to determine the proper argument order. Note

that any expression can be used for an intrinsic parameter. That is, you do not need to use a PARAM function for the intrinsic

parameters, although this is the most common use. Here is an example in which the location parameter is fixed to a constant

for a shifted lognormal distribution:
PDF SHIFTLOGNORMAL (tooth_eruption_age)
 9, {shift the time back to conception}
 PARAM location LOW = 1 HIGH = 4 START = 2.5 END,
 PARAM scale LOW = 0.0001 HIGH = 3 START = 0.9 END
END

PDF time arguments

Most PDFs can have as few as one and as many as four time arguments specified. They are: tu, the last observation

time before an event; te, the first observed time after the event; tα, the left truncation time for the observation or the PDF; and

tω, the right truncation time for the observation or the PDF. Understanding how these four times act on the PDF statement is

critical to creating the desired and proper likelihood.

PDFs contribute to likelihoods in a number of ways. In survival analysis, for example, the likelihood for an exact

failure is given by the value of the PDF at the exact point of failure. For a right censored observation, the likelihood is given

by summing up (integrating) all possible PDF values from the last observation time until the maximum possible time. The

likelihood for a cross-sectional “responder” is the integral from zero to the time of first observation. Table 6 lists the

likelihoods that result from the four time variables for different conditions. For example, when tu=te or when only one time

variable is specified, mlemlemlemle returns the density at tu. This is the desired likelihood for an exact failure. Likelihoods for right and

interval censored observations, with and without left and right truncation are given in Table 6.

8 These are called time variables in the context of survival analysis; however, they may represent other measurements (length, dose, height,

etc.).

Functions

 70

The Hazard Parameter

For most parametric distributions (like the normal or lognormal distributions) the hazard function does not take on a

simple or closed form. For this reason, most studies have modeled the covariates as acting on the failure time for these

distributions. Nevertheless, there is no inherent reason why hazards models cannot be constructed using distributions without

a closed form for the hazards functions. Most of the PDFs built into mlemlemlemle provide a general mechanism for covariates to be

modeled as affecting the hazard of failure, rather than (or in addition to) affecting intrinsic parameters. Here is an example:
PDF NORMAL(topen tclose)
 PARAM mean LOW = 100 HIGH = 400 START = 270 TEST = 0 FORM = LOGLIN END,
 PARAM stdev LOW = 0.1 HIGH = 100 START = 20 END,
 HAZARD COVAR sex PARAM b_sex LOW = -2 HIGH = 2 START = 0 END
 COVAR weight PARAM b_weight LOW = -2 HIGH = 2 START = 0 END
 END {hazard}
END

The covariates sex and weight are modeled to effect on the hazard of failure. Parameters b_sex and b_weight provide

estimates of the effect.

The HAZARD statement always provides a proportional hazards specification modeled directly on the hazard of the

PDF. Usually, the specification is loglinear, so that the hazard for the ith observation including the covariate effects defined

as hi(ti|xiββββ) = h(ti)exp(xiββββ), where h(t) is the baseline hazard for the specified PDF. Then, the survival function becomes

Si(ti|xiββββ) = S(ti)exp(xββββ), and the probability density function becomes fi(ti|xiββββ) = f(ti)S(ti)exp(xββββ)–1exp(xiββββ). The reason for

exponentiating the xiββββ array is to prevent it from going negative (hazards are always be positive).

A multiplicative form for the proportional hazards specification can also be specified by setting the constant

EXP_HAZARD = FALSE (it is TRUE by default). Then, the model is hi(ti|xiββββ) = h(ti)xiββββ, S(ti|xiββββ) = S(ti)xββββ, and f(ti|xiββββ) =

f(ti)S(ti)xββββ–1xiββββ. You must insure that xiββββ never goes negative.

Table 13. Pre-defined distributions that may be used within the PDF function.

Name Comments Parameters Variables
ARCSINE Arcsine distribution none tu, te, tα, tω
ASYMPTOTIC-
RANGE

Asymptotic range distribution a (location), b (scale) tu, te, tα, tω
BERNOULLI-
TRIAL

Bernoulli distribution p (proportion) outcome =
0 or non-0

BETA Beta distribution a (shape), b (shape) tu, te, tα, tω
BINOMIAL Binomial distribution p (probability), n (count) tu, te, tα, tω
BIRNBAUM-
SAUNDERS

Birnbaum-Saunders distribution a (location), b (scale) tu, te, tα, tω
BIVNORMAL Bivariate normal distribution. µx, σx, µy, σy, ρ (correlation) tux, tuy, tex, tey,

tαx, tαy, tωx, tωy
CAUCHY Cauchy distribution a (location), b (scale) tu, te, tα, tω
CHI Chi distribution a (location), b (scale), c (shape) tu, te, tα, tω
CHISQARED Chi squared distribution a (location), b (scale) tu, te, tα, tω
COMPOUND-
EXTREME

Compound extreme a (location), b (scale), c (shape) tu, te, tα, tω
DANIELS Daniel’s distribution none tu, te, tα, tω
DISK Disk distribution a (location), b (scale) tu, te, tα, tω
EXPONENTIAL Exponential distribution λ (hazard) tu, te, tα, tω
FAILED Returns 1 if a failure occurs or 0 if no

failure.
none tu, te, tα, tω

Functions

 71

GAMMA Gamma distribution a (location), b (scale), c (shape) tu, te, tα, tω
GAMMAFRAIL Constant hazard with Gamma distributed

heterogeneity
h (constant hazard), c (frailty distribution
parameter)

tu, te, tα, tω

GAUSSIAN Normal distribution. (NORMAL). µ (location, mean), σ (scale, standard
deviation)

tu, te, tα, tω

GENGAMMA Generalized gamma distribution a (location), b (scale), c (shape) tu, te, tα, tω
GENGUMBEL Generalized Gumbel distribution a (location), b (scale), c (shape) tu, te, tα, tω
GEOMETRIC Geometric distribution p (probability) tu, te, tα, tω
GOMPERTZ Gompertz PDF. a (baseline hazard), b (time-dependent

hazard)
tu, te, tα, tω

GUMBEL Gumbel distribution. (LARGEEXTREME). a (location), b (scale) tu, te, tα, tω
HORSESHOE Horseshoe family including symmetric

quad, quart, and sextic distributions
a (location), b (scale), c (shape) tu, te, tα, tω

HYPERBOLIC-
SECANT

Hyperbolicsecant distribution a (location), b (scale) tu, te, tα, tω
HYPER-
GEOMETRIC

Hypergeometric distribution p (proportion), m (count) n (count) tu, te, tα, tω
HYPER2EXP Two point hyperexponential distribution p (proportion); λ1, λ2 (subgroup hazards). tu, te, tα, tω
HYPO2EXP Two stage hypoexponential distribution λ1, λ2 (subgroup hazards) tu, te, tα, tω
IMMUNE Returns 0 if failure occurs or 1 if no

failure. Used with MIX to model sterility.
(STERILE).

none tu, te, tα, tω

INVBETA1 Inverse beta distribution. First type a (location), b (scale), c (shape) tu, te, tα, tω
INVBETA2 Inverse beta distribution. Second type a (location), b (scale), c (shape) tu, te, tα, tω
INVCHI Inverse chi distribution. a (location), b (scale) tu, te, tα, tω
INVGAMMA Inverse gamma distribution. a (location), b (scale) tu, te, tα, tω
INVGAUSSIAN Inverse Gaussian distribution. a (location), b (scale) tu, te, tα, tω
LAPLACE Laplace distribution. Also called double,

2-tailed or bilateral exponential.
a (location), b (scale) tu, te, tα, tω

LARGEEXTREME Largest extreme value distribution (type
1). (GUMBEL).

a (location), b (scale) tu, te, tα, tω

LINEARHAZARD Linear hazard distribution a (baseline), b (time-dependent) tu, te, tα, tω
LNGAMMA loggamma distribution a (location), b (scale), c (shape) tu, te, tα, tω
LNLOGISTIC Two parameter log-logistic distribution. a (location), b (scale) tu, te, tα, tω
LNNORMAL Lognormal distribution. (LOGNORMAL). a (location, median), b (scale) tu, te, tα, tω
LOGISTIC Two parameter logistic distribution a (location), b(scale) tu, te, tα, tω
LOGNORMAL Lognormal distribution. (LNNORMAL). a (location, median), b (scale) tu, te, tα, tω
LOGSERIES Logseries distribution. p (proportion) tu, te, tα, tω
LOWMAX Lowmax distribution. a (location), b (scale), c (shape) tu, te, tα, tω
MAKEHAM Gompertz-Makeham PDF a1, a2, b (hazards) tu, te, tα, tω
MAXWELL Maxwell distribution. a (location), b (scale) tu, te, tα, tω
MIXMAKEHAM 2-point mixed Gompertz-Makeham

distribution.
p (proportion) a1 (first constant hazard), a2
(second constant hazard), a2 , b (hazards).

tu, te, tα, tω

NEGBINOMIAL Negative binomial distribution p (proportion) n (count). tu, te, tα, tω
NORMAL The normal distribution. (GAUSSIAN) µ (location, mean), σ (scale, standard

deviation)
tu, te, tα, tω

PARETO Pareto distribution. a (location), c (shape) tu, te, tα, tω
PASCAL Pascal distribution. p (proportion) n (count). tu, te, tα, tω
POISSON Poisson distribution. n (count) tu, te, tα, tω
POWER-
FUNCTION

Power function distribution. a (location), b (scale), c (shape) tu, te, tα, tω
RASIED-COSINE Raised cosine distribution. a (location), b (scale) tu, te, tα, tω
RANDOMWALK Random walk distribution. a (location), b (scale) tu, te, tα, tω
RAYLEIGH Rayleigh distribution. b (scale) tu, te, tα, tω
RECTANGULAR Continuous uniform distribution.

(UNIFORM)
none tu, te, tα, tω

REVPOWER-
FUN TION

Reverse power function distribution. a (location), b (scale), c (shape) tu, te, tα, tω

Functions

 72

FUNCTION
RINGINGEXP0 Ringing exponential distribution at 0

degrees phase.
a (location), b (scale), c (shape) tu, te, tα, tω

RINGING-
EXP180

Ringing exponential distribution at 180
degrees phase.

a (location), b (scale), c (shape) tu, te, tα, tω

SHIFTED-
LOGNORMAL

Shifted lognormal distribution. a (location), b (scale), c (shape) tu, te, tα, tω
SHIFTED-
WEIBULL

Shifted weibull distribution. a (location), b (scale), c (shape) tu, te, tα, tω
SILER Siler competing hazards distribution. a1, b1, a2, a3, b3 where, as are baseline

hazards, bs are time-dependent.
tu, te, tα, tω

SMALLEXTREME Smallest extreme value distribution. a (location), b (scale) tu, te, tα, tω
SUBBOTIN Subbotin distribution a (location), b (scale), c (shape) tu, te, tα, tω
UNIFORM Continuous uniform distribution.

(RECTANGULAR)
none tu, te, tα, tω

VONMESIS Von Mesis distribution tu, te, tα, tω
WEIBULL Weibull distribution. b (scale), c (shape) tu, te, tα, tω

The PREASSIGN and POSTASSIGN functions

The likelihood is always specified as a single function. This means that within a likelihood, a special function must

be used to compute intermediate results or perform other computations. The PREASSIGN...,...END function provides a

mechanism to compute partial results of a likelihood outside of the main likelihood, or within part of the likelihood. The

statement takes on this form
PREASSIGN
 <variable1> = <expression1>
 <variable2> = <expression2>
 ...
,
<expression>
END

One or more assignment statements are defined immediately after the PREASSIGN. Each of these assignment

statements will be executed and the result assigned to the <variable> specified. After that, the <expression> (just before the

END) is evaluated. The PREASSIGN function itself returns the results of that evaluation. For example, the following code

would reparameterize the exponential PDF so that the parameter λ is replaced by the function -b-1

MODEL
 PREASSIGN
 z = -1/PARAM b LOW = 0 HIGH = 1 START = 0.1 END
 ,
 DATA
 PDF EXPONENTIAL(t) z END
 END {data}
 END {preassign}
RUN
 FULL
END

Notice that first the value z is assigned the value -b-1. Next the likelihood eλt is computed. But, lambda is constrained to z.

The assignment in the first part of the PREASSIGN function will be executed for each observation.

The PREASSIGN function is particularly useful for defining a series of parameters, “up front”, so that the likelihood

function itself is easier to specify. Here is an example of recodeing a program so that all parameters are defined in advance.

Functions

 73

MODEL {mixture of two normal distributions}
 PREASSIGN
 pr = PARAM p LOW = 0 HIGH = 1 START = 0.5 END
 u1 = PARAM mu1 LOW = 5 HIGH = 14 START = 8 END
 s1 = PARAM sigma1 LOW = 0.1 HIGH = 5 START = 1.2 END
 u2 = PARAM mu2 LOW = 0 HIGH = 6 START = 2 END
 s2 = PARAM sigma2 LOW = 0.01 HIGH = 5 START = 1.2 END
 ,
 DATA
 MIX(pr, PDF NORMAL(topen tclose) u1 s1 END, PDF NORMAL(topcn tclose) u2 s2 END)
 END {data}
 END {preassign}
RUN
 FULL
END {model}

The POSTASSIGN...,...END function is similar to the preassign function, except that the list of assignment

statements come after the function expression. The form is
POSTASSIGN
 <expression>
,
 <variable1> = <expression1>
 <variable2> = <expression2>
 ...
END

The function defined by the first <expression> is evaluated first, and is the result returned by the POSTASSIGN

function. Then the list of statements is evaluated with each result assigned to the corresponding <variable>.

The PRODUCT function

The PRODUCT function computes a finite product. The format is similar to the INTEGRATE or SUMMATION

functions:
PRODUCT <variable name> (<lower_limit> , <upper_limit>)
 <expression>
END

or

PRODUCT <variable name> (<lower_limit> , <upper_limit>, <convergence>)
 <expression>
END

The expressions <lower_limit> and <upper_limit> define the lower and upper limits of the product. These

expressions (as well as the optional <convergence> expression) are evaluated once. The optional <convergence> expression

provides a second way to terminate the series. When used, the product will terminate when the difference between one

product and the next is less than the value of the <convergence> expression

The PRODUCT function can be used, for example, to calculate likelihoods that incorporate geometric series. The

inner <expression> will be repeatedly evaluated with the index variable incremented for each evaluation. Here is an example

of a likelihood consisting of a Polya-Eggenberger distribution (Eggenberger and Pólya 1923) for exact failures at integer

times t. The probability density function for the Polya-Eggenberger distribution is

Functions

 74

1 1

0 0
1

0

() (1)
(| , ,)

(1)

i it n t

i ji
i n

k

n
p ic p jc

t
f t p n c

kc

− − −

= =
−

=

 
+ − + 

 =
+

∏ ∏

∏

There are three products that must be computed as part of computing the density function. The following mlemlemlemle program

fragment shows the code needed to implement the Polya-Eggenberger distribution. Parameters p and c are to be estimated for

a set of observations t.

MODEL
 DATA
 COMBINATIONS(n, t)
 * PRODUCT i (0, t - 1)
 PARAM p LOW = 0 HIGH = 1 START = 0.5 END
 * i * PARAM c LOW = -1 HIGH = 25 START = 1 END
 END {product}
 *
 PRODUCT j (0, n - t - 1)
 1 - p + j*c
 END {product}
 /
 PRODUCT k (0, n - 1)
 1 - k*c
 END
 END {data}
RUN
 FULL
END

Simple functions

An <expression> can be a built-in simple function call, like SIN(<expression>), POWER(<expression> ,

<expression>), etc.. Simple functions are “simple” because they have a standard calling format. Given a list of zero or

more arguments, they evaluate a function and return a single value. The function arguments themselves are <expressions>.

Some examples are

x = FACT(4) {evaluates to 24}
y = SQRT(44.5) {evaluates to 6.6708...}
z = BETA(1.2, 9*3/10 + 1) {evaluates to 0.185...}
q = RAND {evaluates to a random number from 0 to 1}

A list all of the built-in simple functions comes at the end of this chapter.

The SUMMATION function

The SUMMATION function computes a finite sum. The format is similar to the INTEGRATE or PRODUCT

functions:
SUMMATION <variable name> (<lower_limit> , <upper_limit>)
 <expression>
END

or

SUMMATION <variable name> (<lower_limit> , <upper_limit>, <convergence>)
 <expression>
END

Functions

 75

The expressions <lower_limit> and <upper_limit> define the lower and upper limits of the sum. These expressions

(as well as the optional <convergence> expression) are evaluated once. The optional <convergence> expression provides a

second way to terminate the series. When used, the summation will terminate when the difference between one sum and the

next is less than the value of the <convergence> expression

Here is an example of a likelihood hand-coded for a Thomas distribution (Thomas 1949) for exact failures at integer

times t. The probability density function for the Thomas distribution is

()
()1

(| ,)
! !

ii
t iib it

a
i

i

e a ib
f t a b e

i t i

−−
−

=
=

−∑

A single finite summation must be computed as part of computing the density function. The following mlemlemlemle program fragment

shows the code needed to implement the Thomas distribution. Parameters a and b are to be estimated for observed times t.

MODEL
 DATA
 EXP(-PARAM a LOW = 0.0001 HIGH = 20 START = 5 END)
 * SUMMATION i (1, t)
 EXP(-i * PARAM b LOW=0.0001 HIGH=40 START=0.5 END)
 * a^i * (i*b)^(t - 1) / (FACT(i)*FACT(t - 1))
 END {summation}
 END {data}
RUN
 FULL
END

List of simple functions

ABS(x)

Returns: Absolute value of x

Range: Positive values

Examples: ABS(-4) returns 4

 ABS(4) returns 4

 ABS(-4.0) returns -4.0

ADD(x, y)

Returns: The sum of two numbers, or the concatenation of strings or characters. This is the functional
form of “x + y”.

Examples: ADD(1, 5) returns 6. The result is an integer.

 ADD(2.5, 2.5) returns 5.0. The result is a real number.

 ADD(‘a’, “ string”) returns “a string”.

Notes: An integer is returned if both arguments are integers. A real value is returned if either
argument is real. A string is returned with string or character arguments.

Functions

 76

ANDF(x, y)

Returns: Logical or boolean AND function. This is the functional from of x AND y.

Examples: ANDF(TRUE, TRUE) returns TRUE

 ANDF(15, 28) returns 12

 ANDF(2x010101, 2x000111) returns 5

Notes: If both x and y are integer types, ANDF(x, y) returns the bitwise (logical) AND of the two
numbers. If x and y are boolean types, ANDF(x, y) returns the boolean AND of the two
numbers.

See also ORF, NOTF, XORF

ARCCOS(x)

Returns: Inverse cosine of x, which is the angle (in radians) whose cosine is x

Constraints: –1 ≤ x ≤ 1

Examples: ARCCOS(0.5) returns 1.0.

 ARCCOS(-1/2) returns 2.0943951023932

ARCCOSH(x)

Returns: Inverse hyperbolic cosine of x.

Constraints: x ≥ 1

Examples: ARCCOSH(2) returns 1.3169578969248

 ARCCOSH(1) returns 0.0

ARCCOT(x)

Returns: Inverse cotangent of x.

Constraints: x ≠ 0

Examples: ARCCOT(3) returns 0.3217505543966

ARCCOTH(x)

Returns: Inverse hyperbolic cotangent of x.

Constraints: x ≠ 0

Examples: ARCCOTH(2) returns 0.5493061443341

Functions

 77

ARCCSC(x)

Returns: Inverse cosecant of x.

Constraints: x ≠ 0

Examples: ARCCSC(5) returns 0.2013579207903

ARCCSCH(x)

Returns: Inverse hyperbolic cosecant of x.

Constraints: x ≠ 0

Examples: ARCCSCH(5) returns 0.1986901103492

ARCSEC(x)

Returns: Inverse secant of x.

Constraints: x ≠ 0

Examples: ARCSEC(1) returns 0.0

ARCSECH(x)

Returns: Inverse hyperbolic secant of x.

ARCSIN(x)

Returns: Inverse sine of x, or the number whose angle (in radians) is x

Constraints: -1 ≤ x ≤ 1

Range: -π/2 to π/2

Examples: ARCSIN(1) returns 1.5707963267949

 ARCSIN(0.5) returns 0.5235987755983

ARCSINH(x)

Returns: Inverse hyperbolic sine of x, which is the value whose hyperbolic sine is x

Examples: ARCSINH(-2.5) returns -1.647231146371

 ARCSINH(0) returns 0.0

Functions

 78

ARCTAN(x)

Returns: Inverse tangent of x, which is the angle (in radians) whose tangent is x

Range: -π/2 to π/2

Examples: ARCTAN(0) returns 0.0

 ARCTAN(1) returns 0.7853981633974

ARCTANH(x)

Returns: Inverse hyperbolic tangent of x.

Constraints: -1 < x < 1

Examples: ARCTANH(0) returns 0.0

 ARCTANH(0.5) returns 0.5493061443341

BESSELI(x, y)

Returns: The modified Bessel function of the first kind I (integer order x) of real y.

See also: BESSELJ, BESSELK, BESSELY

BESSELJ(x, y)

Returns: The Bessel function of the first kind J (integer order x) of real y.

See also: BESSELI, BESSELK, BESSELY

BESSELK(x, y)

Returns: The modified Bessel function of the second kind K (integer order x) of real y.

See also: BESSELI, BESSELJ, BESSELY

BESSELY(x, y)

Returns: The Bessel function of the second kind Y (integer order x) of real y.

See also: BESSELI, BESSELJ, BESSELK

Functions

 79

BETA(ν, ω)

Returns: Euler's beta function.
1

1 1

0

BETA(,) (1)z x dxν ων ω − −= −∫ .

Constraints: ν > 0, ω > 0

Examples: BETA(5, 2) returns 0.0095238095231

 BETA(4.0, 8.0) returns 0.0007575757575

See also: BETA, IBETA, GAMMA, PDF BETA

BOOL2STR(x)

Returns: A string from boolean expression x.

Examples: BOOL2STR(1 <> 1) returns "FALSE"

 BOOL2STR(TRUE) returns "TRUE"

See also: INT2STR, REAL2STR

CEIL(x)

Returns: The least integer greater than or equal to x.

Examples: CEIL(1.9) returns 2.0

 CEIL(2.0) returns 2.0

 CEIL(2.1) returns 3.0

 CEIL(-1.9) returns -1.0

 CEIL(-2.0) returns -2.0

 CEIL(-2.1) returns -2.0

See also: FLOOR, ROUND, INT

COMB(x, y)

Returns: The binomial coefficient, which is combinations of x1 elements taken x2 at a time, which is:

 x!/[y! (x – y)!]

Constraints x ≥ y, x and y are integer expressions.

Examples: COMB(13, 10) returns 286.0

 COMB(5, 5) returns 1.0

See also: PERMUTATIONS

Functions

 80

COMP(x)

Returns: Complement of x. The results is computed as SIGN(1-ABS(x), x).

Examples: COMP(0) returns 1.0

 COMP(0.25) returns 0.75

 COMP(1) returns 0

See also: COMPN

COMPN(x, n)

Returns: The n complement of x. The results is computed as SIGN(n-ABS(x), x).

Examples: COMPN(4, 3) returns 1.0

 COMPN(-10, 2) returns -8.0

See also: COMP

CONCAT(x1, x2)

Returns: The concatenation of two strings or characters.

Examples: CONCAT("hello", " world") returns "hello world"

 CONCAT('a', " string") returns "a string"

 CONCAT('a', 'b') returns "ab".

See also: ADD

COS(x)

Returns: Cosine of x.

Examples: COS(0) returns 1

 COS(1) returns 0.5403023058681

 COS(DTOR(60)) returns 0.5

COSH(x)

Returns: The hyperbolic cosine of x.

Examples: COSH(0) returns 1

 COSH(4) returns 27.308232836016

Functions

 81

COT(x)

Returns: Cotangent of x.

COTH(x)

Returns: The hyperbolic cotangent of x.

CSCH(x)

Returns: The hyperbolic cosecant of x.

DEC(x)

Returns: x – 1

Constraints: x must be an integer

Examples: DEC(42) returns 41

 DEC(-42) returns -43

See also: INC

DEFALULTOUTNAME

Returns: A reasonable output file name based on the name of the mlemlemlemle program. The function appends
".out" to the program name after stripping off a trailing ".mle" or ".MLE", if any.

Examples: For programs called "sample.mle", "sample." or "sample" the function returns "sample.out"

Notes: The line OUTFILE(DEFAULTOUTNAME) will automatically pick and assign a useful name for
the output file. This is useful when you are constantly modifying and changing the name of a
program.

DELTA(x, y)

Returns: The Kronecker’s delta function: 1 if x = y otherwise 0.

Examples: DELTA(10, 10) returns 1

 DELTA(11, 10) returns 0

SEE ALSO HEAVISIDE, SGN

Functions

 82

DIVIDE(x, y)

Returns: x divided by y. This is the functional form of x/y.

Constraints y ≠ 0

Examples 10/2 returns 5.0

DMSTOD(x, y, z)

Returns: An angle in degrees from an angle in degrees (x), minutes (y), and seconds (z).

Examples: DMSTOD(34, 15, 10.2) returns 34.252833333333

 DMSTOD(0, 20, 15) returns 0.33750

DMSTOR(x, y, z)

Returns: An angle in radians from an angle in degrees (x), minutes (y), and seconds (z).

Examples: DMSTOR(34, 15, 10.2) returns 0.5978247198035

 DMSTOR(0, 20, 15) returns 0.0058904862255

DMYTOJ(x, y, z)

Returns: A Julian day from day (x), month (y), and year (z).

Examples: DMYTOJ(15, 1, 2000) returns the Julian day 2451559

 DMYTOJ(4, 7, 1776) returns the Julian day 2369916

Notes: This function is useful for computing durations between two dates in failure time models. For
example, the duration between "birth" on 16 Feb 1976 and "death" on 21 Jul 1992 would be
computed as DMYTOJ(21, 07, 1992) – DMYTOJ(16, 02, 1976), which returns exactly 6000
days.

See also: JULIAND, JULIANM, JULIANY, YEARDAY, WEEKDAY

DTOR(x)

Returns: Degrees from radians, πx/180.

Examples: DTOR(30) returns 0.5235987755983

 DTOR(180) returns 3.1415926535898

See also: RTOD

Functions

 83

ERF(x)

Returns: The error function, which is the integral of a standard normal probability density function

from 0 to x. ()2

0

2ERF() 2 2 1
x

ux e du x
π

−= = Φ −∫

Constraints none, but x should be non-negative in order to return a proper probability

Examples: ERF(0.75) returns 0.7111555777692

 ERF(2) returns 0.995322139784

 ERF(-2) returns -0.995322139784, which is not a probability

See also ERFC

ERFC(x)

Returns: The complementary error function, which is 1 – ERF(x).

Constraints none, but x should be non-negative in order to return a proper probability

Examples: ERFC(0.75) returns 0.2888444222308

 ERFC(2) returns 0.0046778602160

 ERFC(-2) returns 1.9953221397840, which is not a probability

See also ERF

EXP(x)

Returns: The value e raised to the power x, ex.

Examples: EXP(0.2) returns 1.2214027581602

 EXP(0) returns 1

 EXP(-0.2) returns 0.1353352832366

FACT(x)

Returns: The factorial function, x!, which is x × (x–1) × (x–2) × . . . × 2 × 1.

Constraints None, but the function can overflow the computers representation of a real number from
modest values of x

Examples: FACT(5.0) returns 120.0

 FACT(100) returns 9.332622E+0157

Functions

 84

FISHER(x)

Returns: Fisher's transformation as
1 1ln
2 1

x
x

+ 
 − 

.

Constraints -1 < x < 1

Examples: FISHER(0) returns 0.0

 FISHER(0.5) returns 0.5493061443341

 FISHER (-0.99990000) returns -4.951718775643

See also: FISHERINV

FISHERINV(x)

Returns: The inverse Fisher's transformation as
exp(2) 1
exp(2) 1

x
x

−
+

.

Range: The result falls between -1 and 1.

Examples: FISHERINV(4) returns 0.9993292997391

 FISHERINV(0.5) returns 0.4621171572600

 FISHERINV(0) returns 0.0

See also: FISHER

FLOOR(x)

Returns The greatest integer less than or equal to x as a real number.

Examples: FLOOR(1.9) returns 1.0

 FLOOR(2.0) returns 2.0

 FLOOR(2.1) returns 2.0

 FLOOR(-1.9) returns -2.0

 FLOOR(-2.0) returns -2.0

 FLOOR(-2.1) returns -3.0

See also: CEIL, ROUND, INT

FRAC(x)

Returns: The fractional part of x.

Examples: FRAC(2.0) returns 0.0

 FRAC(2.1) returns 0.1

Functions

 85

 FRAC(-3.2) returns -0.2

See also: INT

GAMMA(x)

Returns: Euler's gamma function, 1

0

() x tx t e dt
∞

− −Γ = ∫

Examples: GAMMA(4) returns 6

 GAMMA(PI) returns 2.2880377950731

See also: IGAMMA, IGAMMAC, IGAMMAE, PDF GAMMA

GCF(x, y)

Returns: The greatest common factor of x and y, which is the greatest value that divides both x and y
exactly.

Examples: GCF(81, 36) returns 9

 GCF(143, 187) returns 11

See also: LCM

HEAVISIDE(x)

Returns: the Heaviside function, which is 1 if x ≥ 0 otherwise it returns 0.

Examples: HEAVISIDE(3) returns 1

 HEAVISIDE(0) returns 1

 HEAVISIDE(-2) returns 0

See also: DELTA, SGN

IBETA(p, ν, ω)

Returns: The normalized Euler's incomplete beta function.

1 1

0

(1)
BETA(, ,)

BETA(,)

p

x x dx
p

ν ω

ν ω
ν ω

− −−
=

∫
.

Constraints: 0 ≤ p ≤ 1, ν > 0, ω > 0

Examples IBETA(0.5, 3, 6) returns 0.8554687499873

 IBETA(1, 3, 3) returns 1.0

Functions

 86

See also: BETA, IBETAC, GAMMA, PDF BETA

IBETAC((p, ν, ω)

Returns: The complement of the normalized Euler's incomplete beta function. IBETAC(p, ν, ω) = 1 –
IBETA(p, ν, ω).

Constraints: 0 ≤ p ≤ 1, ν > 0, ω > 0

Examples IBETAC(0.5, 3, 6) returns 0.1445312500127

 IBETAC(1, 3, 3) returns 0.0

See also: BETA, IBETA, GAMMA, PDF BETA

IDIV(x, y)

Returns: The integer part of x/y. This is the same as the algebraic expression x DIV y.

Constraints y ≠ 0. x and y must be integers

Examples: IDIV(104, 25) returns 4

 IDIV(-124, 25) returns -4

See also: MODF, MODULO, REMAINDER, DIVIDE

IGAMMA(x, y)

Returns: Euler's incomplete gamma function.

See also GAMMA, IGAMMAC, IGAMMAE

IGAMMAC(x1, x2)

Returns: The complement of the Euler's incomplete gamma function.

See also GAMMA, IGAMMA, IGAMMAE

IGAMMAE(x1, x2)

Returns: IGAMMA(x1, x2)*ROOT(x2, x1).

Functions

 87

INC(x)

Returns: x + 1

Constraints: x must be an integer

Examples: INC(42) returns 43

 INC(-42) returns -41

See also: DEC

INT(x)

Returns The integer part of x as a real number.

Examples: INT(1.9) returns 1.0

 INT(2) returns 2.0

 INT(-1.9) returns -1.0

See also: FRAC, CEIL, ROUND, FLOOR

INT2STR(x)

Returns: A string from integer expression x.

Examples: INT2STR(-123) returns "-123"

 INT2STR(0rMCMXII) returns "1912"

See also: BOOL2STR, REAL2STR

INVERT(x)

Returns: 1/x.

Constraints x ≠ 0

Examples: INVERT(2) returns 0.5

 INVERT(-1.25) returns -0.8

IRAND(x, y)

Returns: A random integer from x to y.

Notes: Before IRAND or other random number functions can be used, the value of RANDOMSEED
must be set to a positive constant. Use the SEED() procedure.

See also: RAND, RRAND

Functions

 88

ISEQ(x, y)

Returns: The boolean x = y

See also: ISGE, ISGT, ISLE, ISLT, ISNE, ISNEAR

ISEVEN(x)

Returns: TRUE if integer x is an even number, FALSE if x is odd

Examples: ISEVEN(0) returns TRUE

 ISEVEN(199) returns FALSE

See also: ISODD

ISGE(x, y)

Returns: The boolean x ≥ y

See also: ISEQ, ISGT, ISLE, ISLT, ISNE, ISNEAR

ISGT(x, y)

Returns: The boolean x > y

See also: ISGE, ISEQ, ISLE, ISLT, ISNE, ISNEAR

ISLE(x, y)

Returns: The boolean x ≤ y

See also: ISGE, ISGT, ISEQ, ISLT, ISNE, ISNEAR

ISLT(x, y)

Returns: The boolean x < y

See also: ISGE, ISGT, ISLE, ISEQ, ISNE, ISNEAR

ISNE(x, y)

Returns: The boolean x ≠ y.

Functions

 89

See also: ISGE, ISGT, ISLE, ISLT, ISEQ, ISNEAR

ISNEAR(x, b, δ)

Returns: TRUE if x is in the interval [b – δ, b + δ]; otherwise it returns FALSE.

Examples: ISNEAR(23.5, 20, 4) returns TRUE

 ISNEAR(23.5, 20, 1) returns FALSE

See also: ISGE, ISGT, ISLE, ISLT, ISNE, ISEQ

ISODD(x)

Returns: TRUE if integer x is an odd number, FALSE if x is even

Examples: ISODD(0) returns FALSE

 ISODD(199) returns TRUE

See also: ISEVEN

JULIAND(x)

Returns: The day of the month for a Julian day.

Range: 1 to 31

Examples: DMYTOJ(30, 6, 1961) returns 2437481 {30 June 1961}

 JULIAND(2437481) returns 30

See also: JULIANM, JULIANY, YEARDAY, WEEKDAY, DMYTOJ

JULIANM(x)

Returns: The month for a Julian day.

Range: 1 to 12

Examples: DMYTOJ(30, 6, 1961) returns 2437481 {30 June 1961}

 JULIANM(2437481) returns 6

See also: JULIAND, JULIANY, YEARDAY, WEEKDAY, DMYTOJ

JULIANY(x)

Returns: The year for a Julian day.

Functions

 90

Examples: DMYTOJ(30, 6, 1961) returns 2437481 {30 June 1961}

 JULIANY(2437481) returns 1961

See also: JULIAND, JULIANM, YEARDAY, WEEKDAY, DMYTOJ

LCM(x, y)

Returns: The least common multiple of x and y.

Examples: LCM(9, 12) returns 36

See also: GCF

LEAPYEAR(y)

Returns: The TRUE if the year specified by y is a leap year.

Examples: LEAPYEAR(2000) returns TRUE

 LEAPYEAR(2001) returns FALSE

LEFTSTRING(x, y)

Returns: The leftmost substring from x of up to y characters.

Examples: LEFTSTRING("Probability theory", 11) returns "Probability"

 LEFTSTRING("Anyway", 3) returns "Any"

 LEFTSTRING("Anyway", 20) returns "Anyway"

See also: RIGHTSTRING, SUBSTRING

LN(x)

Returns: The natural (Naperian) logarithm of x (also LOG).

Constraints x ≥ 0. If x = 0, -∞ is returned.

Examples: LN(E) returns 1.0

 LN(E^25) returns 25

 LN(35) returns 3.5553480614894

See also: LOG, LOGBASE, EXP

Functions

 91

LNFACT(x)

Returns: The natural logarithm of x!.

Example LNFACT(10) returns 15.104412573076

 LNFACT (3000) returns 21024.024853046

See also: FACT, LNGAMMA

LNGAMMA(x)

Returns: The natural logarithm of GAMMA(x).

Example: LNGAMMA (11) returns 15.104412572871

 LNGAMMA(3001) returns 21024.024853046

See also: GAMMA, LNFACT

LOG(x)

Returns: The natural (Naperian) logarithm of x (also LN).

Constraints x ≥ 0. If x = 0, -∞ is returned.

Examples: LOG(E) returns 1.0

 LOG(E^25) returns 25

 LOG(35) returns 3.5553480614894

See also: LN, LOGBASE, LOG10, EXP

LOG10(x)

Returns: The base-10 logarithm x.

Constraints x ≥ 0. If x = 0, -∞ is returned.

Examples: LOG10(10) returns 1.0

 LOG10(10^25) returns 25

 LOG10(35) returns 1.5440680443503

See also: LN, LOG, LOGBASE, EXP

LOGBASE(x, y)

Returns: The logarithm (base y) of x.

Constraints x ≥ 0. If x = 0, -∞ is returned.

Functions

 92

Examples: LOGBASE(10, 10) returns 1.0

 LOGBASE(10^25, 10) returns 25

 LOGBASE(35, E) returns 3.5553480614894

See also: LN, LOG, LOG10, EXP

LOGISTIC(x)

Returns: 1/[1 + exp(x)] (its complement if alt_logistic=true).

LOGIT(x)

Returns: ln[exp(x)/(exp(x) - 1)].

LUNARPHASE(j)

Returns: An approximate phase of the moon on Julian date j.

Examples: LUNARPHASE(DMYTOJ(15, 1, 2000)) returns 0.6055993482011

 LUNARPHASE(DMYTOJ(16, 1, 2000)) returns 0.6733257524912

See also: DMYTOJ

MAX(x, y)

Returns: The greatest of x and y.

Examples: MAX(15, 10) returns 15

 MAX(-15, -10) returns -10

See also: MIN

MIN(x, y)

Returns: The least of x and y.

Examples: MIN(10, 15) returns 10

 MIN(-15, -10) returns -15

Functions

 93

MIX(p, x, y)

Returns: x and y weighted (mixed) by probability p. px + (1 – p)y.

Examples: MIX(0.5, 10, -10) returns 0

 MIX(0.25, 1000, 2000) returns 1750

MODULO(x, y)

Returns: The integer remainder of x/y. This is the same as the algebraic expression x MOD y.

Constraints y ≠ 0. x and y must be integers

Examples: MODULO(110, 25) returns 10

 MODULO(-124, 25) returns -24

See also: REMAINDER, IDIV

MONTHDAYS(m, y)

Returns: the number of days in month m of year y.

Examples: MONTHDAYS(2, 2000) returns 29

 MONTHDAYS(2, 2001) returns 28

See also: LEAPYEAR

MULTIPLY(x, y)

Returns: The algebraic product x × y; This is the same as the algebraic expression x * y.

Examples: MULTIPLY(2, 3) returns 5

 MULITPLY(2.5, 3) returns 7.5

NEGATE(x)

Returns: -x.

Examples: NEGATE(23) returns -23

 NEGATE(-45) returns 45

Functions

 94

NOTF(x)

Returns: The logical or boolean NOT function.

Examples: NOTF(357) returns -358

 NOTF(2x011011) returns -28

 NOTF(TRUE) returns FALSE

Notes: If x is an integer, NOTF(x) returns the bitwise (logical) NOT of the number. If x is a boolean
variable or constant, NOTF(x) returns the boolean NOT of the number.

See also ORF, ANDF

ORD(c)

Returns: The ordinal value of character c.

Examples: ORD('A') returns 65

 ORD('a') returns 97

ORF(x, y)

Returns: The logical or boolean or function.

Examples: ORF(456, 123) returns 507

 ORF(2x00101, 2x01010) returns 15

 ORF(TRUE, FALSE) returns TRUE

Notes: If both x and y are integer variables or constants, ORF(x, y) returns the bitwise (logical) OR of
the two numbers. If x and y are boolean variables or constants, ORF(x, y) returns the boolean
AND of the two numbers.

See also: NOTF, ANDF, XORF

PERMUTATIONS(x, y)

Returns: Permutations: x taken y at a time: x!/(x – y)!.

Constraints x ≥ y, x and y are integer expressions.

Examples: PERMUTATIONS(10, 1) returns 10.0

 PERMUTATIONS(10, 3) returns 720.0

See also: COMB

Functions

 95

POLARTORECTX(r, a)

Returns: Rectangular x coordinate from polar coordinates r, a, rcos(a).

See also: POLARTORECTY, RECTTOPOLARR, RECTTOPOLARA

POLARTORECTY(r, a)

Returns: Rectangular y coordinate from polar coordinates r, a: rsin(a).

See also: POLARTORECTX, RECTTOPOLARR, RECTTOPOLARA

POWER(x, y)

Returns: x raised to the power y, xy. This is the functional form of the algebraic expression x^y.

See also: ROOT

PUT(x)

Returns: the value of x, and, as a side effect, writes x to the standard output.

Notes: x can be any type. This function is particularly useful for debugging likelihoods.

RAND

Returns: A random real number from 0 to 1.

Notes: Before RAND or other random number functions can be used, the value of RANDOMSEED
must be set to a positive constant.

See also: IRAND, RRAND

REAL2STR(x, l, s)

Returns: A string from real expression x. The length of the string is l characters, and at least s
significant digits are represented. The function tries to return the number in decimal format
rather than scientific format. A minimum field length of about 9 is recommended for small or
large numbers.

Examples: REAL2STR(PI, 10, 1) returns "3.14159265"

 REAL2STR(PI, 5, 5) returns "3.142"

 REAL2STR(1.234567E-8, 20, 2) returns "0.000000012345670000"

 REAL2STR(1.234567E-8, 9, 8) returns "1.2E-0008"

Functions

 96

 REAL2STR(1.234567E-8, 12, 5) returns "1.235E-0008"

See also: BOOL2STR, INT2STR

RECTTOPOLARA(x, y)

Returns: Polar angle (in radians) from rectangular coordinates x and y.

See also: POLARTORECTY, POLARTORECTA, RECTTOPOLARR

RECTTOPOLARR(x, y)

Returns: Polar radius from rectangular coordinates x and y.

See also: POLARTORECTY, POLARTORECTA, RECTTOPOLARA

RECTTOSPHERER(x, y, z)

Returns: Spherical radius from rectangular coordinates x, y, and z.

Examples: RECTTOSPHERER(1, 2, 3) returns 3.7416573867739

 RECTTOSPHERER(1, 1, 1) returns 1.7320508075689

See also: SPHERETORECTX, SPHERETORECTY, SPHERETORECTZ, RECTTOSPHEREA1,
RECTTOSPHEREA2, RECTTOPOLARA, RECTTOPOLARR, POLARTORECTX,
POLARTORECTY

RECTTOSPHEREA1(x, y, z)

Returns: Spherical angle 1 (in radians) from rectangular coordinates x, y, and z.

Examples: RECTTOSPHEREA1(1, 2, 3) returns 1.1071487177941

 RECTTOSPHEREA1(1, 1, 1) returns 0.7853981633974

See also: SPHERETORECTX, SPHERETORECTY, SPHERETORECTZ, RECTTOSPHERER,
RECTTOSPHEREA2, RECTTOPOLARA, RECTTOPOLARR, POLARTORECTX,
POLARTORECTY

RECTTOSPHEREA2(x, y, z)

Returns: Spherical angle 2 (in radians) from rectangular coordinates x, y, and z.

Examples: RECTTOSPHEREA2(1, 2, 3) returns 0.6405223126794

 RECTTOSPHEREA2(1, 1, 1) returns 0.9553166181245

Functions

 97

See also: SPHERETORECTX, SPHERETORECTY, SPHERETORECTZ, RECTTOSPHERER,
RECTTOSPHEREA1, RECTTOPOLARA, RECTTOPOLARR, POLARTORECTX,
POLARTORECTY

REMAINDER(x, y)

Returns: The real remainder of x/y. Returns 0 if y = 0

Examples: REMAINDER(110.0, 25.0) returns 10.0

 REMAINDER(-124, 25) returns -24.0

 REMAINDER(-100, 0) returns 0.0

See also: MODULO, IDIV

RIGHTSTRING(x, y)

Returns: The rightmost substring from x of up to y characters.

Examples: RIGHTSTRING("Probability theory", 6) returns "theory"

 RIGHTSTRING("Small", 4) returns "mall"

 RIGHTSTRING("Small", 20) returns "small"

See also: LEFTSTRING, SUBSTRING

ROOT(x, y)

Returns: The yth root of x, x1/y.

Examples: ROOT(100, 2) returns 10.0

 ROOT(100, -2) returns 0.10

See also: POWER, SQRT

ROUND(x)

Returns: x rounded and returned as the nearest integer.

Examples: ROUND(1.9) returns 2

 ROUND(2.0) returns 2

 ROUND(1.5) returns 2

 ROUND(-1.5) returns -2

See also: FRAC, CEIL, INT, FLOOR, TRUNC

Functions

 98

RRAND(x, y)

Returns: A real random number from x to y.

Notes: Before RRAND or other random number functions can be used, the value of RANDOMSEED
must be set to a positive constant.

See also: RAND, IRAND

RTOD(x)

Returns: Radians from degrees, 180x/π.

Examples: RTOD(0.5) returns 28.647889756541

 RTOD(PI) returns 180.0

See also: DTOR

SEC(x)

Returns: The secant of x.

SECH(x)

Returns: The hyperbolic secant of x.

SGN(x)

Returns: 1 if x > 0, 0 if x = 0, or -1, if x < 0.

Examples: SGN(3) returns 1

 SGN(0) returns 0

 SGN(-2) returns -1

See also: SIGN, DELTA, HEAVISIDE

SHIFTLEFT(x, y)

Returns: Shifts bits of x to the left by y binary positions.

Examples: SHIFTLEFT(1, 5) returns 32

 SHIFTLEFT(2, 10) returns 2048

See also: SHIFTRIGHT

Functions

 99

SHIFTRIGHT(x, y)

Returns: Shifts bits of x to the right by y binary positions.

Examples: SHIFTRIGHT(32, 5) returns 1

 SHIFTRIGHT(2048, 10) returns 2

See also: SHIFTLEFT

SIGN(x, y)

Returns: x with the same sign as y.

Examples: SIGN(-234, 1) returns 234

 SIGN(234, 0) returns 234

 SIGN(-234, 0) returns 234

 SIGN(234, -1) returns -234

SIN(x)

Returns: The sine of angle (in radians) x

Examples: SIN(PI) returns 0.0

 SIN(PI/2) returns 1.0

SINH(x)

Returns: The hyperbolic sine of x.

Examples: SINH(1) returns 1.1752011936438

 SINH(0) returns 0.0

 SINH(-1) returns -1.175201193644

SPHERETORECTX(r, a1, a2)

Returns: Rectangular x from 3 spherical coordinates, radius r, angles (in radians) a1 and a2.

Examples: SPHERETORECTX(1, PI, PI) returns 0

 SPHERETORECTX(1, PI/4, PI/4) returns 0.5

See also: SPHERETORECTY, SPHERETORECTZ, RECTTOSPHERER, RECTTOSPHEREA1,
RECTTOSPHEREA1, RECTTOPOLARA, RECTTOPOLARR, POLARTORECTX,
POLARTORECTY

Functions

 100

SPHERETORECTY(r, a1, a2)

Returns: Rectangular y from 3 spherical coordinates, radius r, angles (in radians) a1 and a2.

Examples: SPHERETORECTY(1, PI, PI) returns 0

 SPHERETORECTY(1, PI/4, PI/4) returns 0.5

See also: SPHERETORECTX, SPHERETORECTZ, RECTTOSPHERER, RECTTOSPHEREA1,
RECTTOSPHEREA1, RECTTOPOLARA, RECTTOPOLARR, POLARTORECTX,
POLARTORECTY

SPHERETORECTZ(r, a1, a2)

Returns: Rectangular z from 3 spherical coordinates, radius r, angles (in radians) a1 and a2.

Examples: SPHERETORECTZ(1, PI, PI) returns -1

 SPHERETORECTZ(1, PI/4, PI/4) returns 0.7071067811865

See also: SPHERETORECTX, SPHERETORECTY, RECTTOSPHERER, RECTTOSPHEREA1,
RECTTOSPHEREA1, RECTTOPOLARA, RECTTOPOLARR, POLARTORECTX,
POLARTORECTY

SQR(x)

Returns: x squared, x2

Examples: SQR(PI) returns 9.8696044010894

 SQR(10) returns 100

 SQR(-5) returns -25

See also: POWER

SQRT(x)

Returns: The square root of x, √x

Examples: SQRT(100) returns 10

 SQRT(25) returns 5

See also: ROOT

STANDARDIZE(x, µ, σ)

Returns: A value for x standardized by location parameter µ and scale parameter σ, as (x – µ)/σ.

Examples: STANDARDIZE(1, 2, 1) returns -1.0

Functions

 101

 STANDARDIZE(1, 1, 1) returns 0.0

 STANDARDIZE(2, 1, 1) returns 1.0

STRING2INT(s)

Returns: An integer number from string s

Examples: STRING2INT("-124") returns -124

 STRING2INT("0rMCMXIV") returns 1914

See also: STRING2REAL

STRING2REAL(s)

Returns: A real number from string s

Examples: STRING2REAL("-124.73") returns -124.73

 STRING2REAL("0rMCMXIV") returns 1914.0

See also: STRING2INT

SUBSTRING(x, y, z)

Returns: A substring from string x, beginning in position y and length z.

Examples: SUBSTRING("Probability theory", 5, 7) returns "ability"

 SUBSTRING("Small", 10, 5) returns the empty string ""

 SUBSTRING("Small", 2, 20) returns "mall"

See also: LEFTSTRING, RIGHTSTRING

SUBTRACT(x, y)

Returns: x – y. This is the functional form of the algebraic x – y.

Examples: SUBTRACT(10, 2) returns 8

 SUBTRACT(-10, 2) returns -12

See also: ADD

TAN(x)

Returns: The tangent of angle (in radians) x.

Functions

 102

Examples: TAN(DTOR(45)) returns 1.0

 TAN(0) returns 0

TANH(x)

Returns: The hyperbolic tangent of x.

Examples: TANH(0) returns 0

 TANH(1) returns 0.7615941559558

TOLOWER(x)

Returns: A string in lower case.

Examples: TOLOWER("A STRING") returns "a string"

 TOLOWER('A' + 'b') returns "ab"

See also: TOUPPER

TOUPPER(x)

Returns: A string in upper case.

Examples: TOUPPER("a string") returns "A STRING"

 TOUPPER('A' + 'b') returns "AB"

See also: TOLOWER

TRIM(x)

Returns: A string with leading and trailing spaces removed.

Examples: TRIM(" a string ") returns "a string"

 TRIM(" ") returns "" (empty string)

See also: TRIML, TRIMR

TRIML(x)

Returns: A string with leading spaces removed.

Examples: TRIML(" a string ") returns "a string "

 TRIML(" ") returns "" (empty string)

Functions

 103

See also: TRIM, TRIMR

TRIMR(x)

Returns: A string with trailing spaces removed.

Examples: TRIMR(" a string ") returns " a string"

 TRIMR(" ") returns "" (empty string)

See also: TRIM, TRIML

TRUNC(x)

Returns: x truncated to an integer.

Examples: TRUNC(1.0) returns 1

 TRUNC(2.8) returns 2

 TRUNC(-2.5) returns -2

See also: ROUND, FRAC, CEIL, INT, FLOOR

WEEKDAY(x)

Returns: A numerical day of the week (Sun=1 Mon=2...) for Julian day x.

Examples: WEEKDAY(DMYTOJ(01, 01, 2000)) returns 7 (Saturday)

 WEEKDAY(DMYTOJ(15, 01, 2001)), M.L. King Jr.'s birthday, returns 2 (Monday).

See also: See also: JULIAND, JULIANM, JULIANY, YEARDAY, DMYTOJ

XORF(x, y)

Returns: Logical or boolean XOR function. This is the functional from of x XOR y.

Examples: XORF(TRUE, TRUE) returns FALSE

 XORF(FALSE, FALSE) returns FALSE

 XORF(TRUE, FALSE) returns TRUE

 XORF(2x010101, 2x000111) returns 18 (2x010010)

Notes: If both x and y are integer types, XORF(x, y) returns the bitwise (logical) XOR of the two
numbers. If x and y are boolean types, XORF(x, y) returns the boolean XOR of the two
numbers.

See also ORF, NOTF, ANDF

Functions

 104

YEARDAY(x)

Returns: Day of the year (1-jan = 1...) for Julian day x.

Examples: YEARDAY(DMYTOJ(01, 01, 2000)) returns 1

 YEARDAY(DMYTOJ(30, 06, 2000)) returns 182

See also: See also: JULIAND, JULIANM, JULIANY, WEEKDAY, DMYTOJ

Calculator mode

mlemlemlemle can be made to act like a calculator. In this mode, instead of a program filled with assignment statement, data

statements, and model statements, a series of expressions are given to mlemlemlemle. The expressions are evaluated and the result is

printed. This can be done either interactively (using the -i command line option) or by reading in a program file.

This “calculator” mode is invoked by not including the prefix mle as the first thing read either interactively or in

the program file. mlemlemlemle will then execute all subsequent commands as expressions to be interpreted. The exception to this is

that DATA statements are also legal. Here is an example
c:\>mle -i
sin(pi * 3) This is the user-defined expression
2.168404E-0019 And this is what was returned

PDF normal(2, 3) 1, 2 end Compute the area under normal pdf from 2 to 3, µ=1, σ=2
0.1498822726114 resulting area

INTEGRATE z (2, 3) PDF NORMAL(z) 1, 2 end end Expressions can be nested. Integrate for 2 to 3 a normal pdf with
µ=1, σ=2
0.1498822847945 This should be close to the previous result

gamma(3.8) Evaluates the gamma function
4.6941742051124
summation i (1, 10) 1/i^2 end Sum from 1 to 10, 1/i2
1.5497677311665

end Ends and returns to DOS
In version 2 of mlemlemlemle, when using calculator mode interactively, there will always be a delay of one expression before

the results is returned. This is because an expression can continue on indefinitely. For example, the expression "SIN(2*pi)"

followed by a carriage return does not complete the expression because the next line may be "+ 1/2". A new expression is

needed to denote the end of the old expression. Thus, typing "1 pi 2" followed by a carriage return will result in two

complete expressions (returning 1 and 3.1415926535898). The third expression is not yet complete.

Note that if you begin mlemlemlemle with the options -i -v and begin typing expressions, the verbose result will be to show

the entire expression in functional form (i.e. as a series of functions). For example
c:\>mle -i -v
sin(pi^2/4 + 1) This is the user-defined expression
returns
SIN(ADD(DIVIDE(POWER(PI , 2), 4), 1)) -> -0.320074806512

Some Example Programs

 105

SOME EXAMPLE PROGRAMS

Survival analysis—Exact measurements

This first example not only provides an illustration of a simple mlemlemlemle program, but also shows the notation that will be

used throughout this chapter. The problem at hand is finding one or more parameters θθθθ of some distribution f(t|θθθθ), given a

series of observations, t=t1, t2, . . ., tN. The values of t are known exactly. For an individual observation, ti, the individual

likelihood is Li = f(ti|θθθθ), and the overall likelihood for the N observations is

(2) (, |) (| ,)
N

i
i=1

L a b = f a b dtt∏t .

Data for this example (Table 14) are a series of 15 observations of times to breakdown for an insulating fluid at 32

kV. The times are arranged as one observation per line in a file named ex1.dat. The underlying distribution is believed to

follow a negative exponential probability density function, with a single parameter lambda. The following mlemlemlemle program

analyses these data
MLE
 TITLE = "32 kV Insulating Fluid Example from Nelson (1982:105)"
 DATAFILE("ex1.dat") {Input data file name}
 OUTFILE("ex1.out") {Name to which results are written}

 DATA
 failtime FIELD 1
 END

 MODEL
 DATA
 PDF EXPONENTIAL(failtime)
 PARAM lambda LOW=0.00001 HIGH=1 START=0.05 END
 END {of the PDF}
 END
 RUN
 FULL
 END {of the MODEL}
END {of the MLE program}

Here is the abridged output

Table 14 Times to breakdown for an insulating fluid at 32 kV, from Nelson W (1982:105).

0.27 0.4 0.69
0.79 2.75 3.91
9.88 13.95 15.93
27.8 53.24 82.85
89.29 100.58 215.1

Some Example Programs

 106

New model: 32 kV Insulating Fluid Example

LogLike= -70.76273 Iterations= 2 Func evals= 26 Del(LL)= 0.0000000000
Converged normally

Results with estimated standard errors. (7 evals)
Solution with 1 free parameter
 Name Form Estimate Std Error t against
 lambda LOGLIN 0.024294254090 0.004468859626 5.43634307759 0.0

Likelihood CI Results: (21 evals)
Solution with 1 free parameter
 Name Form Estimate Lower CI Upper CI
 lambda LOGLIN 0.024294254090 0.009423459169 0.049934238797

The first part of the output shows the loglikelihood, and information about iterations, function evaluations, and

convergence. This is followed by two output reports, first with standard errors and the with an approximate likelihood

confidence interval (region).

Survival analysis—Exact failure and right censored observations

The standard problem in survival analysis is to find parameters of a parametric model when some observations are

right censored. Typically we have N exact observations, and N+ right-censored observations, the likelihood is

(3)
1 1

() (|) (|)
N N

i i
i i

L = f St t
+

= =
∏ ∏tθ | θ θθ | θ θθ | θ θθ | θ θ ,

where S(t|θθθθ) is the survival distribution, which is the area under f(t|θθθθ) to the right of t. The area under a right censored

observation is specified in the mlemlemlemle PDF function by setting the second time variable to infinity (or something less than the first

time variable). So, the function PDF NORMAL(14,-1) 10, 6 END would return the area from 14 to infinity of under a

normal pdf with parameters µ = 10, and σ = 6, or about 0.2525. This would correspond to the likelihood of an individual

surviving to 14 units of times under the specified model.

For this example, we use the data in Table 14 and suppose that there were three additional observations that had not

failed by time 220—the end of the experiment. The data will be coded so that the three right censored times are given as

negative times, -220. The DATA statement now creates two variables, the first is the absolute value of time to failure, and the

second is the unmodified time. Thus, failed observations have two identical failure times, for example [9.88, 9.88], which

defines an exact failure; whereas, right-censored observations have a positive and a negative censored time [220, -220],

yielding the area under the pdf from 220 to infinity.

Some Example Programs

 107

MLE
 TITLE = "32 kV Insulating Fluid Example"
 DATAFILE("ex2.dat") {Input data file name}
 OUTFILE("ex2.out") {Name to which results are written}

 DATA
 topen FIELD 1 = ABS(topen)
 tclose FIELD 1
 END

 MODEL
 DATA
 PDF EXPONENTIAL(topen, tclose)
 PARAM lambda LOW=0.00001 HIGH=1 START=0.05 END
 END {of the PDF}
 END
 RUN
 FULL
 END {of the MODEL}

END {of the MLE program}

The abridged output is

18 lines read from file ex2.dat
18 Observations kept and 0 observations dropped.

New model: 32 kV Insulating Fluid Example

LogLike= -81.66833 Iterations= 2 Func evals= 28 Del(LL)= 0.0000000000
Converged normally

Results with estimated standard errors. (8 evals)
Solution with 1 free parameter
 Name Form Estimate Std Error t against
 lambda LOGLIN 0.011742333138 0.002142967492 5.47947329296 0.0

Likelihood CI Results: (21 evals)
Solution with 1 free parameter
 Name Form Estimate Lower CI Upper CI
 lambda LOGLIN 0.011742333138 0.004554712392 0.024135096958

Survival analysis—Interval censored observations

Interval censored observations, are those collected between two points of time. These observations frequently arise

from prospective studies in which periodic observations are collected. The exact times to the event are not known. What is

known is tu, the last time before the event occurred, and te, the time of the first observation after the event occurred. The

likelihood for interval censored events is the area under the pdf between tu and te,

(4) (,) (|) (|)
i i

N

u e u e
i=1

L S t S t = − ∏t tθ | θ θθ | θ θθ | θ θθ | θ θ

In mlemlemlemle, the area under the pdf is specified for most distributions as the first two times, with the second time greater than the

first. For example, PDF NORMAL(11, 15) 10, 6 END return 0.231, which is the area between 11 and 15 under a normal

distribution with µ=10, and σ=6. Here is an mlemlemlemle program that finds parameters of a lognormal distribution from interval

censored data.

Some Example Programs

 108

MLE
 TITLE = "Example"
 DATAFILE("ex3.dat")
 OUTFILE("ex3.out")

 DATA
 topen FIELD 1
 tclose FIELD 2
 END

 MODEL
 DATA
 PDF LOGNORMAL(topen, tclose)
 PARAM a LOW=0.00001 HIGH=9 START=1 END
 PARAM b LOW=0.00001 HIGH=2 START=0.4 END
 END {of the PDF}
 END
 RUN
 FULL
 END {of the MODEL}

END

Current status analyses

Current status analysis consists of observations that are collected cross-sectionally. The methods most commonly

associated with current status analysis is probit and logit analysis. mlemlemlemle allows for current status analysis with any of the built-

in distribution functions.

Under a cross-sectional study design, each observation consists of (1) time of a single observation since the study

began (t), (2) an indicator variable to determine whether or not the individual experienced the event. The result of the

indicator variable is that the individual is a responder (r) or non-responders (n). The likelihood from N observations made up

of Nr responders and Nn non-responders is

(5)
1 1

() (|) (|)
n r

i i
i i

L = S Ft t
= =

∏ ∏tθ | θ θθ | θ θθ | θ θθ | θ θ

This likelihood can be interpreted as follows. For the likelihood for the non-responders is the area under the pdf from the

time of observation to infinity. Thus, a responder contributes a likelihood that is exactly like a right-censored observation.

The likelihood for a responder is the area under the pdf from -∞ (or 0 for pdfs defined to have positive arguments) to the time

of observation, which is the probability of the event occurring at some time unknown time before the time of observation. In

mle, the area under the likelihood for a responder is specified as PDF LOGNORMAL(-1, 5) 2, 0.5 END return 0.217,

which is the area between 0 (or anything less than 0) and 5 under a lognormal distribution with µ=2, and σ=0.5.

Consider a data set that contains a time of observation and an indicator variable that is 0 if the observation was a

non-responder and 1 for a responder. One way of coding this model is to place an IF...THEN...ELSE...END statement to

switch between responder and nonresponder likelihoods as appropriate for each observation:

Some Example Programs

 109

MLE
 TITLE = "Example"
 DATAFILE("ex4.dat")
 OUTFILE("ex4.out")

 DATA
 t FIELD 1 {time of observation}
 resp FIELD 2 {1 if responder, 0 if nonresponder}
 END

 MODEL
 DATA
 IF resp = 1 THEN {it is a responder}
 PDF LOGNORMAL(0, t)
 PARAM a LOW=0.00001 HIGH=9 START=1 END
 PARAM b LOW=0.00001 HIGH=2 START=0.4 END
 END {of the PDF}
 ELSE {non-responder}
 PDF LOGNORMAL(t, oo) a, b END
 END {of if then else}
 END {data}
 RUN
 FULL
 END {of the MODEL}

END

Alternatively, The following mlemlemlemle data statement will transform the observation time into a set of two times. For a

responder, topen will be set to zero and tclose will take the value of the observed time. For a non-responder, topen will

take the value of the observed time and tclose will be set to zero. Note that when the second time is set to zero, it will be

less than topen, so mlemlemlemle returns the area from topen to infinity.
MLE
 TITLE = "Example"
 DATAFILE("ex4.dat")
 OUTFILE("ex4.out")

 DATA
 time FIELD 1 {read in observation time}
 resp FIELD 2 {1 if responder, 0 if nonresponder}
 topen = IF resp == 1 THEN 0 ELSE time END
 tclose = IF resp == 1 THEN time ELSE -1 END
 END

 MODEL
 DATA
 PDF LOGNORMAL(topen, tclose)
 PARAM a LOW=0.00001 HIGH=9 START=1 END
 PARAM b LOW=0.00001 HIGH=2 START=0.4 END
 END {of the PDF}
 END
 RUN
 FULL
 END {of the MODEL}

END

Survival analysis—With left-truncated observations

Left truncation arises in survival analysis when some early portion of an individual's period of risk is not observed.

For example, in a prospective study of mortality, we might want to follow all living people in some area, instead of just

following individuals from birth. This type of data collection can lead to unbiased results, provided observations are left-

truncated at the age at which people are enrolled in the study. The idea is that, had the someone died prior to being enrolled

in the study, that would not have been enrolled; therefore, their risk of mortality is know to be zero.

Some Example Programs

 110

For this example, we will use the Siler competing hazards mortality model for a fictitious prospective study of

mortality. We will two types of observations: those who died and those who are right censored. For each observation we

know three times: the time an individual was enrolled for prospective observation (tα), the last time an individual was

observed as alive (tu), and the first time the individual was known to be dead (te). The first time, tα, defines the left truncation

point, tu and te define an interval within which death took place. For right censored observations, te is set to infinity (or a

number greater than the human lifespan). The likelihood is

(6)
1

(|) (|)
(, ,)

(|)
i i

i

N
u e

u e
i

S t S t
L

S tα
α=

−
= ∏t t t

θ θθ θθ θθ θ
θ,θ,θ,θ,

θθθθ
.

From this likelihood it can be seen that an individual's probability of death is the area under pdf between tu and te and divided

by the area from tα to infinity, which renormalizes the pdf for the period of actual observation. An individual likelihood is

constructed in mlemlemlemle as PDF SILER(14, 15, 6) 0.05, 0.3, 0.0, 0.001, 0.05 END, which represents a person who

died between ages 14 and 15, and were enrolled in the study at age 6.

MLE
 TITLE = "Example"
 DATAFILE("ex5.dat")
 OUTFILE("ex5.out")

 DATA
 talpha FIELD 1 {Left truncation time}
 topen FIELD 2 {time last known alive}
 tclose FIELD 2 {time first known dead, or oo if censored}
 END

 MODEL
 DATA
 PDF SILER(topen, tclose, talpha)
 PARAM a1 LOW=0.00001 HIGH=0.5 START=0.01 END
 PARAM b1 LOW=0.01 HIGH=2 START=0.1 END
 PARAM a2 LOW=0 HIGH=1 START=0.001 END
 PARAM a3 LOW=0.0000 HIGH=1 START=0.001 END
 PARAM b3 LOW=0.00001 HIGH=1 START=0.001 END
 END {of the PDF}
 END
 RUN
 FULL
 END {of the MODEL}

END

Survival analysis—right-truncated observations

Right truncation arises in survival analysis when the later risk is determined by the study design. For example, we

might have data on child mortality for analysis. Each child was followed from birth to age five, and the only children

available in the data set were those who died from birth to five. This type of data collection can lead to unbiased results,

provided child's observations are right-truncated at age five.

For this example, we will use the Gompertz competing hazards mortality model for a fictitious prospective study of

mortality. We will have observations selected for mortality by age five and no right-censoring. A single age at death is

known. The likelihood for exact times to death with right truncation is

Some Example Programs

 111

(7)
1

(|)(, ,)
1 (|)

i

i

N

i

f tL
S tω

ω=

=
−∏t t θθθθθθθθ

θθθθ
.

From this likelihood it can be seen that an individual's probability of death is the pdf at the age of death, divided by the area

from 0 to tω, which renormalizes the pdf for the period of actual observation. An individual likelihood is constructed in mlemlemlemle as

PDF GOMPERTZ(2.1, 2.1, 6) 0.05, 0.3 END, which is a death at the age of 2.1.

MLE
 TITLE = "Example"
 DATAFILE("ex6.dat")
 OUTFILE("ex6.out")

 DATA
 tdeath FIELD 1 {Left truncation time}
 END

talpha = 5.0 {set a constant for right truncation}

 MODEL
 DATA
 PDF GOMPERTZ(tdeath, tdeath, talpha)
 PARAM a1 LOW=0.00001 HIGH=0.5 START=0.01 END
 PARAM b1 LOW=-2 HIGH=-0 START=0.1 END
 END {of the PDF}
 END
 RUN
 FULL
 END {of the MODEL}

END

Survival analysis—With left-and right-truncated observations

This example extends the previous one by including both left and right truncation, as well as interval censored

observations. We will use a child mortality example again, but now each children is recruited at some age from 0 to 5 years.

Their risk will be left-truncated at the age of entry. Again, only children who die before age 5 would be included in the

analysis, so that all exposures are right-truncated. Finally, children are periodically visited, so all observations are interval

censored. Again, we will use the Gompertz competing hazards mortality model for this fictitious prospective study of child

mortality. The likelihood is

(8)
1

(|) (|)
(, , ,)

(|) (|)
i i

i i

N
u e

u e
i

S t S t
L

S t S tα ω
α ω=

−
=

−∏t t t t
θ θθ θθ θθ θ

θ,θ,θ,θ,
θ θθ θθ θθ θ

.

From this likelihood it can be seen that an individual's probability of death is the area under pdf between tu and te and divided

by the area from tα to tω, which renormalizes the pdf for the period of actual observation. An individual likelihood is

constructed in mlemlemlemle as PDF GOMPERTZ(topen, tclose, talpha, tomega) 0.05, 0.3 END. For example PDF

GOMPERTZ(2.1, 2.4, 1.0, 5.0) 0.05, 0.3 END returns the probability that a child, enrolled in the study at age one

and selected for having died by age five, died between the ages of 2.1 and 2.4.

Some Example Programs

 112

MLE
 TITLE = "Example"
 DATAFILE("ex7.dat")
 OUTFILE("ex7.out")

 DATA
 talpha FIELD 1 {Left truncation time}
 topen FIELD 2 {time last known alive}
 tclose FIELD 2 {time first known dead, or oo if censored}
 END

tomega = 5.0

 MODEL
 DATA
 PDF GOMPERTZ(topen, tclose, talpha, tomega)
 PARAM a1 LOW=0.00001 HIGH=0.5 START=0.01 END
 PARAM b1 LOW=0.01 HIGH=2 START=0.1 END
 END {of the PDF}
 END
 RUN
 FULL
 END {of the MODEL}

END

Survival analysis—Accelerated failure time

Frequently, one is interested in modeling the effects of covariates on the time to failure. A common model of this

type is call the accelerated failure time model (AFT), in which covariates shift the time to failure to the right or the left. mlemlemlemle

has a general mechanism for modeling the effects of covariates on any parameter that is defined, so that accelerated failure

time models can be easily constructed.

In this example, the mean of a normal distribution has two covariates that shift the failure time.
MLE
 TITLE = "Example"
 DATAFILE("ex8.dat")
 OUTFILE("ex8.out")

 DATA
 topen FIELD 1 {Last observation time prior to the event}
 tclose FIELD 2 {First observation time after the event}
 weight FIELD 3 {the first covariate}
 age FIELD 4 {the second covariate}
 END

 MODEL
 DATA
 PDF NORMAL(topen, tclose)
 PARAM mu LOW=0.00001 HIGH=100 START=25 FORM=LOGLIN
 COVAR weight PARAM b_weight LOW=-20 HIGH=20 START=0 END
 COVAR age PARAM b_age LOW=-20 HIGH=20 START=0 END
 END {param mu}
 PARAM s LOW=0.01 HIGH=50 START=3 END
 END {of the PDF}
 END
 RUN
 FULL
 END {of the MODEL}

END

From this specification of covariates, the µ intrinsic parameter of the normal distribution will be computed for the ith

observation as µi = mu×exp(weighti × b_weight + agei × b_age).

Some Example Programs

 113

Survival analysis—Hazards model

An alternative to the accelerated failure time model is the hazards model. Under the hazards model, the effects of

covariates is to raise or lower the hazard by some amount9. In general, if h(t) is the hazard function, covariates for the ith

individual, xiβ, are modeled on the hazard as hi(t) = h(t)exp(xiβ).

Most of the probability density functions in mlemlemlemle provide a mechanism for modeling the effects of covariates on the

hazard. You can find out for any particular pdf by typing, for example, mle -h lognormal. A message will tell you

whether or not covariates can be modeled on the hazard.

In this example, the same normal distribution used in the previous example has had the two covariates moved from

affecting µ to affecting the hazard.
MLE
 TITLE = "Example"
 DATAFILE("ex8.dat")
 OUTFILE("ex8.out")

 DATA
 topen FIELD 1 {Last observation time prior to the event}
 tclose FIELD 2 {First observation time after the event}
 weight FIELD 3 {the first covariate}
 age FIELD 4 {the second covariate}
 END

 MODEL
 DATA
 PDF NORMAL(topen, tclose)
 PARAM mu LOW=0.00001 HIGH=100 START=25 END
 PARAM s LOW=0.01 HIGH=50 START=3 END
 HAZARD COVAR weight PARAM b_weight LOW=-20 HIGH=20 START=0 END
 COVAR age PARAM b_age LOW=-20 HIGH=20 START=0 END
 END {hazard}
 END {of the PDF}
 END
 RUN
 FULL
 END {of the MODEL}

END

Survival analysis—Immune subgroup

When observing times to events, there may be an unidentifiable subgroup for whom risk of experiencing the event is

zero. These make up a so-called immune fraction, a sterile subgroup, or a contaminating fraction. It is possible to model

some fraction of individuals who are not at risk, so to statistically identify the subgroup.

If complete records are available for all individuals, one could simply remove the sterile individuals from the

analysis of the non-sterile fraction. When complete records are not available (i.e. we cannot tell a sterile individual from a

right-censored individual) maximum likelihoods methods are easily adapted to include estimation of an unknown fraction of

individuals who are not susceptible to failure.

The effect of the sterile subgroup on the survival distribution can be seen in Figure 5. Call s the non-susceptible

fraction. Then the proportion of individuals who are susceptible at the start of risk is p(0)=1 – s. Inspection of Figure 5

9 Except for the exponential and the weibull distributions, accelerated failure time models are not proportional hazards models.

Some Example Programs

 114

suggests that the fraction of surviving individuals at time t must be made up of two fractions. One is Sf(t) weighted by the

fraction not sterile, (1 – s). The second fraction is constant at s:

 () (1) ()fS t s S t s= − + .

The overall hazard at time t is simply the hazard of the non-susceptible subgroup weighted by the proportion of that

group at time t. The proportion of susceptible individuals at time t will decrease as fecund individuals fail, and must depend

on survivorship of the non-sterile group to time t and the initial fraction of sterile individuals, s. This fraction at time t is

(1) ()

()
(1) ()

f

f

s S t
p t

s s S t
−

=
+ −

.

The hazard at time t is

(1) () () (1) ()

() () ()
(1) () () (1) ()

f f f
f

f f f

s S t f t s f t
h t p t h t

s s S t S t s s S t
− −

= = =
+ − + −

and the probability density function is found as

 () () () (1) () () (1) ()f f ff t h t S t s S t h t s f t= = − = − .

These forms for the PDF, SDF, and hazard function provide for reasonably straight-forward maximum likelihood

estimation of the parameters of the distribution for the susceptible observations as well as s. The general form of the

likelihood when sterility is included, becomes

Figure 5. The effect of contamination by a sterile subgroup on the survivorship distribution. The subgroup makes up fraction s of
the initial population at risk. The left panel shows survivorship for the uncontaminated group and the right panel shows the same
distribution contaminated by the sterile subgroup.

Some Example Programs

 115

(9)
{ , } ,

1

(, (1) (|) (|) (|) { , }u e u ei i i i

i i i i i

N t t t t

u e e u e e
i

L s t t s f t S t S t s t t
δ δ

ωδ
1− { }

=

    = − − +     ∏θ, |) θ θ θθ, |) θ θ θθ, |) θ θ θθ, |) θ θ θ ,

where the δ{x,y} is the Kronecker's delta function, which equals one when x=y, and zero when x≠y.

The following example estimates one such model. The likelihood begins with the mix() function, which produces

an average of the second and third arguments, weighted by first argument (which is a probability). The first PDF is PDF

STERILE() END, which returns one if tclose is infinity or less than topen. Covariates are modeled on both the non-

susceptible fraction as well as the hazard of the susceptible fraction.
MLE
 TITLE = "Example"
 DATAFILE("ex.dat")
 OUTFILE("ex.out")

 DATA
 topen FIELD 1 {Last observation time prior to the event}
 tclose FIELD 2 {First observation time after the event}
 weight FIELD 3 {the first covariate}
 age FIELD 4 {the second covariate}
 END

 MODEL
 DATA
 MIX(PARAM s LOW=-100 HIGH=100 START=0 FORM=LOGLIN {define the immune fraction}
 COVAR weight PARAM b_s_weight LOW=-20 HIGH=20 START=0 END
 COVAR sex PARAM b_s_sex LOW=-20 HIGH=20 START=0 END
 END {param s}

 PDF STERILE(topen, tclose) END, {returns 1 for right censored observations}

 PDF LNNORMAL(topen, tclose)
 PARAM a LOW=0.00001 HIGH=100 START=25 END
 PARAM b LOW=0.01 HIGH=50 START=3 END
 HAZARD COVAR weight PARAM b_weight LOW=-20 HIGH=20 START=0 END
 COVAR sex PARAM b_sex LOW=-20 HIGH=20 START=0 END
 END {hazard}
 END {of the PDF}
) {mix function}
 END
 RUN
 FULL
 END {of the MODEL}

END

Linear regression in the likelihood framework

This example shows how linear regression is treated within the framework of likelihood models. The linear

regression model with n covariates specifies that the value of the ith observation is a combination of a y intercept term (α) an

additive covariate-parameter term (xi1β1 + xi2β2 + ... + xinβn) plus an error (ei). Furthermore, distribution among all error

terms (ε) is normally distributed with a mean of zero and a standard deviation of σ. The formal specification is:

 yi = α + xi1β1 + xi2β2 + ... + xinβn + ei

 ε ~ N(0, σ)

Under the likelihood model, the equivalent specification can be given in a very different format.

Some Example Programs

 116

1 1 2 2

~ (,)
...

i

i i i in n

Y f
x x x

µ σ
µ α β β β= + + + +

.

The difference in the two specifications exemplifies the two different philosophies in the methods. Under regression,

difference between each observation and the line specified by the parameters is treated as "error". Under the likelihood

model, the observations are normally distributed, with a mean that is determined by a series of covariates.

The data for this example are fictitious. The third column contains the values of yi, column 1 is xi1 and xi2.
0.4 53 64
0.4 23 60
3.1 19 71
0.6 34 61
4.7 24 54
1.7 65 77
9.4 44 81
10.1 31 93
11.6 29 93
12.6 58 51
10.9 37 76
23.1 46 96
23.1 50 77
21.6 44 93
23.1 56 95
1.9 36 54
29.9 51 99

The following shows the output from a regression analysis
 VARIABLE MEAN STD. DEVIATION COEF. VARIAT.
Indept Variable: Y 76.17647059 16.63293154 0.21834736
Depent Variable: 1 11.07058824 9.74453467 0.88021833
Depent Variable: 2 41.17647059 13.43612339 0.32630585

 VAR. COEFFICIENT STD ERROR T STATISTIC
Alpha 66.46540496
B(1) 1.29019050 0.34276468 3.76407073
B(2) -0.11103677 0.24858973 -0.44666675

 SUM OF MEAN F
SOURCE SQUARES DF SQUARE RATIO
REGRESS. 2325.1795 2 1162.5897 7.7458
RESIDUAL 2101.2911 14 150.0922
TOTAL 4426.4706 16 276.6544

R SQUARE = 0.5253
STANDARD ERROR OF ESTIMATE = 12.251213

The following shows the mlemlemlemle code for the equivalent likelihood model. Notice that this program is similar to the

accelerated failure time model, except that the form for modeling covariates on the mean is additive (FORM = ADD).

Some Example Programs

 117

MLE
 TITLE = "Test regression"
 DATAFILE("eg.dat")
 OUTFILE("eg.out")

 DATA
 y FIELD 3
 x1 FIELD 1
 x2 FIELD 2
 END

 MODEL
 DATA
 PDF NORMAL(y)
 PARAM mu LOW = 7 HIGH = 500 START = 50 FORM = ADD
 COVAR x1 PARAM b1 LOW=-10 HIGH=10 START=0 END
 COVAR x2 PARAM b2 LOW=-10 HIGH=10 START=0 END
 END {param}
 PARAM sig LOW=0.1 HIGH=200 START=10 END
 END {pdf}
 END {data}
 RUN
 FULL
 END

END

The following output fragment shows the result from this model.
LogLike= -65.06725 Iterations= 334 Func evals= 25383 Del(LL)= 9.745E-0011
Converged normally

Results with estimated standard errors. (27 evals)
Solution with 4 free parameters
 Name Form Estimate Std Error t against
 mu ADD 66.46589883575 9.596050356992 6.92638078825 0.0
 b1 1.290194199465 0.453901547297 2.84245384742 0.0
 b2 -0.11104975496 0.202022074279 -0.5496911927 0.0
 sig 11.11779472801 2.630810510011 4.22599601366 0.0

The results are nearly identical to the regression results presented earlier. All parameters of the model are given with

a standard error.

SOme Details

 118

SOME DETAILS

This chapter is a series of notes and technical details for mlemlemlemle.

Maximizers

mlemlemlemle has four methods for maximizing the likelihood function. Each of the methods has strengths and weaknesses for

different types of functions. Understanding some of the details of each method is useful for deciding which to use for any

given application. The following sections describe each of the maximizers and points out strengths and weaknesses of each.

The behavior of some methods can be modified considerably by the user.

The maximization method is selected by setting the variable METHOD.

The overall goal of function maximization is to find the set of parameters that maximize a function. A simple

analogy is to imagine that you are looking at a topographic map that codes altitude by color. You want to find the longitude

and latitude coordinates (the "parameters") that will put you at the highest point on the map. By looking over the map, you

may be able to quickly ascertain a mountain peak or some other maximum. In order to do this, however, you effectively

scanned hundreds of thousands of points on the map until finding those places where the colors suggest the highest altitude.

With a little more work, the highest peak is easily resolved. Visual evaluation of maximum elevation is easy and takes almost

no time because the map shows the elevations evaluated at hundreds of thousands of points on the map, and our eyes can

quickly scan those points. That is, each "function" evaluation was inexpensive—we merely had to look at a point to know its

value. Now imagine that the map surface is covered by a piece of paper. You can only expose a tiny hole in the map in order

to read the color at that point (that is, to evaluate the function at that point). Furthermore, each hole takes a long time to cut,

perhaps minutes or hours. Then the question becomes this: how do we find the maximum elevation of the map in the shortest

possible time? The map analogy will be used to understand how different computer algorithms finds the maximum of a

likelihood surface.

Many different function maximization methods have been developed at least since Isaac Newton developed methods

out of the calculus. Nevertheless, no single method has emerged as superior for all types of problems. In general, function

maximization is easiest to do when information is available for the derivative of the function. A traditional way of finding

maximum likelihood parameters for simple functions is to symbolically find the derivatives of the function with respect to

each free parameter. Each partial derivative is set to zero. This set of equations is collectively called the likelihood equations.

Since the derivatives are defined as the slope of the function, it follows that any place where all the partial derivatives go to

zero must be a minimum or a maximum of the function. If practical, the likelihood equations are "solved"; that is, the sets of

parameter values are analytically found that simultaneously yields zero for each of the partial derivatives. The maximum

likelihood estimates for a parameter is found from a particular series of observations by simply applying that equation on the

set of observations. Unfortunately, this method is difficult and non-general and, therefore, not practical for general-purpose

maximization as found in mlemlemlemle. Advances in computer-assisted symbolic mathematics (packages like Maple and Mathematica)

SOme Details

 119

may eventually prove this method feasible for many users, but the need for specialized mathematical knowledge and skills still

limits this method. A general method must work for most types of likelihood functions, whether or not analytical derivatives

are easy (or even possible) to find.

Another class of fast maximizers estimates derivatives numerically. These methods are not robust for complex

surfaces with many local maxima. From some starting point, they tend to rush up to the top of the nearest local maximum. A

given function may have one or many points where the derivatives goes to zero, so this method may not find the global

maximum. Numerical derivatives have limitations resulting, in part, from the inaccuracy of real number representation in

computers, so that a number of derivative-free methods have been developed. One clever method solves a two dimensional

maximization problem by trying to enclose the maximum within a triangle. The triangle grows and shrinks based only on

information from the three points of the triangle at a given step. A rather unsophisticated method alternates between

maximizing the function first by longitude, using as many evaluations as needed to find the maximum longitude for a given

latitude, and then does the same for latitude. By repeating this many times, a maximum (usually the global maximum) is

found. Needless to say, this method can be very slow. Finally, a newer method has been developed that mimics natures own

maximization method. The method can be slow, but seems to be as robust at finding the global maximum as any iterative

method.

Conjugate gradient method

The conjugate gradient method searches through parameter space for combinations of parameters where the slope of

the likelihood function goes to zero. Now, the computer numerically computes a slope (or gradient) using the equation mi =

[f(xi + ∆xi) – f(xi]/∆xi, for parameters x and small values ∆x. This procedure uses the slopes (mi) to figure out the next set of x

under the idea that the slope will decrease as the maximum is approached (unless the surface is flat).

The conjugate-gradient method used in mle mle mle mle was developed by Powell (1964), Brent (1973), and further developed by

Press et al. (1989). For problems of more then two free parameters, the conjugate gradient method is usually much faster than

the direct method. Caution must be exercised when using this method. At times a local maximum is latched onto by the

solver and the rest of the parameter space is excluded. Furthermore, some conditions can cause the maximizer to leap to

another part of the surface, where a local minimum might be reached. For example, when maximizing a likelihood function

that includes numerical integration, the tolerance in the integrator must be several orders of magnitude smaller than that of the

solver, or else the error in integration can lead the solver astray.

Two forms of the conjugate gradient method are available, METHOD=CGRADIENT1 and METHOD=CGRADIENT2.

Simplex

The simplex method is a derivative-free maximization method described by Nelder and Mead (1965) and

popularized by Press et al. (1989). The method is set with METHOD=SIMPLEX.

SOme Details

 120

Direct method

A simple method for finding a maximum is to consider only one dimension at a time. So, for our map, we would

find the highest latitude for a given longitude by examining points along a line of longitude. We could use the method of

bisection or even better ways to find the maximum along that line of longitude in the fewest number of evaluations (i.e. fewest

holes). Once we have settled on a latitude, we can find the longitude of highest elevation along that latitude. We next go

back and find a new latitude for the new longitude, etc. This is known as the direct method (Nelson 1983), and works well for

some functions over a small number of dimensions. In fact, the method is usually more robust at finding a global maximum

than the simplex or congugate gradient methods. Furthermore, it is easy to constrain the algorithm so that new parameter

values never overstep the user-defined (or mathematically defined) limits—that is, it respects the boundaries of our map.

Unfortunately, the number of function evaluations goes up as an exponent of the number of dimensions in the problem. When

the number of parameters gets large, the solution is very slow in coming. Furthermore, some functions that have the

maximum along a long narrow ridge at a 45° angle to the lines of longitude and latitude require a large number of tiny

movements before reaching the maximum.

The direct method and is set by METHOD=DIRECT. It uses the HIGH = value and LOW = values to constrain all

parameters (as discussed below). The START = values define the initial starting parameters.

The direct method uses Brent's (1973; see also Press et al. 1989) parabolic interpolation to find the maximum along a

single direction (i.e. for a single parameter holding all other parameters constant). The maximizer uses the HIGH = value and

LOW = value to define the extreme bounds of the problem. The START = value is the first "guess" at the maximum. A

parabola is then fit through the set of three points, and the maximum is analytically computed. This procedure is repeated

with the three points enclosing the maximum until the maximum in that dimension is found to some prespecified tolerance.

There are three ways you can modify the Brent maximizer. First, the maximum number of iterations in a single dimension can

be set with BRENT_ITS = value, which is sufficient for almost every function. The next modification is to change the value of

BRENT_MAGIC to some other number. This number defines the interpolation point between two points of a parabola—the so-

called golden mean of ancient Greece. With such a heritage, there is little reason to change it. Finally, the value

BRENT_ZERO is an arbitrary tiny number used in place of zero for the difference of two equal function evaluations.

Simulated annealing method

The simulated annealing method is an exciting and relatively new idea in maximization. It was first proposed by

Kirkpatrick et al. (1983) for combinatorial problems. The algorithm was further developed for functions of continuous

variables by Corana et al. (1987) and refined by Goffe et al. (1994); both papers lucidity describe how the method works.

As a metal is heated to its melting point, it loses its crystalline organization. Then as it again cools, the crystalline

pattern reemerges. When cooled slowly, a process called annealing, small crystals of metal rearrange themselves and join

other crystals with maximum orderliness (or minimum energy). This occurs as random movements of atoms and groups of

atoms eventually fall into an alignments that minimize gaps. Once these structured alignments arise, they form a larger crystal

and are subsequently less likely to fall out of alignment. As the temperature drops and the atoms move around less, large

overall changes in structure become less probable. When absolute zero is reached, the structure becomes fixed (at room

SOme Details

 121

temperature, solid metals continue to anneal very slowly). Rapid cooling of the metal, called quenching in metallurgy

because the metal is thrust into cool water or pickle, does not provide sufficient time for crystals to move about and organize.

Thus, numerous vacancies and dislocations exist among many small crystals, and orderliness is minimal. Maximizing the

crystalline order (or minimizing vacancies and dislocations) is done by cooling the metal very slowly and providing ample

opportunity for the random crystal movements to fortuitously align themselves into more ordered structures.

The simulated annealing method attempts to mimic the physical process of annealing. An initial "temperature" is set,

and a cooling rate is specified. New parameters are randomly chosen over a large range of the parameter space. As the

temperature cools, smaller and smaller ranges of the parameter space are explored. Additionally, the maximizer will not

always travel up hill. At any given temperature, a certain fraction of downhill moves will be taken so that local maxima will

not trap the maximizer.

The advantage of simulated annealing over other methods is that it is very good at finding the global maximum, even

in the presence of highly multimodal likelihood surfaces. The user can fine tune the behavior of the algorithm so that

functions with complex topography can be searched more thoroughly for the maximum. Another advantage of simulated

annealing is that it does not require computation of derivatives. In fact, simulated annealing can find the maximum of

discontinuous functions and those otherwise without first derivatives. Finally, the simulated annealing algorithm is extremely

simple and intuitive. The disadvantages of simulated annealing are that it usually takes from one to several orders of

magnitude more function evaluations than do other methods and the user must have an understanding of the algorithm to set

up initial parameters that lend themselves to efficient estimation. Sometimes it is worth experimenting to find the best

combinations of input parameters to the simulated annealing algorithm so as to minimize the total number of function

evaluations.

Simulated annealing begins at some user-defined temperature (T) and a user-defined rate of cooling (r). At the end

of one cycle of annealing, the temperature is reduced as T = T×r, and a new cycle of annealing is performed. Typically the

temperature will be 1 for simple function to 100,000 for difficult functions, and it is cooled every cycle by r = 0.85. When the

algorithm begins, the starting point is evaluated and becomes the best value, so far. Each iteration will then search the

likelihood surface in a partially random way and always keep track of the best point so far. A single cycle of annealing (i.e.

one iteration) consists of the following. First, a cycle of random movements is started. Nrand random steps are taken over one

direction at a time. The maximum width of the random step for parameter i is controlled by the step length variable vi. For

our map example, this would correspond to evaluating Nrand randomly picked points along a line of longitude or latitude.

Initially we would use the entire height and with of the map for the maximum step length. As each point is evaluated, we keep

track of the overall best maximum. Any time we find a point higher than our current maximum, we move to that point and

consider it our new starting point. But, if a lower point is found we might accept that point according to the Metropolis

criterion (Metropolis et al. 1953) by which the point is accepted with probability exp(–∆l/T), where ∆l is the difference

between the current starting point and the downhill point we have just evaluated. In other words, we draw a uniform random

number on [0, 1), and accept the move if that number is less than a negative exponential survival function of ∆l, with

parameter 1/T. This criterion means that at high temperatures we will frequently accept downhill moves with large changes in

the loglikelihood, but as temperature drops, downhill moves will only occur at small changes in the loglikelihood. After

completing the Nrand movements and evaluations, we now adjust the maximum steplength vector v. The reduction or increase

in steplength is done according to the proportion of accepted and rejected movements by an algorithm described in detail

SOme Details

 122

below. In short, the maximum step length is reduced or increased so that we can expect to accept about one half of all moves

in the next cycle of random steps. Following this adjustment, a new cycle of random steps is initiated until a total of Nadj of

these adjustments have been completed. Thus, after Nrand×Nadj function evaluations, a single iteration completes, and a new

iteration is begun until convergence, the maximum number of iterations is reached, or the maximum number of function

evaluations is reached.

The simulated annealing method is set by METHOD=ANNEALING. The method does use the HIGH = value and LOW

= values to constrain all parameters (as discussed below). The START = values define the initial starting parameters. A

number of other variables should be set with this method. Since the simulated annealing method uses random numbers, the

user must set a random seed, by calling the procedure SEED() with a positive integer. The starting temperature is set with

SA_TEMPERATURE. The default value is 1000.0, which is too high for all but extremely wild functions. It is difficult to know

what a good starting temperature is for a function, but values under 100 empirically seem to work for all but the most

topographically complicated likelihood functions. When a likelihood is to be solved multiple times on similar data sets, like

when running on bootstrapped data sets, it is worth exploring a couple of different temperatures and monitoring the progress

of the annealing by using the verbose (–v) option. In fact, watching the entire annealing process is useful for developing and

understanding of the algorithm. The variable SA_COOLING controls the cooling rate, and is 0.85 by default. Too high a value

will slow down cooling and may lead to unnecessary evaluations, whereas too low a value may resulting in (simulated)

quenching. The number of steps of random parameter perturbation is set using SA_STEPS. The number of step length

adjustments taken every iteration is controlled by SA_ADJ_CYCLES. Finally, the size of each step adjustment can be

controlled by SA_STEPLENGTH_ADJ, but the default value of 2.0 usually works well.

The simulated annealing algorithm uses a different criterion for convergence than do the other solvers. An array of

the best likelihoods of size SA_EPS_NUMBER (default is 4) is created and updated every iteration. Convergence is considered

achieved when the likelihood for the current iteration differs from all SA_EPS_NUMBER likelihoods by the value of EPSILON.

Several other variables can be used for fine tuning of the simulated annealing algorithm, but there is rarely a need to

mess with them. SA_STEPLENGTH is the initial step length for all parameters. Empirically, the starting step length value has

little effect on the outcome of the maximizer. SA_ALT_ADJUSTMENT uses an alternative formula for adjusting the step length.

SA_ADJ_LOWERBOUND defines a "null" area for which step length is not adjusted. If the proportion of accepted moves is

greater than SA_ADJ_LOWERBOUND and is less than 1 – SA_ADJ_LOWERBOUND, the current steplength will continue to be

used. See Corana et al. (1987) for more details.

Stopping criteria

There are three ways to terminate finding the solution of a model. The first way is to minimize the change in the log-

likelihood to below some specified minimum value. You can specify this by setting, for example, EPSILON=1E-8. When the

absolute difference between the log-likelihoods of the previous iteration and the current iteration falls below this value, the

problem will be considered to have converged normally.

The second way of controlling the stopping criteria is by specifying the maximum number of iterations permissible.

For example, setting MAXITER=1000, would stop searching for the maximum after 1,000 iterations, regardless of the change

in the likelihood. Note that a single iteration is that over all dimensions.

SOme Details

 123

The third stopping criterion is by specifying the maximum number of function evaluations permissible. You can

specify, for example, MAXEVALS=10000, which would stop searching for the maximum likelihood after 10,000 evaluations of

the likelihood.

Looping through methods

mlemlemlemle provides a mechanism to specify that different methods be used to solve the same likelihood. For example, you

can set
METHOD1=DIRECT
MAXITER1=10
METHOD2=CGRADIENT1
MAXITER2=500

to begin the problem with the direct method and then switch to a conjugate gradient solver for the next 500 iterations. The

variables METHOD, MAXEVALS, MAXITER, and EPSILON can have a digit appended in this way. When the variable

METHOD_LOOP is set to true, mle mle mle mle will loop back to the first method and continue the solver sequence again until one of the

methods converges normally.

Output options

Options are provided for controlling the output format of the DATA and the MODEL statement. Many of the variables

that control output options are boolean variables that are set to TRUE or FALSE.

DATA reports

For DATA statements, the values of all variables can be printed, summary statistics can be printed, and other

information about reading and dropping observations can be printed. The PRINT_BASIC variable, when TRUE directs that the

title, parameter file name, input file name, and the count of variables to be read from the input file are printed. The

PRINT_FIELDS variable, when TRUE, prints out the name of each variable and the field it is read in from the input file.

The variable PRINT_DATA_STATS, when set to TRUE, prints summary statistics for each variable, including the

mean, variance, standard deviation, minimum and maximum. When PRINT_OBS=TRUE, each observation is printed in the

output file. PRINT_COUNTS, when TRUE, prints out how many lines were read from the input file, how many observations

were kept, and how many observations were dropped.

MODEL reports

The output report from mlemlemlemle following the MODEL statement consists of parameter reports, the variance-covariance

matrix, a list of the individual likelihoods for each observation, and plots of distributions.

SOme Details

 124

Standard error report

A report with estimated standard errors is printed when PRINT_SE = TRUE. When the variable PRINT_SHORT =

TRUE, the report format is modified so that all parameters estimates are printed on one line. Whenever standard error are

reported, a variance-covariance matrix will be estimated. The next section discusses the details of computing and printing

that matrix.

Variance-covariance matrix

An estimate of a variance-covariance matrix can be computed for the parameters by setting PRINT_VCV = TRUE.

The number of elements of the matrix printed on a single line is normally 5, but can be changed by changing the value of

VCV_WIDTH.

The asymptotic variance-covariances of maximum likelihood estimates is found by inverting the local Fisher's

information matrix I for the n parameters:

2 2

2
1 1

2 2

2
1

n

n n

l lE E

I

l lE E

∂ ∂
∂θ ∂θ θ

∂ ∂
∂θ θ ∂θ

   − −
   

    
 =
 
    − −

    
     

The expectations should be taken at the true parameter values. When parameter estimates cannot be evaluated analytically,

numerical estimates of the information matrix, Î can be formed by plugging in parameter estimates, q̂ . An estimated

variance-covariance matrix is taken as 1ˆ ˆ−=V I .

mlemlemlemle uses two different estimates for the variance-covariance matrix. Either one, or both, methods may be used by

setting INFO_METHOD1 or INFO_METHOD2 to TRUE or FALSE. The default method (INFO_METHOD1) computes the variance

and covariance matrix by inverting Nelson's (1983) approximation to the Fisher's information matrix. The xth, yth element of

that matrix is computed as ()()ˆ / /xy i i
i

L x L y∂ ∂ ∂ ∂Ε = ∏ , using the standard perturbation method for approximating the

partial derivative. Appropriate sizes for ∆x and ∆y are iteratively computed for each parameter. mlemlemlemle initially uses a ∆x (and

∆y) of DX_START and then iteratively finds a ∆x that changes the loglikelihood by at least DX_TOOSMALL but no more than

DX_TOOBIG. Up to DX_MAXITS such iterations are permitted. The default values are almost always suitable. The one

serious limitation of this method is that it does not work for hierarchical likelihoods.

The second estimate of the variance-covariance matrix is computed by estimating the second partial derivative by

numeric perturbation. This method does not truly compute an expectation, and is inaccurate in some cases (you can compare

the two methods by setting INFO_METHOD2=TRUE). Nevertheless, when hierarchical likelihoods are being computed, this

method will produce better estimates.

SOme Details

 125

Confidence interval report

An approximate confidence region for each parameter can be estimated by mlemlemlemle. When the variable PRINT_SHORT =

TRUE, the report format is modified so that all parameters estimates are printed on one line.

The confidence interval is defined as the extent of upper and lower perturbations away from the estimates that

change the loglikelihood by a specified amount. For example, approximate 95% confidence intervals are formed when the

change in the loglikelihood in each direction is 5.0239. This value corresponds to an expected probability of 0.025 on each

tail of the chi-squared distribution with one degree of freedom. Over both directions, the total interval can be considered a

95% confidence interval for the parameter.

The interpretation of the one-dimensional confidence region must be done with caution. Figure 6 shows what

happens when parameters are correlated (which is quite common). Panel a. shows the contour of the loglikelihood surface

when parameter 1 is changed over the p1 axis, and parameter 2 is changed over the p2 axis. The bold ellipses represents the

desired confidence level (say, 95%). The dotted lines show the confidence limits when p1 is perturbed along the axis to each

side of the estimate; this occurs where the bold ellipse intersects the p1 axis. Panel b. shows what happens when parameters

are correlated. Now, the dotted lines still show the 95% confidence limits when p1 is perturbed from the estimate and p2 is

held constant at its maximum. The dashed lines show the true confidence region defined as the greatest extend of the 95%

confidence ellipse over the space of p1 and p2. It is easy to see that the one-dimensional confidence interval will always

underrepresented the true interval p1 and p2 are correlated.

p1

a. b.

p1

p2 p2

Figure 6 The log likelihood contour over the space of parameters p1 and p2. The bold ellipse represents the target change in likelihood that
defines the upper and lower bounds of the confidence interval. Panel a: uncorrelated parameters, where the one dimensional change in
likelihood is identical to the change over both parameters. Panel b: correlated parameters where the change in likelihood (dotted lines) is
less than the change in likelihood over both parameters (dashed lines).

The confidence intervals are found iteratively in one dimension at a time. For each of the limit pairs, mlemlemlemle first

evaluates the likelihood at the extremes LOW + CI_LIMIT_DELTA and HIGH + CI_LIMIT_DELTA. Convergence occurs when

the difference between the likelihood at the parameter estimate and the confidence limit estimate is equal to CI_CHISQ, down

to an absolute error of ±CI_CONVERGE. The maximum number of iterations for each of the limits is CI_MAXITS.

SOme Details

 126

Printing distributions

The values of the survival function, the probability density function and the hazard function can be tabulated in the

output by setting PRINT_DISTS = TRUE. All distributions that are in the model will be tabulated. The tabulation starts at

value DIST_T_START, ends at the value DIST_T_END, and is tabulated for DIST_T_N equally spaced points. The mean value

of data variables (e.g. covariates) are used when computing the distributions.

For example, to print the SDF, PDF, and hazard function at 100 points from 0 to 100 use the following code:
PRINT_DISTS = TRUE {print out distributions}
DIST_T_START = 0 {lowest value to print}
DIST_T_END = 100 {highest value to print}
DIST_T_N = 101 {number of points to print}

Other printing options

The MIN_SIGNIFICANT variable controls the minimum number of significant digits in each numeric field of the

confidence interval and standard error reports. More significant digits are displayed if there is room. If the number of leading

zeros becomes too large, that number will be printed in scientific notation (1.2343E-56).

The variable PRINT_INFO, when TRUE, directs mlemlemlemle to print basic information about the model, including the method

being used, the maximum number of iterations, the maximum number of function evaluations, and the criterion for normal

convergence.

The PRINT_FREE_PARAMS variables, when TRUE ̧directs mlemlemlemle to print a list of all free parameters and the attributes of

those parameters.

The variable PRINT_LLIKS controls printing of the individual likelihoods in a model. When TRUE, the likelihood

and frequency for each observation will be printed to the output file.

Integration methods

Numeric integration can be difficult and slow. Furthermore there is no best method for integrating all functions. mlemlemlemle

provides you with a number of different integration methods and several options for controlling those methods.

The method of integration is set using the variable INTEGRATE_METHOD. Currently there are four integration

methods that are selected by assigning INTEGRATE_METHOD one of the following: I_AQUAD, I_SIMPSON, I_TRAP_OPEN,

and I_TRAP_CLOSE.

INTEGRATE_METHOD = I_AQUAD selects an eight-point adaptive quadrature integration routine based on the Quanc8

routine of Forsythe et al (1977). This is probably the best all-around integration method included in mlemlemlemle. With it, you can

specify an tolerance to which integration will be done using the variable INTEGRATE_TOL variable or by including a third

argument within the parenthesis of the INTEGRATE function call. When likelihoods include numerical integration, you should

ensure that the integration tolerance is one or more magnitudes greater then the tolerance for the maximizer.

SOme Details

 127

INTEGRATE_METHOD = I_SIMPSON selects a method of integration that is an extended Simpson's rule. When this

method is selected, the function is split into smaller and smaller fractions until INTEGRATE_N levels have been evaluated.

The subdivision will stop after INTEGRATE_N steps or when the relative error is less than INTEGRATE_TOL.

INTEGRATE_METHOD = I_TRAP_OPEN or INTEGRATE_METHOD = I_TRAP_CLOSE selects an integration routine

which finds the integral using a trapezoidal approximation to the integral of INTEGRATE_N steps. When this method is

selected, the number of subdivisions of the function will be INTEGRATE_N, and there is no convergence criterion.

I_TRAP_OPEN uses an open extended Simpson's rule, so that the endpoints are never evaluated. The formula is

[] []

[] []

2 1 3 2

5

4 3 5 4
6

109 5() () () ()
48 48()
63 49() () () () ()
48 48

N Nb

N
a

N N i
i

f t f t f t f t
b af t dt

N f t f t f t f t f t

− −

−

− −
=

 + − + −  ≈  
 + + + + +
  

∫
∑

,

where N is the number of subdivisions (INTEGRATE_N), and ti = a + (i–1)(b – a)/N. I_TRAP_CLOSE uses a closed extended

Simpson's rule, so that the endpoints are evaluated. The formula is

[] []

[] []

1 2 1

4

3 2 4 3
5

17 59() () () ()
48 48()

43 49() () () () ()
48 48

N Nb

N
a

N N i
i

f t f t f t f t
b af t dt

N f t f t f t f t f t

−

−

− −
=

 + − + −  ≈  
 + + + + +
  

∫
∑

,

The error for both approximations is on the order N–4.

Logistic equations

Logistic transformations are sometimes useful to change a variable in the range [-∞, ∞] to a transformed variable in

the range [0, 1]. There are two common ways to construct these transformations. The transformation is p1 = 1/(1 + et), and

the second transformation is p2 = et/(1 + et). Both transformation are equally useful, and there is no reason except habit to

choose one over the other. Mathematically, they are related as complements; that is, p1 = 1 – p2.

By default, mlemlemlemle uses the transformation to p1 for both the LOGISTIC() function call, and the FORM = LOGISTIC

parameter transformation. You can change mlemlemlemle to use the p2 form of the equation by setting the variable ALT_LOGISTIC =

TRUE. The default value of ALT_LOGISTIC is false.

The interactive debugger

mlemlemlemle incorporates an interactive debugger that provides some degree of control while models are being solved. Entries

in the symbol table can be viewed and changed, so that convergence can be forced early or postponed, output variables can be

changed, and the values of various debugging options can be set and reset.

SOme Details

 128

The debugger is called by typing <CTRL> C on most systems. The <BREAK> key also works on some systems.

After mlemlemlemle gets to some reasonable stopping point—usually the end of an iteration—control will be passed to the user. The

debugger responds with

Exit: immediately exits the program.

Resume: resumes running mlemlemlemle from where it left off.

One step: continue from where it left off for one more iteration and then reenters the interactive debugger.

Pick a symbol: selects a symbol to display. The value of the symbol is displayed between debugger commands, for

this and all subsequent calls to the debugger.

Change the value of a symbol: If no symbol is selected, the user will be prompted for a symbol to change and then

a value to change it to. If a symbol is selected (with Pick), then that symbol will be changed.

Search for symbols: Prompts the user for search text, and then searches the symbol table for symbol names that

match any part of the search text. The name, types, and value of matching symbols are displayed.

Predefined variables and constants

There are a plethora of pre-declared variables that are used to change the behavior of the program. These variables

can occur anywhere in the main body of the program but not within a MODEL...END or a DATA...END statement.

The form used to assign a value to a variables is:
 variable_name = <expression>

where <expression> can be an integer, a real, character, string or boolean (TRUE or FALSE) expression. (Expressions are

discussed in the chapter on the Model statement). Certain of these types cannot be mixed. For instance, a string expression

cannot be assigned to a variable already defined as a integer, real, or boolean. Likewise, a variable that is already defined as

an integer cannot have a real number assigned to it subsequently. A variable that is type real can have an integer assigned to

it; the integer will be converted to a real number first.

Table 15. Pre-defined variables.

Variable name Default value Comments
ALT_LOGISTIC FALSE Controls how logistic transformation are done in function and parameter

form LOGISTIC. If set to false, they return p=1/[1+exp(x)]. If true, the
transformation is p=exp(x)/[1+exp(x)].

ANNEALING ANNEALING A string constant for the simulated annealing method.
ATOMICMASSU 1.6606E-27 Atomic mass unit constant
AVOGADROSN 6.0220E-23 Avogadro's number
BOHRMAGNETON 9.2741E-24 Bohr's magneton
BOHRRADIUS 5.292E-11 Bohr's radius
BRENT_ITS 200 Defines the maximum number if iterations allowed for a single dimensional

maximization when using the BRENT one-dimensional maximizer in the
DIRECT and CGRADIENT methods.

BRENT_MAGIC 0.381966 [3 – sqrt(5)]/2, a constant used by the one-dimensional maximizer
CGRADIENT1 CGRADIENT1 A METHOD string so that the congugate gradient method (type 1) is used
CGRADIENT2 CGRADIENT2 A METHOD string so that the congugate gradient method (type 2) is used
CI_CHISQ 5.02389 Chi square value for likelihood CIs. This value defines a 95% CI.

SOme Details

 129

CI_CONVERGE 0.00005 The maximum allowable difference between the likelihood at the confidence
limit and CHISQ_C

CI_EVALS 0 Used to record the number of function evaluations when computing
confidence intervals.

CI_LIMIT_DELTA 0.0 When confidence intervals are computed, mlemlemlemle adds this value to the lower
parameter value and subtracts this parameter from the upper parameter value,
thus preventing the confidence interval from being evaluated at the
boundary. Negative values will extend the range over which the CI will be
evaluated.

CI_MAXITS 30 The maximum number of iterations allowed for finding a confidence limit.
CONVERGENCE 1 Used to record the reason for terminating a solution
CREATE_OBS 0 For positive values, creates that number of observations rather than reading

them from a data file; otherwise, observations are read from a file.
DATAFILE The name of the file to be read in by a DATA statement. This variable is set

using the DATAFILE() procedure.
DEBUG 0 A integer debug level. The higher this value, the more trees that die. Values

of 5 and 11 are useful. (also -d ## on the command line)
DEBUG_DATA FALSE When TRUE, debugging is turned on for the routines that read in data files

(also -dd on the command line).
DEBUG_INT FALSE When TRUE, turns on debugging for the integration routines (also -di on the

command line).
DEBUG_LIK FALSE When TRUE, turns on debugging for likelihoods, and individual likelihoods

are printed (also -dl on the command line).
DEBUG_PARSE FALSE When TRUE, turns on debugging for the language parsing routines (also -dp

on the command line)
DEBUG_SYM FALSE When TRUE, turns on debugging for the symbol table routines (also -ds on

the command line).
DEGREESPERRADIAN 57.2957795 The number of degrees in one radian = π/180
DELIMITERS " , <tab>" A string of delimiters that will define fields within a data file.
DELTA_LL ∞ Used to record the change in likelihood when solving models
DIFF_DX 0.001 The initial (largest) value of dx used for the DERIVATIVE function.
DIRECT "DIRECT" A METHOD string so that likelihoods are solved by the direct method
DIST_DX_SCALE 0.25 Multiplied by the standard error of a parameter when computing the

derivative of distributions with respect to each parameter.
DIST_T_END 10.00 The default end time when distributions are printed. (See PRINT_DISTS and

DIST_T_START)
DIST_T_N 10 The number of time points (between DIST_T_START and DIST_T_END) for

which the distributions are printed. (See PRINT_DISTS).
DIST_T_START 1.00 The default start time when distributions are printed. (See PRINT_DISTS

and DIST_T_END)
DX_MAXITS 12 The maximum number of iterations allowed for finding a reasonable sized ∆x

when computing numerical derivatives.
DX_START 0.1 The starting value for ∆x used in finding numerical derivatives.
DX_TOOBIG 0.3 The maximum change in log likelihood allowed for computing a reasonable

 sized ∆x.
DX_TOOSMALL 0.01 The minimum change in log likelihood allowed for computing a reasonable

sized ∆x
D_OBS The number of data observations that were dropped.
E 2.71828... The value e.
EPSILON 0.00001 The maximum change in log likelihood for convergence when estimating

parameters for a model.
EULERSC 0.57721567 Euler's constant
EVALS 0 The number of function evaluations used to solve a model
EXP_HAZARD True Changes the way proportional hazards are modeled on the baseline hazard. if

TRUE, h(t) = h(t)'ep otherwise h(t) = h(t)'p.
FALSE FALSE A boolean constant
FIND_EPS 0.00001 The convergence criterion for the FINDZERO and FINDMIN functions

SOme Details

 130

FIND_MAXITER 100 Maximum number of iterations for the FINDZERO and FINDMIN functions
FREE_PARAMS 6.672E-11 The number of free parameters while solving a model
GRAVITATIONALC 6.672E-11 Universal gravitational constant
HIGH_DEFAULT oo The default value for the HIGH parameter limit. If no HIGH = ... is set for

a parameter, the value will be taken from HIGH_DEFAULT.
INFINITY (hardware) A constant for the largest real number available on the computer. This

number is determined when mlemlemlemle begins.
INFO_METHOD1 True Computes the local Fisher's information matrix using Nelson's (1983:394)

first derivative method. This method does not work for nested likelihoods,
but is fairly robust for non-nested models.

INFO_METHOD2 False When TRUE, computes the local Fisher's information matrix using numerical
perterbation for the second partial derivatives.

INPUT_SKIP 0 Number of initial rows to skip when reading in data files. This is useful
when, for example, columns of numbers in the input file have one or more
lines of headings to describe the columns.

INTEGRATE_METHOD I_AQUAD Sets the method of integration.
INTEGRATE_N 15 Number of points in the Simpson and trapezoidal integrators.
INTEGRATE_TOL 0.001 The tolerance for the Simpson and adaptive quadrature integrators.
ITERATIONS 0 The number of iterations taken to solve a model.
ITERATION_PRINT 0 When set to n, every nth iteration will print out a partial result.
I_AQUAD 3 Constant for adaptive quadrature integrator (default)
I_SIMPSON 0 Constant for Simpson integrator
I_TRAP_CLOSED 1 Constant for trapezoidal (closed endpoint) integrator
I_TRAP_OPEN 2 Constant for trapezoidal (open endpoint) integrator
LARGEST_LIKELIHOOD (hardware) The largest likelihood acceptable from a function
LARGEST_LLIKELIHOOD (hardware) The largest loglikelihood acceptable from a function
LARGE_ZERO (hardware) A characteristic of the hardware floating point math.
LIGHTC 299792458 The speed of light
LINES_PER_OBS 1 The default number of lines per observation. This number is modified by mlemlemlemle

if the LINE statement is used with the FIELD statement.
LINE_NUMB 0 Set to each data file line while reading in data. Afterward, it is set to the

number of lines in the data file.
LNINFINITY (hardware) The log of the largest representable real number
LOGLIKELIHOOD 0.0 The loglikelihood found in solving the model
LOG_10 2.3025850 A constant.
LOW_DEFAULT -oo The default value for the LOW parameter limit. If no LOW = ... is set for a

parameter, the value will be taken from LOW_DEFAULT.
MACHINE_EPSILON (hardware) Value associated with round-off error for the particular hardware being used.

This number is determined when mlemlemlemle begins.
MAXEVALS 100000 The maximum number of function evaluations for solving a likelihood. Upon

hitting MAXEVALS function evaluations, mlemlemlemle will terminate even if the
convergence criterion has not been met.

MAXINT (hardware) Value of the greatest integer for the current architecture.
MAXITER 100 The maximum number of iterations allowed for estimating the parameters of

a model. Upon hitting MAXITER iterations, mlemlemlemle will terminate even if the
convergence criterion has not been met.

MAX_BOOLEANS (hardware) Fixed maximum size of a boolean array
MAX_CHARS (hardware) Fixed maximum size of a character array
MAX_INTEGERS (hardware) Fixed maximum size of an integer array
MAX_REALS (hardware) Fixed maximum size of a real array
MAX_STRINGS (hardware) Fixed maximum size of a string array
METHOD DIRECT METHOD takes on the value of one of several strings to define what method

will be used for solving likelihoods.
METHOD_LOOP FALSE Turns on looping through methods until convergence is reached.
MINIMUM_ITS 1 The minimum number of iterations when solving a model.
MIN_SIGNIFICANT 4 The minimum number of significant digits to print for most fields in the

parameter estimate reports.

SOme Details

 131

NEGINFINITY (hardware
dependent)

The most negative real number supported by the machine. This value is
determined when mlemlemlemle begins.

NEWTON "NEWTON" A METHOD used for finding parameter estimates.
N_OBS The number of observations read and kept from the input file
N_VARS The number of variables read and kept from the input file
NOTSINGULAR FALSE Returns the result of inverting the information matrix in computing the

variance-covariance matrix. TRUE if the matrix is singular.
oo (hardware) The greatest positive real number. Also INFINITY
OUTFILE (operating

system
dependent)

The name of the output file. Usually OUTFILE is defined in the mlemlemlemle program
code using the procedure OUTFILE(). If OUTFILE is not defined in the
program, the output will be sent to the standard output. OUTFILE can also be
defined on the command line.

PARSE_ONLY FALSE When set to TRUE, mlemlemlemle parses the program file and then terminates. If syntax
and other errors are encountered during parsing, mlemlemlemle will print the errors;
otherwise, mlemlemlemle will simply terminate with error. The same effect is achieved
by using -p on the mlemlemlemle command line.

PI 3.14159 The value π.
PLANCKINV2PI 1.0546E-34 Planck's constant divided by 2×π.
PLANCKSC 6.6262E-34 Planck's constant
POWELL "POWELL" A METHOD used for finding parameter estimates.
PRINT_BASIC TRUE Toggles printing of basic model information.
PRINT_CI TRUE Toggles printing of confidence interval report.
PRINT_COUNTS TRUE Toggles printing of variable counts from input variables.
PRINT_DATA_STATS TRUE Toggles printing of mean, standard deviation, minimum, maximum statistics

for each input variable.
PRINT_DISTS FALSE Toggles printing of values for the survivorship, hazard, and PDF

distributions at user-specified time points. When PRINT_DISTS is set to
TRUE, values should also be set for DIST_T_START, DIST_T_END and
DIST_T_N. The following code fragment will print the SDF, PDF, and
hazard distributions at 100 time points from 100 to 300.

PRINT_DISTS = TRUE
DIST_T_START = 100.0
DIST_T_END = 300.0
DIST_T_N = 100

PRINT_FIELDS FALSE Toggles printing information about the field in the input file.
PRINT_FREE_PARAMS FALSE Toggles printing a list of free parameters sent to the maximizer. This is

usually used for debugging purposes only.
PRINT_INFO TRUE Toggles printing of some information to the output file.
PRINT_LLIKS TRUE Toggles printing of individual likelihoods (1 per obs.) to the output file.
PRINT_OBS FALSE Toggles printing of the observations from the input file after transformations.

When TRUE, prints the final values for all observations.
PRINT_SE TRUE Toggles printing of standard error report.
PRINT_SHORT FALSE When FALSE, mlemlemlemle prints a detailed reports for parameter estimates. When

TRUE, mlemlemlemle prints a one-line report for the report. This option is useful when
the results are to be manipulated directly by another program. The number
of fields in the output report depend on how many parameters are estimated
and whether the Standard Error report or the Confidence Limit report is
generated.

PRINT_VCV FALSE Toggles printing of variance-covariance matrix. The rows and columns of
the VCV matrix are in the same order as free parameters are defined.

PROGRAM_NAME mle
RADIANSPERDEGREE 0.01745329 The number of radians per degree = π/180
RANDOM_SEED -1 The initial random seed. This must be set to a positive number (use the

SEED() procedure) before using the random number generator. Note that
the simulated annealing maximizer must have a random seed set.

RELEASE – The release number for mlemlemlemle.
REVISION – The revision number for mlemlemlemle.
RYDBERGC 0.01745329 Rydberg's constant

SOme Details

 132

SA_ADJ_CYCLES 20 For simulated annealing, this is the number of step length adjustment steps
every cooling cycle (iteration).

SA_ADJ_LOWERBOUND 0.4 For simulated annealing, picks the lower and upper percentages of accepted
and rejected evaluations between which no step length adjustment is made.

SA_ALT_ADJUSTMENT false For simulated annealing, uses an alternative adjustment formula
SA_COOLING 0.85 This is the rate of cooling for each cooling cycle. Tn+1 = Tn × SA_COOLING.

Values > 1 can be used to explore a good starting temperature.
SA_EPS_NUMBER 4 For simulated annealing, this is the number of function points that will be

compared for determining convergence.
SA_STEPLENGTH 1.0 For simulated annealing, this is the steplength constant.
SA_STEPLENGTH_ADJ 2.0 For simulated annealing, this is the steplength adjustment constant
SA_STEPS 5 For the simulated annealing method, this is the number of steps of random

parameter perturbations before entering an adjustment cycle.
SA_TEMPERATURE 1000.0 For the simulated annealing method, this is the initial temperature. This

value is conservatively high for most functions.
SIMPLEX "SIMPLEX" A METHOD string to denote Nelder and Mead's (1965) simplex maximizer.
SIMPLEX_ALPHA 1.0 The simplex maximizer's reflection coefficient
SIMPLEX_BETA 0.5 The simplex maximizer's contraction coefficient
SIMPLEX_GAMMA 2.0 The simplex maximizer's extrapolation coefficient
SMALLEST_LIKELIHOOD (hardware) The greatest value allowed for a likelihood
SMALLEST_
 LLIKELIHOOD

(hardware) The greatest value allowed for a log likelihood

SMALLEST_NUMBER (hardware) The smallest positive number greater than zero supported by the hardware.
SQRT_EPSILON (hardware) A small number used for computing derivatives.
START_DEFAULT 0.5 The default START value for parameters used in the event no START = ...

is used in a parameter definition.
SURFACE_POINTS 20 Not yet used
SYM_TABLE_SIZE 401 An internal constant.
SYSTEM – Name of the operating system.
TEST_DEFAULT 0.0 The default t-test value against which the parameters are tested. This value

is used when the TEST = is not used in a parameter definition.
TITLE A string that is printed for the mlemlemlemle main program and each model. When

TITLE is defined before a DATA statement, the title will be printed to the
output as the global title. The title can be redefined before each MODEL
statement as a model-specific statement.

TRUE TRUE A boolean constant.
UNIVERSALGASC 8.314410 The universal gas constant.
VCV_EVALS 0 The number of function evaluations in computing the variance-covariance

matrix.
VCV_WIDTH 5 The number of elements printed on one line for the variance-covariance

matrix.
VERBOSE FALSE If true, mlemlemlemle prints out status information as it works. This is useful for

following the progress of mlemlemlemle.
VERSION – The version number of mlemlemlemle .

PDFs and their Characteristics

 133

PDFS AND THEIR CHARACTERISTICS

ARCSINE

This is the parameterless arcsine distribution. The arc sine distribution arises as a special case of the Beta

distribution when ν = ω.

Parameters: none.

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: 0 ≤ t ≤ 1

PDF: f t
t t

()
()

=
−

1
1π

SDF: S t t() arcsin= d i 2π

Quantile: t q
q = FHG

I
KJsin π

2

2

Mean: 1/2

Median: 1/2

Mode: 0 and 1

Variance: 1/8

References: Christensen (1984), Lévy (1939), Rao (1973)

See also: BETA

PDFs and their Characteristics

 134

ASYMPTOTICRANGE

This is the asymptotic range distribution.

Parameters: a (location), b (scale)

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: -∞ < t < ∞

PDF: f t
b

e e
t a

b
t a

b() =
F
HG

I
KJ

− − − −2 20
2Κ

SDF: S t e e
t a

b
t a

b() = −
F
HG

I
KJ

− − − −

1 2 22
1

2Κ

Mean: a + 2γb

Median: ≈ a + 0.92860 b

Mode: ≈ 0.50637 b

Variance: b2π2/3

Constraints: b ≥ 0

References: Christensen (1984), Gumbel (1947)

BERNOULLITRIAL

This distribution returns the probability from a single Bernoulli trial. The distribution has single intrinsic parameter

(call it p) that is the probability of success. A single variable (call it event) is passed to the distribution and returns:

p, for event ≠ 0

1 – p, for event = 0

Constraints: 0 ≤ p ≤ 1

Mean: p

Variance: p(1 – p)

Notes: Since the Bernoulli distribution is not a time-based PDF, left- and right-truncation is not
available. Covariate effects can be modeled on parameter p, but not on the hazard.

Example: code that determines fairness of coins from coin-tossing experiments is:
MODEL
 PDF BERNOULLITRIAL(is_heads)
 PARAM p LOW = -999 HIGH = 999 START = 0 FORM = LOGISTIC
 COVAR mint PARAM b_mint LOW = -5 HIGH = 5 START = 0
 COVAR year PARAM b_year LOW = -5 HIGH = 5 START = 0
 END
END

See also: BINOMIAL

PDFs and their Characteristics

 135

BETA

The Beta distribution is also called a Pearson Type I distribution. This distribution takes on values from 0 to 1. The

distribution is J-shaped when (ω – 1)(ν – 1) < 0 and is U-shaped for ω < 1 and ν < 1. For other ν and ω the distribution is

unimodial.

Parameters: ν (shape 1) and ω (shape 2)

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: 0 ≤ t ≤ 1

PDF: f t t t() ()
(,)

= −− −ν ω

ν ω

1 11
Β

SDF: S(t) = βp(ν, ω)

Mean: ν/(ν + ω)

Mode:

() / (), ,
,
,

, ,
/ ,

ν ν ω ν ω
ν ω ν ω
ν ω ν ω
ν ω ν ω
ν ω

− + − > >
< ≤ ≤
> ≤ ≤
< < =
= =

R

S
|||

T
|||

1 2 1 1
0 1 1
1 1 1
0 1 1
1 2 1 1

 or
 or

 and 1

Variance: νω/[(ν + ω)2(ν + ω + 1)]

Constraints: ν ≥ 0, ω ≥ 0, ν + ω > 0

Reduced models: Reduces to the arc sine distribution when ν = ω.

References: Bayes (1763), Christensen (1984), Rao (1973)

PDFs and their Characteristics

 136

BINOMIAL

This is the binomial distribution with two parameters.

Parameters: p (proportion), n (count of Bernoulli trials).

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: t ≥ 0, t is an integer.

PDF: f t
n
t

p pt n t() =
F
HG
I
KJ − −1b g

SDF: S(t) = Βp(t + 1, n – t)

Mean: np

Mode: p(n + 1)

Variance: np(1 – p)

Constraints: 0 ≤ p ≤ 1, 0 < n < ∞, n is an integer.

References: Rao (1973)

See also: BERNOULLITRIAL

PDFs and their Characteristics

 137

BIRNBAUMSAUNDERS

This is the Birnbaum-Saunders distribution.

Parameters: a (location), b (scale).

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: t > 0

PDF: f t
b t t

t a
b

a
t() exp=

+ − −F
HG
I
KJ

L
N
MM

O
Q
PP

1

2 2
1

2

2

π

SDF: S t t a
b t

() = − −F
HG
I
KJ1 Φ

Quantile: t aq
b

q
b

q= + +F
H

I
K2 2

2
2

Φ Φ

Mean: a + b2/2

Median: a

Variance: b a b2 5
4

2()+

Constraints: a ≥ 0, b ≥ 0

References: Birnbaum and Saunders (1969), Christensen (1984)

PDFs and their Characteristics

 138

BIVNORMAL

This is the bivariate normal (or Gaussian) distribution with five intrinsic parameters.

Parameters: µx, σx, are the mean and standard deviation in the x dimension; µy, σy are the mean and
standard deviations in the y dimension, and ρ is the correlation between X and Y.

Time variables: tux, tuy, tex, tey, tαx, tαy, tωx, tωy.

Range: –∞ < t < ∞

PDF: f t t

t t t t

x y

x

x

x y

x y

y

y

x y

(,)

exp
()

() ()() ()

=

−
−

− −
− −

+
−F

HG
I
KJ

L
N
MM

O
Q
PP

−

1
2 1

2

2 1

2

2

2

2

2

2

ρ
µ

σ
ρ µ µ

σ σ
µ

σ

πσ σ ρ

Mean: µx, µy

Median: µx, µy

Mode: µx, µy

Variance: σ σx y
2 2,

Covariance(X, Y): ρσxσy

Constraints: s1 > 0, s2 > 0, 0 ≤ r ≤ 1

Notes: Covariate effects cannot be modeled on the hazard.

See also: NORMAL

PDFs and their Characteristics

 139

CAUCHY

This is the Cauchy distribution. The distribution is unimodal symmetric and with tails that extend to infinity. The

quartiles are found as a – b and a + b.

Parameters: a (location) and b (scale)

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: -∞ < t < ∞

PDF: f t

b t a
b

() =

+ −F
HG
I
KJ

L
N
MM

O
Q
PP

1

1
2

π

SDF: S t

t a
b()

arctan
=

−F
HG
I
KJ +2

2

π

π

Quantile: t a b qq = + −tan π 1
2d i

Mean: Doesn't exist

Median: a

Mode: a

Variance: ∞

Constraints: b > 0

References: Christensen (1984), Evans (1993), Rao (1973)

PDFs and their Characteristics

 140

CHI

This is the three-parameter chi distribution.

Parameters: a (location), b (scale), c (shape).

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: t ≥ 0

PDF: f t
b

t a
b

e
c

c

c t a
b()

()
= −F

HG
I
KJ

− − − −F
HG
I
KJ21

2

12 1
2

2

Γ

SDF: S t

t a
b

c

c()

,

()
=

−F
HG
I
KJ

L
N
MM

O
Q
PPΓ

Γ

2
1
2

2

2

Hazard: h t

t a
b

e

b b t a
b

c
c t a

b

c c

()

() ,

=

−F
HG
I
KJ

− −F
HG
I
KJ

L
N
MM

O
Q
PP

−
− − −F
HG
I
KJ21

1

2 2
1
2

2

2

1
2

2

Γ γ

Quantile: q a b ct q= + χ2 ()

Mean: a b c c+ +F
HG
I
KJ
F
HG
I
KJ

−

2 1
2 2

1

Γ Γ

Mode: a b c c
a c

+ − >
≤

RS|T|
1 1

1
,

,

Variance: cb b c c2 2
1 2

2 1
2 2

− +F
HG
I
KJ
F
HG
I
KJ

L
N
MM

O
Q
PP

−

Γ Γ

Constraints: a ≥ 0, b > 0, c ≥ 0

Reduced models: Reduces to a Rayleigh distribution with c = 2, and a type of Maxwell distribution with c = 3.

References: Christensen (1984), Evans, et al. (1993)

See also: RAYLEIGH, CHISQUARED, MAXWELL

PDFs and their Characteristics

 141

CHISQUARED

This is the central Chi-squared distribution.

Parameters: a (location), b (scale)

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: t ≥ 0

PDF: f t t e

b

a

a

t
b

a
() =

− −
2

2

1 2

22b g c hΓ

SDF: S t
a t

b
a

()
,

=
γ 2 2

2

c h
c hΓ

Hazard: h t t e

b

a

a

t
b

a t
b

()
,

=
− −

2

2

1 2

2 2 2γc hb g

Quantile: q b at q= χ2 ()

Mean: ab

Median: ≈ ab – 2/3, when ab is large.

Mode:
b a a

a
(),
,

− >
≤

RST
2 2

0 2

Variance: 2ab2

Constraints: a ≥ 0, b > 0

Reduced models: Reduces to an exponential distribution with λ=(2b)-1 when a = 2.

References: Christensen (1984), Evans et al. (1993), Pearson (1900)

See also: GAMMA, CHI

PDFs and their Characteristics

 142

COMPOUNDEXTREME

This is the compound extreme value distribution.

Parameters: a (location), b (scale), c (shape).

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: -∞ < t < ∞

PDF: f t ca e

a be

c

c

t
b

t
b

() =
+FH IK

+1

SDF: S t a

a be
t
b

c

() =
+

F
HG

I
KJ

Hazard: h t c

ae b
t
b

() =
+−

Quantile t b qq
a
b

c= − −L
NM

O
QP

RST
UVW

− −

ln 1 1
1b g

Mean: b ca
bln ()d i+ −γ ψ

Median: ln a
b

c b2 1
1

−L
NM

O
QPe j

Mode: b a
bclnd i

Variance: b2[ψ′(1) – ψ′(c)]

Constraints: a > 0, b > 0, c > 0

References: Christensen (1984)

See also: LARGEEXTREME

PDFs and their Characteristics

 143

DANIELS

This is the parameterless Daniel's distribution.

Parameters: none

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: t ≥ 0

PDF: f t t() = + −1 2b g

SDF: S t t() = + −1 1b g

Hazard: h t t() = + −1 1b g

Quantile: t q
qq =

−1

Mean: ∞

Median: 1

Mode: 0

Variance: ∞

References: Christensen (1984), Daniels (1945)

PDFs and their Characteristics

 144

DISK

The disk distribution begins at mode a and monotonically approaches zero at a + 4b, somewhat akin to a shifted

negative exponential distribution.

Parameters: a (location), b (scale)

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: a ≤ t ≤ a + 4b

PDF: f t
b b

t a
b

t a
b b

t a
b

() arcsin= − − − −F
HG

I
KJ − −F

HG
I
KJ

1 1 1
4

2 1
2π π

SDF:

S t t a
b

t a b
b

t a
b

t a
b

t a b
b

t a b
b

t a
b

()

arcsin arcsin

= − − + − + − − −F
HG

I
KJ

+ − −F
HG

I
KJ +

− − −F
HG

I
KJ

3
2

2
4

4

1 2
2

2 2 1
2

π

π π

Mean: a + b

Median: ≈ a + 0.7944 b

Mode: a

Variance: 2b2/3

Constraints: b > 0

References: Borel (1925), Christensen (1984)

PDFs and their Characteristics

 145

EXPONENTIAL

The exponential is commonly used in reliability engineering, queuing theory and biology. The 'memoryless' property

of the exponential distribution is an important characteristic. It says, in effect, that for a survivor, future times to failure are

completely independent of the past. Another way to express the property is that the hazard of failure is constant.

Parameter: λ (hazard and 1/scale).

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te

Range: t ≥ 0

PDF: f(t) = λ exp(–λt)

SDF: S(t) = exp(–λt)

Hazard: h(t) = λ

Quantile: tq = –ln(1 – q)/λ

Mean: 1/λ

Median: ln(2)/λ

Mode: 0

Variance: 1/λ2

References: Christensen (1984), Evans et al. (1993), Nelson (1982)

See also: The SHIFTEXPONENTIAL distribution is a 2 parameter (location-scale) version of this
distribution.

PDFs and their Characteristics

 146

GAMMA

This is the gamma distribution, also known as the Pearson Type III distribution.

Parameters: λ (hazard and 1/scale), c (shape)

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: t ≥ 0

PDF: f t t
c e

c c

t()
()

=
−λ

λ

1

Γ

SDF: S t
c t

c
()

,
=

Γ
Γ

λb g
b g

Hazard: h t t
c t e

c c

t()
,

=
−λ

λ λ

1

Γb g

Quantile: t
c

q
q=

χ
λ

2 2
2
()

Mean: c/λ

Mode:
() / ,c c

c
− >

≤
RST

1 1
0 1

λ

Variance: c/λ2

Constraints: λ > 0, c > 0

Reduced models: Reduces to an exponential distribution when c = 1. Reduces to an Erland distribution when
parameter c is an integer. This distribution is the SHIFTGAMMA distribution with a = 0 and
1/b = λ.

References: Christensen (1984), Elandt-Johnson and Johnson (1980), Evans et al. (1993), Kalbfleisch and
Prentice (1980).

See also: EXPONENTIAL, SHIFTGAMMA, GENGAMMA

PDFs and their Characteristics

 147

GAMMAFRAIL

This model has a constant hazard for individuals, but gamma-distributed frailty (heterogeneity) among individuals.

The model is used primarily because the PDF, SDF and hazard functions have simple forms.

Parameters: λ (hazard and 1/scale), c (shape)

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: t ≥ 0

PDF: f t c
t c

c

c()
()

=
+

+

+
λ

λ

1

1

SDF: S t c
c t

c

() =
+
F
HG
I
KJλ

Hazard: h t c
ct c

() =
+

λ

Quantile: t c
qq c

= −
F
HG

I
KJλ

1 1

Mean: c
cλ()− 1

Variance: c
c c

3

2 21 2λ () ()− −

Constraints: λ > 0, c ≥ 0

References:

See also: EXPONENTIAL, GAMMA

PDFs and their Characteristics

 148

GENGAMMA

This is the three parameter (shifted) gamma distribution, also known as the Pearson Type III distribution.

Parameters: a (location), b (scale, inverse of the hazard), c (1st shape), d (2nd shape).

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: t ≥ a

PDF: f t
d t a e

b c

cd
t a

b

d

cd()
()

=
− − − −F

HG
I
KJb g 1

Γ

SDF: S t

c t a
b

c

d

()

,

=

−F
HG
I
KJ

L
N
MM

O
Q
PPΓ

Γb g

Hazard: h t
d t a e

b c t a
b

cd
t a

b

d

cd
d

()

,

=
−

−F
HG
I
KJ

L
N
MM

O
Q
PP

− − −F
HG
I
KJb g 1

Γ

Quantile: t a b cq q= +
−1

2
2 1

2χ ()

Mean: a b
c d

c
+

+ −Γ

Γ

1e j
b g

Mode: a b
d

cd
d

cd

a cd

d

+ −F
HG
I
KJ >

≤

R
S|
T|

−1 1

1

1

Variance: b2c

Constraints: b > 0, c > 0, d > 0

Reduced models: Reduces to the shifted gamma distribution when d = 1. Reduces to the shifted exponential
when c = 1 and d = 1. Reduces to the shifted Weibull distribution when c = 1. Reduces to the
Chi-squared distribution with v degrees of freedom when a = 0, b = 2, c = v/2, and d = 1.

References: Christensen (1984), Evans et al. (1993), Kalbfleisch and Prentice (1980).

See also: SHIFTEXPONENTIAL, GAMMA, SHIFTGAMMA, CHISQUARED, SHIFTWEIBULL

PDFs and their Characteristics

 149

GENGUMBEL

This is the three-parameter generalized Gumbel distribution.

Parameters: a (location), b (scale), c (shape)

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: -∞ < t < ∞

PDF: f t a
b c

ct
b

ae
t
b()

()
exp= − −L
NM

O
QP

−

Γ

SDF: S t
c ae

c

x
b

()
,

()
=

−γ e j
Γ

Hazard: f t a

b c ae

ct
b

ae
x
b

t
b()

,
exp= − −L
NM

O
QP−

−

γe j

Mean: b[ln(a) – ψ(c)]

Median: bln(a/c)

Variance: b2ψ′(c)

Constraints: a > 0, b > 0, c > 0

References: Ahuja and Nash (1967), Christensen (1984)

See also: GUMBEL

PDFs and their Characteristics

 150

GEOMETRIC

This is the discrete geometric distribution,. The distribution describes the times up to and including the first success

in a sequence of Bernoulli trials. The geometric distribution is the discrete analogue of the negative exponential distribution.

Parameters: p (probability)

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: t ≥ 1, t is an integer

PDF: f(t) = p(1 – p)t – 1

SDF: S(t) = (1 – p)t

Mean: 1/p

Mode: 1

Variance: (1 – p)p2

Constraints: 0 ≤ p ≤ 1

References: Evans et al. (1993)

See also: BERNOULLITRIAL, EXPONENTIAL, NEGBINOMIAL, HYPERGEOMETRIC

PDFs and their Characteristics

 151

GOMPERTZ

This is the Gompertz distribution, which is sometimes used as a model of senescent mortality (with b > 0) and infant

mortality (with b < 0).

Parameters: a (scale), b (shape)

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: t ≥ 0

PDF: f t a bt a
b

e N N

b

e b
bt a

b
() exp ()

,

= + −L
NM

O
QP =

≥

−
F
HG
I
KJ <

R
S|

T|
−1

1 0

1 0
1

SDF: S t a
b

e Nbt() exp ()= −LNM
O
QP1

Hazard: h(t) = a exp(bt)

Constraints: a ≥ 0

Reduced models: When b = 0, the PDF is exponential with parameter a.

References: Christensen (1984)

See also: EXPONENTIAL, MAKEHAM, MIXMAKEHAM, SILER

PDFs and their Characteristics

 152

HORSESHOE

This is the horseshoe distribution. The distribution is a mirrored power function; it discontinuous at the mean, and

the mirror-like symmetrical is down the mean. Except when c is zero, the distribution is always bimodal.

Parameters: a (location), b (scale), c (shape)

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: (a – b) ≤ t ≤ (a + b)

PDF: f t c
b

x a
b

c

() = + −1
2

SDF: S t

x a
b

x a

x a
b

x a

c

c
()

,

,

=

− −F
HG
I
KJ

L
N
MM

O
Q
PP ≥

+ − −F
HG

I
KJ

L
N
MM

O
Q
PP ≤

R

S
|||

T
|||

+

+

1
2

1

1
2

1

1

1

Quantile t
a b q q

a b q q
q

c

c
=

+ − ≥

− − ≤

R
S|
T|

+

+

−

−

2 1 1 2

1 2 1 2

1

1

1

1

b g
b g

()

()

, /

, /

Mean: a

Median: a

Mode: a ± b

Variance: b2(c + 1)/(c + 3)

Constraints: b > 0, c ≥ 0

Reduced models: Reduces to a uniform distribution when c = 0. Reduces to the symmetric quad when c = 2, the
symmetric quart when c is 4, and the symmetric sextic when c = 6.

References: Christensen (1985)

See also: POWER

PDFs and their Characteristics

 153

HYPERBOLICSECANT

This is the hyperbolic secant distribution. The distribution is symmetric about a.

Parameters: a (location), b (scale)

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: t ≥ 0

PDF: f t
b

t a
b

() = −F
HG
I
KJ

1
π

sech

SDF: S t t a
b

() arctan exp= − −F
HG
I
KJ

L
NM

O
QP1 2

π

Quantile: t a b q
q = + F

HG
I
KJ

L
NM

O
QPln tan π

2

Mean: a

Median: a

Mode: a

Variance: b2π2/4

Constraints: b > 0

References: Christensen (1984), Perks (1932), Talacko (1956)

PDFs and their Characteristics

 154

HYPERGEOMETRIC

This is the hypergeometric distribution.

Parameters: p (probability), m, n

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: integer t ≥ 0

PDF: f t

np
t

n np
m t

n
m

() =

F
HG
I
KJ

−
−
F
HG
I
KJ

F
HG
I
KJ

SDF: S t

np
i

n np
m i

n
m

i

t

() =

F
HG
I
KJ

−
−

F
HG
I
KJ

F
HG
I
KJ

=
∑

0

Mean: mp

Mode:
np m

n
+ +

+
1 1

2
b gb g

Variance:
mp p n m

n
+ −

−
1

1
b gb g

Constraints: t ≥ 0, m – n + np ≤ t ≤ min(m, np), 0 ≤ p ≤ 1, 1 ≤ m ≤ n, np is an integer.

References: Laplace (1774)

See also: GEOMETRIC

PDFs and their Characteristics

 155

HYPER2EXP

This is a two-point hyperexponential distribution, also called a mixed exponential distribution. It arises when the

entire system fails when either of two constant-hazard components fails. The distribution has been used previously as a model

of fetal loss (Wood 1994; Holman 1996) and CPU service times (Kishor et al. 1982).

Parameters: p (initial proportion in subgroup 1); λ1 (constant hazard in subgroup1); λ2 (constant hazard in
subgroup 2).

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: t ≥ 0

PDF: f(t) = pλ1 exp(–λ1t) + (1 – p) λ2 exp(–λ2t)

SDF: S(t) = p exp(–λ1t) + (1 – p) exp(–λ2t)

Hazard: h t p t p t
p t p t

() exp() () exp()
exp() ()exp()

= − + − −
− + − −

λ λ λ λ
λ λ

1 1 2 2

1 2

1
1

Mean: p p
λ λ1 2

1+ −()

Mode: 0

Variance: 2 2 1 1

1
2

2
2

1 2

2
p p p p

λ λ λ λ
+ − − + −L

NM
O
QP

() ()

Constraints: 0 ≤ p ≤ 1; λ1≥ 0; λ2≥ 0

Reduced models: When λ λ1 2= and p is fixed to any value between 0 and 1, the PDF is exponential with
parameter λ1.

References: Christensen (1984), Holman (1995), Kishor (1982)

See also: EXPONENTIAL, HYPO2EXP

PDFs and their Characteristics

 156

HYPO2EXP

This is a 2-point hypoexponential distribution. It describes a two stage process in which two independent

exponentially distributed components must both fail for the entire system to fail. It arises by taking the convolution of two

independent and exponentially distributed components. The distribution has been used to describe I/O operations in computer

systems (Kishor et al. 1982).

Parameter: λ1 (hazard for the first component), λ2 (hazard for the second component)

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: t ≥ 0

PDF: f t
t t

()
exp() exp()

=
− − −

−
λ λ λ λ

λ λ
1 2 1 2

2 1

SDF: S t t t() exp() exp()= − − −
−

λ λ λ λ
λ λ

2 1 1 2

2 1

Hazard: h t
t t

t t
()

exp() exp()
exp() exp()

=
− − −

− − −
λ λ λ λ
λ λ λ λ

1 2 1 2

2 1 1 2

Mean: 1 1

1 2λ λ
+

Variance: 1 1

1
2

2
2λ λ

+

Constraints: λ1≥ 0; λ2≥ 0

References: Christensen (1984), Kishor (1982)

See also: EXPONENTIAL, HYPER2EXP

PDFs and their Characteristics

 157

INVBETA1

This is the inverted beta type 1 distribution.

Parameters: a, b, c

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: t ≥ c

PDF: f t
c t c

a b t

a b

a b()
(,)

=
− −

+
b g 1

Β

SDF: S(t) = Βc/t(a, b)

Mean:
c a b

a
a()+ −

−
>

1
1

1

Mode:
c a b

a
b

c b

()+
+

>

≤

R
S|
T|

1
1

1

Variance: bc a b
a a

a
2

2
1

1 2
2()+ −

− −
>

b g b g

Constraints: a ≥ 0, b > 0, c ≥ 0

References: Christensen (1984)

See also: INVBETA2

PDFs and their Characteristics

 158

INVBETA2

This is the inverted beta type 2 distribution.

Parameters: a, b, c

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: t ≥ 0

PDF: f t c t
a b t c

b a

a b()
,

=
+

−

+

1

Βb gb g

SDF: S(t) = βt/(t + c)(a, b)

Mean: ca
b

b
−

>
1

1

Mode:
c a

b
a

a

()−
+

>

≤

R
S|
T|

1
1

1

0 1

Variance: ac a b
b b

b
2

2
1

1 2
2()+ −

− −
>

b g b g

Constraints: a > 0, b > 0, c ≥ 0

References: Christensen (1984)

See also: INVBETA1

PDFs and their Characteristics

 159

INVCHI

This is the xxx distribution.

Parameters: .

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: t ≥ 0

PDF: f t e
b a

b
t

b
t a a

()
/

/
= F

HG
I
KJ

− − +
2

22 1 2 12
2Γb g

SDF: S t
a

a

b
t

()
/ ,

/
=
L
NM

O
QPγ 2

2
4

2d i
b gΓ

Mean: S t
b a

a
a()

/
=

−L
NM
O
QP >

Γ

Γ

1
2

2 2
1b g

Mode: b
a + 1

Variance: S t b
a

b a

a
a()

/
,=

−
−

−L
NM
O
QP >

2
2

2

2

2

1
2

2 2
2

Γ

Γb g

Constraints: a > 0, b > 0

References: Christensen (1984)

See also: CHI

PDFs and their Characteristics

 160

INVGAMMA

This is the inverted gamma distribution, also called the Person type V distribution.

Parameters: b (scale), c (shape).

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: t ≥ 0

PDF: f t e
b c

b
t

b t c

()
()

/
= F

HG
I
KJ

− +

Γ

1

SDF: S t c b t
c

() (, /)
()

= γ
Γ

Hazard: h t e
b c b t

b
t

b t c

()
(, /)

/
= F

HG
I
KJ

− +

γ

1

Quantile: t b
cq

q
=

−

2
21

2χ ()

Mean: b / (c – 1), a > 1

Mode: b / (c + 1)

Variance: b2(c – 1)-2(c – 2)-1, a > 2

Constraints: a > 0, b > 0

References: Christensen (1984), Evans et al. (1993), Pearson (1895)

See also: GAMMA, INVBETA1, INVBETA2

PDFs and their Characteristics

 161

INVGAUSSIAN

This is the inverse Gaussian distribution, which includes the Wald distribution as a special case.

Parameters: b (scale), c (shape)

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: t > 0

PDF: f t b
t

b
c t

t
b

c() exp= − −FHG
I
KJ

L
N
MM

O
Q
PP2 23 2

2

π

SDF: S t t bc
c bt

e t bc
c bt

c() /= − −F
HG
I
KJ −

− −F
HG

I
KJ1 2Φ Φ

Mean: bc

Mode: bc c c1 9 4 3 22+ +FH IK/ /

Variance: b2c3

Constraints: b ≥ 0, c ≥ 0

Reduced models: Approaches the Normal distribution as b → ∞. Reduces to the Wald distribution when b =
1/c.

References: Christensen (1984), Evans et al. (1993), Schrödinger (1915), Tweedie (1947), Wald (1947)

See also: RANDOMWALK

PDFs and their Characteristics

 162

LAPLACE

This is the Laplace distribution, also known as a double-exponential distribution. The distribution is discontinuous

at a, and declines to the left and right exponentially.

Parameters: a (location), b (scale)

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: t ≥ 0

PDF: f t e
b

t a
b

() =
− −

2

SDF: S t
e t a

e t a

t a
b

a t
b

()
,

,

=
≥

− <

R
S
||

T
||

− −

− −

1
2

1
21

Mean: a

Median: a

Mode: a

Variance: 2b2

Constraints: b ≥ 0

References: Christensen (1984), Evans et al. (1993), Laplace (1774)

See also: EXPONENTIAL, SUBBOTIN

PDFs and their Characteristics

 163

LARGEEXTREME and GUMBEL

Parameters: a (location) and b (scale)

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: -∞ < t < ∞

PDF: f t
b

t a
b

t a
b

() exp exp= − − − − −F
HG
I
KJ

L
NM

O
QP

1

SDF: S t t a
b

() exp exp= − − − −F
HG
I
KJ

RST
UVW1

Hazard: h t

t a
b

b t a
b

()
exp

exp exp
=

− −F
HG
I
KJ

− − −F
HG
I
KJ

L
NM

O
QP −

L
NM

O
QP

1

Mean: a – kb k ≈ 0.57721... is Euler's constant

Median: a – blog[log(2)]

Mode: a (≈36.8th percentile)

Variance: b2π2/6

Constraints: b ≥ 0

References:

PDFs and their Characteristics

 164

LINEARHAZARD

The linear hazard rate distribution is so-called because the hazard increases monotonically with time.

Parameters: λ (constant hazard), b (scale).

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: t ≥ 0

PDF: f t bt t bt() () exp()= + − −λ λ 1
2

2

SDF: S t t bt() exp()= − −λ 1
2

2

Hazard: h(t) = λ + bt

Constraints: λ ≥ 0, b > 0

References: Lee (1992)

PDFs and their Characteristics

 165

LNGAMMA

This is the log-gamma distribution.

Parameters: a (location), b (scale, inverse of the hazard), c (shape)

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: t ≥ a

PDF: f t

t a
b

e

b c

c t a
b

()

ln()

()

ln()

=

−F
HG

I
KJ

− − −1

Γ

SDF: S t
c t a

b
c

()
, ln()

=

−F
HG

I
KJΓ

Γb g

Hazard: h t

t a
b

e

b c t a
b

c t a
b

()

ln()

, ln()

ln()

=

−F
HG

I
KJ

−F
HG

I
KJ

− − −1

Γ

Constraints: b ≥ 0, c ≥ 0

References:

See also: GAMMA

PDFs and their Characteristics

 166

LNLOGISTIC

This is the log-logistic distribution.

Parameters: a (location), b (scale).

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te

Range: –∞ < t < ∞

PDF: f t

e
b

e t

e t

a
a

a

b

b

()
()

=
+LNM

O
QP

−
− −

−

1

1

1

2
1

SDF: S t e ta b() = + − −
1

1

Hazard: h t

e
b

e t

e t

a
a

a

b

b
()

()
=

+

−
− −

−

1

1

1

1

Constraint: b > 0

References: ?

See also: LOGISTIC

PDFs and their Characteristics

 167

LOGISTIC

The logistic distribution is also called the sech-squared distribution.

Parameters: a (location), b (scale).

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te

Range: –∞ < t < ∞

PDF:

f t

t a
b

b t a
b

b
t a

b

()
exp

exp

=
− −F
HG
I
KJ

+ − −F
HG
I
KJ

L
NM

O
QP

= −F
HG
I
KJ

1

1
4 2

2

sech2

SDF:
S t t a

b

t a
b

() exp

tanh

= + −L
NM
O
QP

RST
UVW

= − −F
HG
I
KJ

L
NM

O
QP

−

1

1
2

1
2

1

Hazard: h t
b

t a
b

() exp= + − −L
NM
O
QP

RST
UVW

−
1 1

1

Quantile: t a b q
qq = − −F
HG
I
KJln 1

Mean: a

Median: a

Mode: a

Variance: π2b2/3

Constraint: b > 0

References: Christensen (1984), Evans et al. (1993)

See also: LNLOGISTIC

PDFs and their Characteristics

 168

LOGNORMAL or LNNORMAL

This is the lognormal distribution, sometimes called the Cobb-Douglas, the Galton-McAlister, or the Kapteyn-Gibrat

distributions.

Parameters: a (location), b (scale).

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te

Range: t ≥ a

PDF: f t
tb

e

t a
b

()

ln()

=

− −L
N
MM

O
Q
PP1

2

2

22

π

SDF: S t
t a
b

()
ln()

= −
−L

NM
O
QP1 Φ

Mean: aexp(b2/2)

Median: a

Mode: a/exp(b2)

Variance: a2exp(b2/2)[exp(b2/2) – 1]

Constraints: b > 0

Notes: This distribution is related to the SHIFTLOGNORMAL distribution as follows. The two-
parameter LNNORMAL cumulative density is found from the Normal density by taking Φ[ln(t
– a)/b] whereas in the three parameter SHIFTLOGNORMAL we take Φ{ln[(t – a)/b]/c}.

References: Evans et al. (1993), Nelson (1982)

See also: NORMAL, SHIFTLOGNORMAL

PDFs and their Characteristics

 169

LOGSERIES

This is the logarithmic series distribution. This distribution can be derived from both a power series distribution and

a negative binomial distribution.

Parameters: p (probability)

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: integer t ≥ 1

PDF: f t p
t p

t
()

ln()
= −

−1

SDF: S t
p

p
t

t

j

t

()
ln()

= +
− =

∑1 1
1 1

Mean: −
− −

p
p pln()()1 1

Mode: 1

Variance: −
+

−
F
HG

I
KJ

− −

p p
p

p p

1
1

1 1 2

ln()
ln()()

Constraints: 0 ≤ p ≤ 1

References: Christensen (1984), Evans et al. (1993), Fisher (1943)

See also: POWERSERIES, NEGBINOMIAL

PDFs and their Characteristics

 170

LOWMAX

This is the Lowmax distribution, which is a generalized Pareto distribution.

Parameters: a (location), b (scale), c (shape).

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: a + b ≤ t < ∞

PDF: f t b c
t a

c

c()
()

=
− +1

SDF: S(t) = [(t – a)/b]–c

Quantile: tq = a + b(1–q)-1/c

Mean: a + bc/(c – 1), c > 1

Median: a bc+ 2

Mode: a + b

Variance: b c
c c

c
2

22 1
2

()()
,

− −
>

Constraints: b ≥ 0, c > 0

Reduced models: Reduces to the Pareto distribution when a = 0;

References: Christensen (1984)

See also: PARETO

PDFs and their Characteristics

 171

MAKEHAM

This is the Makeham-Gompertz (also called the Gompertz-Makeham) distribution frequently used as a competing

hazards model for mortality. The a1 parameter is interpreted as accidental mortality component, and the a2 and b parameters

make up the senescent mortality component.

Parameters: a1, a2 and b

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: t ≥ 0

PDF: f t a a e a t a
b

ebt bt() exp () ,= + − + −L
NM

O
QP1 2 1

2 1e j

SDF: S t a t a
b

ebt() exp ()= − + −L
NM

O
QP1

2 1

Hazard: h(t) = a1 + a2 exp(bt)

Constraints: a1 ≥ 0, a2 ≥ 0

Reduced models: a1 = 0 reduces to a Gompertz PDF with parameters a2 and b. b = 0 and either a1 or a2 are
constrained, reduces to an exponential with parameter a1 + a2.

References: Elandt-Johnson and Johnson (1980)

See also: EXPONENTIAL, GOMPERTZ, MIXMAKEHAM, SILER

PDFs and their Characteristics

 172

MAXWELL

This is the two-parameter Maxwell-Boltzmann distribution. It is used to model the distribution of particles at

equilibrium in statistical mechanics.

Parameters: a (location), b (scale).

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: t ≥ 0

PDF: f t
b

t a
b

e
t a

b() = −F
HG
I
KJ

− −F
HG
I
KJ4 2

2

π
,

SDF: S t t a
b

t a
b

e
t a

b() = −F
HG
I
KJ −

−F
HG
I
KJ

− −F
HG
I
KJerf 2

2

π
,

Mean: a b+ 2
π

Mode: a + b

Variance: b2 3
2

4− πd i
Constraints: b ≥ 0

References: Christensen (1984), Maxwell (1860a,b), Rao (1973)

See also: RAYLEIGH, CHISQUARED, MAXWELL

PDFs and their Characteristics

 173

MIXMAKEHAM

This is the mixed-Makeham distribution, which can be used to model the human lifespan

Parameters: p (initial proportion in risk group 1), λ1 (constant hazard in subgroup 1), λ2 (constant hazard in

subgroup 2), λ3 (senescent hazard), b (senescent shape)

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: t ≥ 0

PDF:

f t Np t
b

e e

N p t
b

e e

N

b

e b

bt bt

bt bt

b

() exp

exp ,

,

= − + −L
NM

O
QP +

+ − − + −L
NM

O
QP +

=

≥

−
F
HG
I
KJ <

R
S|

T|
−

λ λ λ λ

λ λ λ λ

λ

1
3

1 3

2
3

2 3

1

1

1 1

1 0

1 0
3

c h c h

c h c h

SDF: S t Np t
b

e N p t
b

ebt bt() exp exp= − + −L
NM

O
QP + − − + −L

NM
O
QPλ λ λ λ

1
3

2
31 1 1c h c h

Hazard: h t p t p t ebt() () [()]= + − +λ λ λ1 2 31

 where p t
p t

b
e

p t
b

e p t
b

e

bt

bt bt
()

exp

exp exp
=

− + −L
NM

O
QP

− + −L
NM

O
QP + − − + −L

NM
O
QP

λ λ

λ λ λ λ

1
3

1
3

2
3

1

1 1 1

c h

c h c h

Constraints: 0 ≤ p ≤ 1; λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0

Reduced models: Reduces to a Makeham-Gompertz if p = 0 or 1, reduces to an 2 point hyperexponential
exponential if λ3 = 0, reduces to an exponential if λ3 = 0 and p = 0 or 1, reduces to a Gompertz
if λ1 = 0 and λ2 = 0 .

References:

See also: MAKEHAM, GOMPERTZ, SILER, EXPONENTIAL

PDFs and their Characteristics

 174

NEGBINOMIAL

This is the negative binomial distribution, also known as the Pascal distribution when t is an integer.

Parameters: p (probability), n (count).

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: t ≥ 0

PDF: f t
t n

n
p pn t() =

+ −
−

F
HG

I
KJ −

1
1

1b g (this is wrong--need continuous version)

SDF: S(t) = βp(n, t + 1)

Mean: n(1 – p)/p

Mode: Floor[p(n – 1)/(1 – p)]

Variance: n(1 – p)/p2

Constraints: 0 ≤ p ≤ 1, n > 0

Reduced models: Reduces to a Pascal distribution when t is an integer. Reduces to the geometric distribution
when n = 1.

References: Christensen (1984), Evans et al. (1993)

See also: GEOMETRIC, POWERSERIES, BINOMIAL

PDFs and their Characteristics

 175

NORMAL or GAUSSIAN

This is the commonly-used normal distribution, also called the Gaussian distribution and Laplace's second law of

error. The normal is odd (but certainly possible) as a failure time distribution because times can take any value from -∞ to ∞.

Parameters: µ is a location parameter, σ > 0 is the scale parameter.

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te

Range: –∞ < t < ∞

PDF: f t t() exp ()= − −L
NMM

O
QPP

1
2 2

2

2σ π
µ

σ

SDF: S t
t

() = −
−FH IK1 Φ

µ

σ
,

Mean: µ

Median: µ

Mode: µ

Variance: σ2

Notes: An accelerated failure time specification of covariates is created for the normal distribution by modeling µ as
FORM = LOGLIN and specifying a COVAR list. A probit model is estimated when for every
observation, either tu=NEGINFINITY or te = INFINITY.

References: Christensen (1984), Evans et al. (1993)

See also: LOGNORMAL, BIVNORMAL

PDFs and their Characteristics

 176

PARETO

Parameters: b (scale), c (shape).

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: b ≤ t < ∞

PDF: f t b c
a

c

c() = +1

SDF: S(t) = [t/b]–c

Quantile: tq = b(1–q)-1/c

Mean: bc/(c – 1), c > 1

Median: bc 2

Mode: b

Variance: b c
c c

c
2

22 1
2

()()
,

− −
>

Constraints: b ≥ 0, c > 0

References: Christensen (1984), Evans et al. (1993)

See also: LOWMAX

PDFs and their Characteristics

 177

PASCAL

This is the Pascal distribution, which is the discrete version of the negative binomial distribution.

Parameters: p (probability), n (count).

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: integer t ≥ 0

PDF: f t
t n

n
p pn t() =

+ −
−

F
HG

I
KJ −

1
1

1b g

SDF: S(t) = βp(n, t + 1)

Mean: n(1 – p)/p

Mode: Floor[p(n – 1)/(1 – p)]

Variance: n(1 – p)/p2

Constraints: 0 ≤ p ≤ 1, integer n > 0

Reduced models: Reduces to the geometric distribution when n = 1.

References: Christensen (1984), Evans et al. (1993)

See also: NEGBINOMIAL, GEOMETRIC, POWERSERIES, BINOMIAL

PDFs and their Characteristics

 178

POISSON

This is the discrete Poisson distribution.

Parameters: λ (hazard)

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: integer t ≥ 0

PDF: f t e
t

t
()

!
=

−λ λ

SDF: S t
t
t

()
,

=
+
+

Γ
Γ

1
1
λb g

b g

Mean: λ

Mode: Floor(λ)

Variance: λ

Constraints: λ > 0

References: Christensen (1984), Evans et al. (1993)

See also: POWERSERIES

PDFs and their Characteristics

 179

POWERFUNCTION

Parameters: a (location), b (scale), c (shape)

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: a ≤ t ≤ a + b

PDF: f t c
b

t a
b

c

() = −F
HG
I
KJ

−1

SDF: S t t a
b

c

() = − −F
HG
I
KJ1

Quantile: tq = a + bq1/c

Mean: a + bc/(c + 1)

Median: a b c+ −2 1/

Mode:
a b c
a b c
a c

+ ≥
+ =

<

R
S|
T|

,
/ ,

,

1
2 1

1

Variance: b c
c c

2

22 1()()+ +

Constraints: b > 0, c ≥ 0

Reduced models: Reduces to the uniform distribution when c = 1.

References: Christensen (1984), Evans et al. (1993)

See also: REVPOWERFUNCTION, LOGISTIC, WEIBULL, GUMBEL, BETA, PARETO

PDFs and their Characteristics

 180

RAISEDCOSINE

This is the raised cosine distribution.

Parameters: a (location), b (scale)

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: –πb + a ≤ t ≤ πb + a

PDF: f t

t a
b

b
()

cos
=

+ −F
HG
I
KJ1

2

SDF: S t t a
b

t a
b

() sin= − −F
HG
I
KJ −

−F
HG
I
KJ

1
2

1 1
π π

Mean: a

Median: a

Mode: a

Variance: b2(π2/3 – 2)

Constraints: b ≥ 0

References: Christensen (1984)

PDFs and their Characteristics

 181

RANDOMWALK

This is the random walk distribution.

Parameters: b (scale), c (shape)

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: t > 0

PDF: f t
bt

c t
b

b
t c

() exp= − −FHG
I
KJ

L
N
MM

O
Q
PP

1
2 2

12 2

π

SDF: S t bc t
bt

e bc t
bt

c() = − −F
HG
I
KJ −

− −F
HG

I
KJ1 2Φ Φ

Mean: b (1 + c)

Mode: b c b2 1 4 2+ −/ /

Variance: b2 (2 + c)

Constraints: b > 0, c > 0

References: Christensen (1984), Wise (1966)

See also: INVGAUSSIAN

PDFs and their Characteristics

 182

RAYLEIGH

Parameter: b (scale)

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: t > 0

PDF: f t t
b

t
b

() exp= −
L
NMM
O
QPP2

2

22

SDF: S t t
b

() exp= −
L
NMM
O
QPP

2

22

Hazard: h(t) = t/b2

Median: b log()4

Mode: b

Constraints: b > 0

References:

PDFs and their Characteristics

 183

REVPOWERFUNCTION

This is the reversed power distribution.

Parameters: a (location), b (scale), c (shape)

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: a ≤ t ≤ a + b

PDF: f t c
b

a b t
b

c

() = + −F
HG

I
KJ

−1

SDF: S t t a
b

c

() = − −F
HG

I
KJ1

Quantile: tq = a + b[1–(1-q)1/c]

Mean: a + b/(c + 1)

Median: a b c+ − −1 2 1/e j

Mode:
a c
a b c
a b c

,
/ ,
,

>
+ =
+ <

R
S|
T|

1
2 1

1

Variance: b c
c c

2

22 1()()+ +

Constraints: b > 0, c ≥ 0

Reduced models: Reduces to the uniform distribution when c = 1.

References: Christensen (1984).

See also: POWERFUNCTION

PDFs and their Characteristics

 184

RINGINGEXP0

This is the ringing exponential distribution at phase 0 degrees.

Parameters: a (location), b (scale), c (shape)

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: t ≥ a

PDF: f t c
b c

e t a
b

ct a
b() cos= +

+
−F
HG

I
KJ

− −1 2
1 2

2

b g

SDF: S t e
c

t a
b

c c t a
b

c

t a
b

() cos sin=
+

−F
HG

I
KJ −

−F
HG

I
KJ

L
N
MM

O
Q
PP

− −

1 2 2
22

Mean: a
b c c

c c
+

+ +

+ +

1 2

1 3 2

2

2

e j

Mode: a

Variance:
b c c c

c c

2 2 3 4

2 2

1 7 16 4

1 3 2

+ + +

+ +

e j
e j

Constraints: b > 0, c ≥ 0

References: Christensen (1984)

See also: RINGINGEXP180

PDFs and their Characteristics

 185

RINGINGEXP180

This is the ringing exponential distribution at phase 180 degrees.

Parameters: a (location), b (scale), c (shape)

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: t ≥ a

PDF: f t c
bc

e t a
b

ct a
b() sin= + −F
HG

I
KJ

− −2 1
2

2

SDF: S t e
c

c t a
b

c c t a
b

c

t a
b

() sin sin= + −F
HG

I
KJ +

−F
HG

I
KJ

L
N
MM

O
Q
PP

− −

2

2 2
2

Mean: a
b c

c
+

+
+

3 2
1 2
b g

Mode: a
b c

c
+

2 2

2

arctane j

Variance:
b c

c

2 2

2

3 4

1 2

+

+

e j
b g

Constraints: b > 0, c > 0

References: Christensen (1984)

See also: RINGINGEXP0

PDFs and their Characteristics

 186

SHIFTEXPONENTIAL

The exponential is commonly used in reliability engineering, queuing theory and biology. The 'memoryless' property

of the exponential distribution is an important characteristic. It says, in effect, that for a survivor, future times to failure are

completely independent of the past. This form of the exponential distribution provides for a location parameter. Also, this

version uses a scale parameter b, rather then a hazard parameter λ (b = 1/λ).

Parameter: a (location), b (scale = 1/λ).

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te

Range: t ≥ a

PDF: f(t) = exp(–(t – a)/b)/b

SDF: S(t) = exp(–(t – a)/b)

Hazard: h(t) = 1/b

Quantile: tq = a – bln(1 – q)

Mean: a + b

Median: a + bln(2)

Mode: a

Variance: b2

Constraints: b > 0

References: Christensen (1984), Evans et al. (1993), Nelson (1982)

See also: The EXPONENTIAL distribution is a 1 parameter (hazard) version of this distribution.

PDFs and their Characteristics

 187

SHIFTGAMMA

This is the three parameter (shifted) gamma distribution, also known as the Pearson Type III distribution.

Parameters: a (location), b (scale, inverse of the hazard), c (shape)

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: t ≥ a

PDF: f t

t a
b

e

b c

c t a
b

()
()

=

−F
HG
I
KJ

− − −1

Γ

SDF: S t
c t a

b
c

()
,

=

−F
HG

I
KJΓ

Γb g

Hazard: h t

t a
b

e

b c t a
b

c t a
b

()
,

=

−F
HG
I
KJ

−F
HG

I
KJ

− − −1

Γ

Quantile: t a cq
b

q= + 2
2 2χ ()

Mean: a + bc

Mode: a + b(c – 1), c > 1

 a, c ≤ 1

Variance: b2c

Constraints: b ≥ 0, c ≥ 0

Reduced models: Reduces to a shifted exponential distribution when c = 1. Reduces to an Erlang distribution
with integer parameter c. Reduces to a Chi-squared distribution with v degrees of freedom
with a = 2, b = v/2. Reduces to a gamma distribution with a = 0 and b = 1/λ.

References: Christensen (1984), Elandt-Johnson and Johnson (1980), Evans et al. (1993), Kalbfleisch and
Prentice (1980).

See also: SHIFTEXPONENTIAL, GAMMA, GENGAMMA, CHISQUARED

PDFs and their Characteristics

 188

SHIFTLOGNORMAL

This is a three-parameter shifted lognormal distribution, which is a reparameterization of the LOGNORMAL

distribution.

Parameters: a (location), b (scale), c (shape).

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te

Range: t ≥ a

PDF: f t
t a c

e c
t a

b
()

()

ln

=
−

− −F
HG
I
KJ

L
N
MM

O
Q
PP1

2

1
2 2

2

π

SDF: S t
c

t a
b

() ln= −
−F
HG
I
KJ

L
NM

O
QP1

1
Φ

Mean: a + bexp(c2/2)

Median: a + b

Mode: a + bexp(c2/2)

Variance: b2exp(c2)[exp(c2 + 2)]

Constraints: b > 0, c > 0

Notes: This distribution is related to the SHIFTLOGNORMAL distribution as follows. The two-
parameter LNNORMAL cumulative density is found from the Normal density by taking Φ[ln(t
– a)/b] whereas in the three parameter SHIFTLOGNORMAL we take Φ{ln[(t – a)/b]/c}.

References: Nelson (1982)

See also: NORMAL, LOGNORMAL

PDFs and their Characteristics

 189

SHIFTWEIBULL

This is the three-parameter Shifted Weibull distribution.

Parameters: a (location) b (scale and characteristic life= 63rd percentile), c (shape).

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: t ≥ a

PDF: f t c
b

t a
b

t a
b

c c

() exp= −F
HG
I
KJ − −F

HG
I
KJ

L
N
MM

O
Q
PP

−1

SDF: S t t a
b

c

() exp= − −F
HG
I
KJ

L
N
MM

O
Q
PP

Hazard: h(t) = ctc–1b–c

Mean: a + bΓ(1 + 1/c)

Median: a b+ ln()2

Mode:
a b c c
a c

c+ − >
≤

RS|T|
1 1 1

1
,

,

Variance: b c c2 21 2 1 2Γ Γ() ()+ − +{ }
Constraints: b > 0, c > 0

Reduced models: Reduces to the exponential distribution when c = 1, reduces to the Rayleigh distribution when
c = 2.

References: Christensen (1983), Nelson (1982)

See also: WEIBULL

PDFs and their Characteristics

 190

SILER

This is the Siler distribution frequently used as a competing hazards model for mortality (see Gage 1989).

Parameters: a1, b1 ("infant mortality" component), a2 (constant), a3, b3 (senescent mortality component).

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: t ≥ 0

PDF: f t a e a a e a
b

e a t a
b

eb t b t b t b t() exp () () ,= + + − − − + −
L
NM

O
QP

− −
1 2 3

1

1
2

3

3

1 3 1 31 1e j

SDF: S t a
b

e a t a
b

eb t b t() exp () ()= − − − + −
L
NM

O
QP

−1

1
2

3

3
1 11 3

Hazard: h(t) = a1 exp(–b1t) + a2 + a3 exp(b3t)

Constraints: a1 ≥ 0, a2 ≥ 0, a3 ≥ 0, b1 ≥ 0, b3 ≥ 0

Reduced models: a1 = 0 reduces to a Gompertz-Makeham. a1 = 0, a2 = 0 reduces to a Gompertz. Reduces to an
exponential in a number of ways.

References:

See also: EXPONENTIAL, GOMPERTZ, MAKEHAM, MIXMAKEHAM

PDFs and their Characteristics

 191

SMALLEXTREME

Parameters: a (location) and b (scale)

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: -∞ < t < ∞

PDF: f t b t a
b

t a
b

() exp exp= − − −F
HG
I
KJ

L
NM

O
QP

−1

SDF: S t t a
b

() exp exp= − −F
HG
I
KJ

RST
UVW

Hazard: h t b t a
b

() exp= −L
NM
O
QP

−1

Mean: a – kb k=0.57721... is Euler's constant

Median: a – b log[log(2)]

Mode: a (63.2nd percentile)

Variance: b2π2/6

Constraints: b ≥ 0

References: Evans et al. (1993), Nelson (1982)

PDFs and their Characteristics

 192

STERILE or IMMUNE

This distribution is used to form degenerate distributions of the forms f(t) = (1 – p)f1(t) and S(t) = (1-p)S1(t) + p.

This is done by using the MIX function with STERILE and specifying a mixture of f1(t) and the STERILE distribution. Given

failure times tu and te and, perhaps, the left truncation limits tα and tω, this distribution returns:

0 if an exact failure or an interval censored failure occurs: te < tω

1 if a right censored observation occurs: te ≥ tω

In words, the distribution returns 0 if there is no possibility that the observation may have been "sterile" (because

some failure was observed), and returns 1 if there is a possibility that the observation was a "sterile" observation (right

censored observation). This distribution has no intrinsic parameters, and covariates cannot be modeled on the hazard function

of this distribution.

Example. Suppose individuals fail with an underlying normal distribution, but the population is contaminated by an

unknown fraction, p, of non-susceptible individuals. The mlemlemlemle code is:
MODEL
 MIX
 PARAM p LOW=0 HIGH=1 FORM=NUMBER END,
 PDF NORMAL(last_alive first_dead)
 PARAM mu LOW=100 HIGH=200 START=150 END
 PARAM sigma LOW=0.1 HIGH=20 START=10 END
 END {pdf}
 ,
 PDF STERILE(last_alive first_dead) END
END

Call Ln the likelihood from the normal PDF. Then, the likelihood for an exact failure or interval censored failure will

be pLn. For right censored observations, the likelihood will be pLn + (1–p).

References: Holman (1995, 1998), Nelson (1982)

PDFs and their Characteristics

 193

SUBBOTIN

This is the Subbotin distribution, which includes a number of important distributions as special cases, including the

uniform, Laplace, and normal distributions. The distribution becomes discontinuous at the median when c < 1.

Parameters: a (location), b (scale), c (shape)

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: -∞ < t < ∞

PDF: f t
b c

ec

t a
b

c

()
(/)/=

++

− −
1

2 1 11 1

1
2

Γ

SDF: S t

t a
c

t a
b

c

c

()

sgn() ,

/
= −

− −F
HG

I
KJ1

2

1 1
2

1

γ

Γb g

Mean: a

Median: a

Mode: a

Variance:
b c

c

c2 22 3
1

/ /
/
Γ

Γ
b g
b g

Constraints: b ≥ 0, c > 0

Reduced models: Approaches the rectangular distribution as c → ∞, reduces to the Laplace distribution when c
is 1, and reduces to the normal distribution when c is 2.

References: Christensen (1984), Subbotin (1923)

See also: NORMAL, LAPLACE, UNIFORM

PDFs and their Characteristics

 194

UNIFORM or RECTANGULAR (Continuous)

The continuous uniform distribution has no parameters. However, truncation limits tα and tω should be specified.

When truncation limits are not specified (i.e. only one or two time variables are specified), then the standard uniform

distribution is assumed and used: tα = 0 and tω = 1.

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: tα ≤ t < tω

PDF: f(t) = 1/(tω – tα)

SDF: S t t t
t t

() = −
−

ω

ω α

Hazard: h(t) = 1/(tω – t)

Mean: (tω – tα) / 2

Median: (tω – tα) / 2

Variance: (tω – tα)2 / 12

References: Evans et al. (1993), Nelson (1982)

PDFs and their Characteristics

 195

VONMISES

This is the von Mises distribution, which is the analog of a normal distribution on a circular range.

Parameters: a (location), b (scale)

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: 0 < t < 2π

PDF: f t
b t a

b
()

exp cos()
()

=
−

2 0πΙ

SDF: S t

t b b jt ja j

b

j
j()

() () sin

()
= −

+ − −

=

∞

∑
1

2

2

0
1

1

0

Ι Ι b g
πΙ

Mean direction: a

Median: a

Mode: a

Antimode: a

Circular variance: 1 – Ι1(b)/Ι1(b)

Constraints: 0 < a < 2π, b > 0

References: Evans et al. (1993), Rao (1973)

PDFs and their Characteristics

 196

WEIBULL

This is the Weibull distribution, sometimes called the generalized Rayleigh distribution.

Parameters: b (scale and characteristic life= 63rd percentile), c (shape).

Time variables: tu, te, tα, tω. An exact failure is defined when tu = te.

Range: t ≥ 0

PDF: f t ct b t
b

c c
c

() exp= −FHG
I
KJ

L
N
MM
O
Q
PP

− −1

SDF: S t t
b

c

() exp= −FHG
I
KJ

L
N
MM
O
Q
PP

Hazard: h(t) = ctc–1b–c

Mean: bΓ(1 + 1/c)

Median: b ln()2

Mode:
b c c

c

c 1 1 1
0 1

− >
≤

RS|T|
,

,

Variance: b c c2 21 2 1 2Γ Γ() ()+ − +{ }
Constraints: b > 0, c > 0

Reduced models: Reduces to the exponential distribution when c = 1, reduces to the Rayleigh distribution when
c = 2.

References: Christensen (1983), Evans et al. (1993), Nelson (1982)

See also: SHIFTWEIBULL

NUMBERS, Symbols, constants, functions, and conversions

 197

NUMBERS, SYMBOLS, CONSTANTS, FUNCTIONS, AND CONVERSIONS

Symbols

t Used to denote the random variable, whether continuous or discrete. Typically, this is a time
variable.

ρ A parameter that defines a correlation coefficient.

σ A scale parameter that defines the standard deviation of the distribution.

µ A location parameter that also defines the mean of the distribution.

a A location parameter

b A scale parameter

c A shape parameter

h A parameter that is directly interpretable as a hazard.

p A parameter that is directly interpretable as a probability.

tq The qth quantile: [1–S(tq)] = q.

f(t) The probability density function (PDF).

S(t) The survival distribution (SDF):
0

() 1 () ()
t

t

S t f x dx f x dx
∞

= − =∫ ∫ .

h(t) The hazard function:
()()
()

f xh t
S t

= .

[]()d g x
dx

 The first derivative of the function g(x)

Constants

π PI, The value pi ≈ 3.141 592 653 589 793 238 462 643

e E, The base of the natural log ≈ 2.718 281 828 459 045 235 360 287

γ EULERSC, Euler's constant ≈ 0.577 215 664 901 532 860 606 512

NUMBERS, Symbols, constants, functions, and conversions

 198

Function definitions

2 ()q xχ The Chi-squared q quantile: 2 2Pr ()q x qχ χ ≤ = 

Φq The standard normal q quantile: Pr(x ≤ Φq) = q

Φ(x) The standard normal cumulative density function:

2

2

0

1()
2

x u

x e du
π

−
Φ = ∫ .

erf(x) The error function, ERF(x): ()2

0

2erf () 2 2 1
x

ux e du x
π

−= = Φ −∫ .

Ιk(x) The modified Bessel function of the 1st kind, order k, BESSELI(k, x):

()21

4

0
()

2 ! (1)

j
k

k k
j

xxx
j j k

∞

=

Ι =
Γ + +∑ .

Κk(x) The modified Bessel function of the 2nd kind, order k, BESSELK(k, x):

() ()()
2sin()

k k
k

x xx
i

π
π

−Ι − ΙΚ = .

Β(ν, ω) The beta function BETAF(ν, ω):
1

1 1

0

() ()(,) (1)
()

z x dxν ω ν ων ω
ν ω

− − Γ ΓΒ = − =
Γ +∫ .

Βp(ν, ω) The normalized incomplete beta function, IBETA(ν, ω):

1 1

0

(1)
(,)

(,)

p

p

x x dxν ω

ν ω
ν ω

− −−
Β =

Β

∫

βp(ν, ω) The complement of the normalized beta function (IBETAC): βp(ν, ω) = 1 – Βp(ν, ω).

Γ(ν) The gamma function (GAMMAF): 1

0

() xx e dxνν
∞

− −Γ = ∫ .

γ(ν, ω) The incomplete gamma function of the 1st kind: 1

0

(,) xx e dx
ω

νγ ν ω − −= ∫ .

 The IGAMMA(x, y) function returns γ(ν, ω)/Γ(ν)

Γ(ν, ω) The incomplete gamma function of the 2nd kind: 1(,) v xx e dx
ω

ν ω
∞

− −Γ = ∫ .

 The IGAMMAC(x, y) function returns Γ(ν, ω)/Γ(ν) = 1 – γ(ν, ω)/Γ(ν)

ψ(x) The digamma function.
[]ln ()

()
d x

x
dx

ψ
Γ

= .

ψ′(x) The trigamma function.
[] []2

2

() ln ()
()

d x d x
x

dx dx
ψ

ψ
Γ

′ = = .

NUMBERS, Symbols, constants, functions, and conversions

 199

ln(x) The natural (Napierian) log of x. LN(x) and LOG(x)

δ(x, y) Kronecker's delta function:
1,

(,)
0,

x y
x y

x y
δ

=
=  ≠

. DELTA(x, y).

n
k

 
 
 

 Combinations of n taken k at a time =
!

()!
n n
k n r

 
=  − 

. COMB(n, k)

NUMBERS, Symbols, constants, functions, and conversions

 200

The Greek alphabet

Α α alpha Ι ι iota Ρ ρ rho
Β β beta Κ κ kappa Σ σ sigma
Γ γ gamma Λ λ lambda Τ τ tau
∆ δ delta Μ µ mu Υ υ upsilon
Ε ε epsilon Ν ν nu Φ φ phi
Ζ ζ zeta Ξ ξ xi Χ χ chi
Η η eta Ο ο omikron Ψ ψ psi
Θ θ theta Π π pi Ω ω omega

Metric prefixes

10 deka (da) 10-1 deci (d)
102 hecto (h) 10-2 centi (c)
103 kilo (k) 10-3 milli (m)
106 mega (M) 10-6 micro (µ)
109 giga (G) 10-9 nano (n)
1012 tera (T) 10-12 pico (p)
1015 peta (P) 10-15 femto (f)
1018 exa (E) 10-18 atto (a)

Temperature conversions

 a °C b °K c °F
a °C a a = b – 273.15 a = (c – 32)/1.8
b °K b = a + 273.15 b b = (c + 459.67)/1.8
c °F c = 1.8a + 32 c = 1.8b – 459.67 c

NUMBERS, Symbols, constants, functions, and conversions

 201

Selected Systéme International d'Unités

Quantity SI Unit Derivation Other units
acceleration m/s2
angular acceleration rad/s2
angular velocity rad/s
capacitance (electrical) farad, F A×s/V
charge (electrical) coulomb, C A×s electrostatic units, esu = 3-1×10-9 C
current (electrical) ampre, A
density kg/m3
energy, work, heat joule, J N×m calorie, cal = 4.184 J

British thermal unit, BTU = 1055.87 J
foot-pound, ft-lb = 1.35582 J
electronvolt, eV = 1.60219× 10-19 J
erg = 10-7 J

field strength (electrical) V/m
flux of light lumen, lm cd×sr
force newton, N kg×m/s2 dyne, dyn = 10-5 N
frequency hertz, Hz 1/s cycles per second, cps = 1 Hz
illumination lux, lx lm/m2
inductance herny, H V×s/A
length meter, m angstrom (A) = 10-10 M
luminance candela/m2, cd/

m2

magnetic field strength A/m oersted, Oe = 4-1×103 A/m
magnetic flux weber, Wb V/s maxwell, Mx = 10-8 Wb
magnetic flux density tesla, T Wb/m2 gauss, G = 10-4 T
magnetomotive force ampre, A
mass kilogram, kg
power watt, W J/s horsepower, hp = 745.7 W
pressure N/m2 atmosphere, atm = 1.01325×105 N/m2

bar = 105 N/m2
kilopascals, kPa = 1000 N/m2

velocity m/s
voltage, electromotive
force, electrical potential

volt, V W/A

Angles

 '' ' ° radians grads
'' 1 0.0166667 0.000277778 0.0159155 0.0176839
' 60 1 0.0166667 0.954930 1.06103
° 3600 60 1 57.2958 63.6620

radians 62.8319 1.04720 0.0174533 1 1.11111
grads 56.5487 0.942478 0.0157080 0.9 1

NUMBERS, Symbols, constants, functions, and conversions

 202

Time

 second minute hour day week year
second 1 0.0166667 0.000277778 1.15741E-05 1.65344E-06 3.17969E-08
minute 60 1 0.0166667 0.000694444 9.92063E-05 1.90781E-06
hour 3600 60 1 0.0416667 0.00595238 0.000114469
day 86400 1440 24 1 0.142857 0.00274725

week 604800 10080 168 7 1 0.0192308
year 31449600 524160 8736 364 52 1

Avoirdupois weight

 kg lb ounce dram grain short ton long ton
kg 1 2.20462 35.2740 564.383 15432.4 0.00110231 0.000984207
lb 0.45359237 1 16 256 7000 0.000500000 0.000446429

ounce 0.0283495 0.0625000 1 16 437.500 0.0000312500 2.79018E-05
dram 0.00177185 0.00390625 0.0625 1 27.3438 1.95313E-06 1.74386E-06
grain 6.47989E-05 0.000142857 0.00228571 0.0365714 1 7.14286E-08 6.37755E-08

short ton 907.185 2000 32000 512000 14000000 1 0.892857
long ton 1016.05 2240 35840 573440 15680000 1.12 1

Long measure

 meter inch foot yard rod fulong mile nautical mile leagues
meter 1 39.370 3.2808 1.0936 6.0149 240.59 1924.8 2221.6 5774.3
inch 0.02540 1 0.083333 0.027778 0.15278 6.111111 48.889 56.428 146.67
foot 0.30480 12 1 0.33333 1.8333 73.33333 586.67 677.14 1760
yard 0.91440 36 3 1 5.5 220 1760.0 2031.4 5280
rod 0.16625 6.5455 0.54545 0.18182 1 40 320 369.35 960

fulong 0.0041564 0.16364 0.013636 0.0045455 0.025 1 8 9.2337 24
mile 0.0005195

5
0.020455 0.0017045 0.00056818 0.0031250 0.125 1 1.1542 3

nautical
mile

0.0004501
3

0.017722 0.0014768 0.00049227 0.0027075 0.1082992 0.86639 1 2.5992

leagues 0.0001731
8

0.0068182 0.00056818 0.00018939 0.0010417 0.0416667 0.33333 0.38474 1

fluid flow (volume/time)

 m3/s Mgal/day ft3/sec gal/min acre-ft/day
m3/s 1 22.8 35.3 15850 70.0

Mgal/day 0.0438 1 1.55 694 3.07
ft3/sec 0.0283 0.656 1 448 1.98

gal/min 6.31×10-5 0.00144 0.00223 1 0.00442

NUMBERS, Symbols, constants, functions, and conversions

 203

acre-ft/day 0.0143 0.326 0.504 226 1

Power (energy/time)

 joule/sec ft-lbforce/sec kWatt horsepower Btu/sec
joule/sec 1 0.738 0.001 0.00134 9.48×10-4

ft-lbforce/sec 1.36 1 0.00136 0.00182 0.00128
kWatt 1000 738 1 1.34 0.948

horsepower 746 550 0.746 1 0.707
Btu/sec 1055 778 1.05 1.41 1

Kinematic Viscosity

 m2/s cm2/sec ft2/sec cenitstoke
m2/s 1 104 10.7 106

cm2/sec 10-4 1 0.00107 100
ft2/sec 0.0929 929 1 9.34×104

cenitstoke 10-6 0.01 1.07×10-5 1

Error and Warning Messages

 204

ERROR AND WARNING MESSAGES

A number of error and warning messages are produced by mlemlemlemle. Warning messages are given for models, parameters

and other iterative functions that might not completely converge. Error messages cause mlemlemlemle to stop running. They can be

roughly divided into those that come from the run-time routines, the symbol table routines, the parsing routines, and the

mathematical library. Finally, mlemlemlemle has a number of help messages and other messages that occur in response to improper

command line options.

Messages from command line options

The following message is printed when command line options are not recognized and at least one of the options

is taken as an input file. For example, typing mle xxx yields:
Error: File "xxx" does not exist

Usage: mle [-v] [-p] [-i] [-dd] [-ds] [-dp] [-di] [-dl] [-d #] [mlefile]
 -v sets verbose on. Iteration histories are printed
 -p only parses the mle file
 -i runs mle interactively
 -dd turns on data debugging
 -ds turns on symbol table debugging
 -dp turns on parser debugging
 -di turns on integration debugging
 -dl turns on likelihood debugging
 -d sets debugging to level #
 mlefile is the name of the file with the program

Usage: mle -h [name1 name2]
 help for PDFs, functions, symbols, parameter transforms
 -h matches words exactly, -H searches within words

Usage: mle -pn n1 n2
 parses n's and returns values and type

File <name> does not exist. Try again.
Typing mle on the command line will result in the message
mle Program file to run?

Should you type a file name that does not exist, the following message appears:

 File asd does not exist. Try again.
mle Program file to run?

Ensure the proper directory and file extension is being used. Note that mle does not automatically append .mle to

the input file.

Error and Warning Messages

 205

Warning messages

Warning messages come from routines that iteratively attempt to find a solution of parameters or other

functions. Warning messages will not result in termination of the mle run.

Warning FINDMIN reached maximum iterations

Warning FINDZERO reached maximum iterations
The FINDMIN or FINDZERO function was not evaluated to the specified tolerance in the specified number of

iterations. You can increase the number of iterations to the function (one way is by increasing the value of FIND_MAXITS)

or decrease the convergence criterion (one way is by decreasing the value of FIND_EPS).

Warning: gamma SDF (by continued fractions) did not completely converge

Warning: gamma SDF (by series) did not completely converge
These two messages suggest that some evaluation of the Euler's incomplete gamma function was not very precise.

Warning: beta CDF did not converge
This message suggests that some evaluation of the incomplete Beta function was not very precise.

Warning: Upper [Lower] Interval for param x did not converge to x.xxx in yyyy iterations
This message arises when mle has troubles finding the upper or lower limit of a likelihood confidence interval. The

number of iterations should be increased (set CI_MAXITS to a higher value), or the convergence criterion should be relaxed

(set CI_CONVERGE to a larger value).

Warning: Upper [Lower] Interval for param x not bound between xxx and yyy.
This message arises when a confidence interval is larger then the upper and lower limits of the parameter. The HIGH

or LOW limits for the parameter should be changed so that the confidence limit is within the limits of the parameters.

Warning: the matrix is singular
This message indicates that the variance-covariance matrix could not be computed because the observed Fisher’s

information matrix was singular. This occurs when one or more parameters have very large standard errors, or changes in the

parameter do not affect the likelihood. Some suggestions are: reduce the number of parameters, ensure all parameters affect

the likelihood, solve the likelihood to a higher precision, transform one or more parameters so that the parameter estimate is

not near a mathematical limit. This last situation occurs, for example, when a probability is modeled untransformed (between

0 and 1) and the parameter estimate is near 0 or 1. Using a logistic specification for the parameter will sometimes fix the

problem.

Run-time errors

Error (run time): Tried assigning null string to char var <name>
A null string (i.e. a string of length zero specified by "") cannot be assigned to a character variable.

Error (run time): Unimplemented or unknown METHOD: <name>)

Error and Warning Messages

 206

The requested maximization method (set by METHOD=<name>) is not recognized.

Error (run time): Unimplimented integration method: <name>
The requested integration method (set by INTEGRATE_METHOD=<name>) is not recognized.

Error (run time): Bad string in STRING2REAL
A string argument to the STRING2REAL function could not be converted into a real number.

Error (run time): Bad string in STRING2INT
A string argument to the STRING2INT function could not be converted into an integer.

Error (run time): Bad real ident. <name> is type <type>

Error (run time): Bad integer identifier type found
An argument to an integer function was not an integer.

Error (run time): Bad string identifier type found
An argument to a string function was not a string or character.

Error (run time): Calling boolean func <name> with [real, integer, string/char, boolean] args

Error (run time): Type mismatch for arg n calling func <name>
The type (integer, real, boolean, string, character) for argument n of function <name> was incorrect.

Error (run time): Opening [INFILE, DATAFILE, MLERC] file xxxx: <message>
An error occurred while opening a file. The <message> can be one of the following:

File was not found

Path was not found

Too many open files

File access denied

Invalid file reference

Not enough memory

Invalid environment

Invalid drive letter

Can't remove current directory

Can't rename files across drives

Disk read error

Disk write error

Disk is write-protected

Unknown device

Disk drive is not ready

Disk seek or sector error

Unknown media

The printer is out of paper

Error trying to write to the output device

Error trying to read an input device

Error and Warning Messages

 207

A hardware failure occurred

Errors from the parser

Error messages from the parser always contain information on the line and column where the error occurred.

Error found while parsing <id> at line <line#> column <column#>

Expected a positive constant instead of "<text>"
A positive constant is expected in the FIELD and LINE specifications of the DATA statement.

Boolean expression was expected
A boolean expression was expected but not found. For example, as the first expression in the

IF...THEN...ELSE...END function must be a boolean expression.

"<name>" must be previously declared for use here
A variable used in an expression had not been previously declared. All variables must be declared, either as a

predeclared variable, in a PARAM function, in the DATA statement, or in an ASSIGN statement before being used in an

expression.

"<name>" exists and cannot be declared as a PARAM
An attempt was made to declare <name> as a parameter, but it was previously declared.

<name> doesn't exists, so it can't be reduced.
The parameter <name> found in a REDUCE statement does not exist.

Bad argument type to [function] <func>. Expected <type> but found <type>
An argument to the named function is not correct.

<variable> already exists. It cannot be a DATA variable.
A variable defined in the DATA statement already exists.

Bad type in assign statement
The resulting type on the right-hand side of the assignment is incompatible with the left-hand side.

Can't assign value of type <type> to variable of type <type>.
The two types are incompatible.

Bad number format found while scanning "<text>"
The text was supposed to be converted into a number, but could not be properly converted. Usually there is an

invalid character.

Character constant is too long
A character constant had more than one character.

Unclosed comment at end of file
This results when a comment is not properly closed.

Error: bad syntax at: line <line#> column <column#>

Error and Warning Messages

 208

The bad token is:<id>

One of the following was expected:
This error occurs when improper syntax is found.

Error messages from data routines

Error (data): Data transformation, bad function type
The function defined for a data transformation does not return a real or integer type.

Error (data): Unexpected end of file <name> reading observation <n> line <n> of <n>, field <n> of
<n>

The file ended when an observation was only partially read.

Error (data): Unexpected end of line <name> reading observation <n> line <n> of <n>, field <n> of
<n>

The line ended when an observation was only partially read.

Bad value <n1> line <n2> field <n3>. Can't convert: <text> to a number.
The value for observation n1, on line n2 in field n3 couldn't be properly converted to a number.

Error (data): No data file assigned. Use DATAFILE procedure'
The data file was not assigned using DATAFILE procedure. Place the statement DATAFILE("<name>") before the

DATA statement.

Error messages from function calls:

A number of errors arise from improper values being passed to function calls. Frequently the remedies are to place

proper constraints on parameter values, clean the input data, transform data, or add a small positive number to all failure

times. The following messages arise from these difficulties

Error (math): Attempted division by zero

Error (math): Attempted to take the square root of a negative number: <-nnnn>

Error (math): Bad BIVNORMAL param rho. Expected:-1<=r<=1 but = <nnn>

Error (math): Bad <name> should be > 0 and < 1 but = <nnn>

Error (math): Bad <name> should be >=1 but = <nnn>

Error (math): Bad <name> should be >= 0 but = <nnn>

Error (math): Bad <name> should be > 0 but = <nnn>

Error (math): Bad <name> cannot be =0 but is

Error (math): Bad <name> should be > -1 and < 1 but = <nnn>

Error and Warning Messages

 209

Error (math): Bad <name> should be >= -1 and <= 1 but = <nnn>

Error (math): Attempted log of negative number: <nnn>

Error (math): Bad Logit(<nnn>)

Error (math): Bad arg to: POWER(<nnn>, <nnn>)

Error (math): Integer overflow in FACT

Error (math): Integer overflow in COMBINATION

Error (math): Integer overflow in PERMUTE

Error (math): IBETA: arg is not 0 <= t <= 1, = <nnn>

Error (math): Bad random seed: <nnn>

Error messages from symbol table routines

Error (sym table): Wrong type: can't assign <name> (<type>) to <name> (<type>).

An attempt was made to assign incompatible variables.

Error (sym table): Variable of type <type> is too large

There was not enough memory to allocate a variable.

References

 210

REFERENCES

Agresti A (1990) Categorical Data Analysis. New York: John Wiley and Sons.

Ahuja JC and Nash SW (1967) Sankhya A 29:141-56.

Birnbaum ZW and Saunders SC (1969) Journal of Applied Probability 6:319-27.

Borel E (1925) Principes et formules classiques du Calcul des Probabilitiés. :Paris.

Box GEP, Hunter WG, Hunter JS (1978) Statistics for Experimenters. New York: John Wiley & Sons.

Bratley P, Fox BL, Schrage LE (1983) A Guide to Simulation New York: Springer-Verlag.

Brent RP (1973) Algorithms for minimization without derivatives. Englewood Cliffs, NJ: Prentice-Hall.

Cox DR, Oakes D (1984) Analysis of survival data. London: Chapman and Hall.

Christensen R (1984) Data Distributions. Lincoln, MA: Entropy Ltd.

Daniels HE (1945) Proc Royal Soc London, Series A 183:405-35.

Edwards AWF (1972) Likelihood. Cambridge: Cambridge University Press.

Efron B (1982) The Jackknife, the Bootstrap and Other Resampling Plans. Philadelphia: Society for Industrial and Applied
Mathematics.

Eggenberger F, and Pólya G (1923) Zeit. fur Angew. Math und Mech. 1:179-289.

Elandt-Johnson RC, Johnson NL (1980) Survival Models and Data Analysis. New York: John Wiley and Sons.

Fisher RA, Corbet AS, Williams CB (1943) J Animal Ecology 12:42-57.

Fisher RA (1921) On the 'probable error' of a coefficient of correlation deduced from a small sample. Metron 1:3-32.

Forsythe G, Malcolm MA, Moler CB (1977) Computer Methods for Mathematical Computations. Englewood Cliffs, NJ:
Prentice-Hall.

Gage TB (1989) Bio-methematical approaches to the study of human variation in mortality. Yrbk Phys Anthropol 32:185-214.

Geoffe WL, Ferrier GD, Rogers J (1994) Global optimization of statistical functions with simulated annealing. Journal of
Econometrics 60:65-99.

Gompertz B (1825) Phil Trans Roy Soc London, 115:513-85.

Gumbel EJ (1947) Annals Mathematical Statistics 18:384-412.

Hammes LM, Treloar AE (1970) Gestational interval from vital records. Am J Pub Health 60:1496-505.

Hazelrig JB, Turner ME, Blackstone EH (1982) Parametric survival analysis combining longitudinal and cross-sectional
censored and interval-censored data with concomitant information. Biometrics 38:1-15.

Hilborn R and Mangel M (1997) The Ecological Detective Confronting Models with Data. Monographs in Population
Biology 28. Princeton, N.J.: Princeton University Press.

Holman DJ (1996) Total Fecundability and Fetal Loss in Rural Bangladesh. Doctoral Dissertation, The Pennsylvania State
University.

Holman DJ and Jones RE (1998) Longitudinal analysis of deciduous tooth emergence II: Parametric survival analysis in
Bangladeshi, Guatemalan, Japanese and Javanese children. American Journal of Physical Anthropology 105(2):209-
30.

Kalbfleisch JD, Prentice RL (1980) The Statistical Analysis of Failure Time Data. New York: John Wiley & Sons.

Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220 (4598):671-80.

References

 211

Kishor ST (1982) Probability and Statistics with Reliability, Queuing, and Computer Science Applications. Englewood Cliffs,
NJ: Prentice-Hall.

Laplace PS (1774) Mém. de Math et Phys., l'Acad. Roy. des Sci. par div. Savans 6:621-56.

Lee ET (1992) Statistical Methods for Survival Data Analysis. New York: John Wiley and Sons.

Levy P (1939) Composita Mathematica 7:283-339.

Maxwell JC (1860a) Phil Mag 19:19

Maxwell JC (1860b) Phil Mag 20:21, 33.

Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, and Teller E (1953) Equation of state calculations by fast computing
machines. J. Chem. Phys. 21:1087-90.

Nelson W (1982) Applied Life Data Analysis. New York: John Wiley and Sons.

Nelder JA, and Mead R (1965) A simplex method for function minimization. Computer Journal 7:308-13.

Pearson K (1895) Phil. Trans. Roy. Soc. London, Series A 186:343-414.

Pearson K (1900) Phil Mag and J Sci, 5th Series. 50:157-75.

Pickles A (1985) An Introduction to Likelihood Analysis. Norwich: Geobooks.

Powell MJD (1964) An efficient method for finding the minimum of a function of several variables without calculating
derivatives. Comp. Journal 7:155-62.

Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1989) Numerical Recipes in Pascal: The Art of Scientific
Programming. Cambridge: Cambridge University Press.

Rao CR (1973) Linear Statistical Inference and Its Applications. New York: John Wiley and Sons.

Ridders CJF (1982) Advances in Engineering Software 4(2):75-6.

SAS Institute (1985) SAS User's Guide: Statistics. Version 5 edition. Cary, NC: SAS Institute, Inc.

Schrödinger E (1915) Phys. Zeit. 16:289-95.

Subbotin MT (1923) Mathematicheskii Sbornik 31:296-301.

Thomas M (1949) Biometrika 36:18-25.

Tuma NB, Hannan MT (1984) Social Dynamics: Models and Methods. New York: Academic Press.

Tweedie MCK (1947) Proc. Camb. Phil. Soc. 43:41-9

Vaupel JW (1990) Relatives' risks: Frailty models of life history data. Theor Pop Biol 37:220-34.

Vaupel JW, Yashin AI (1985) Heterogeneity's ruses: Some surprising effects of selection on population dynamics. Am Stat
39:176-85.

Wald A (1947) Sequential Analysis New York:John Wiley & Sons.

Wise ME (1966) Acta Phys. Pharm. Neerlandica 14:175-204.

Wood JW (1989) Fecundity and natural fertility in humans. Oxf Rev Reprod Biol 11:61-109.

Wood JW (1994) Dynamics of Human Reproduction: Biology, Biometry, Demography. Hawthorne, NY: Aldine de Gruyter.

Wood JW, Holman DJ, Yasin A, Peterson RJ, Weinstein M, Chang M-c (1994) A multistate model of fecundability and
sterility. Demography 31:403-26.

Wood JW, Holman DJ, Weiss KM, Buchanan AV, LeFor B (1992) Hazards models for human biology. Yrbk Phys Anthropol
35:43-87.

	TABLE OF CONTENTS
	INTRODUCTION
	An Example
	Basic Outline of an mle Program
	Assignment Statement
	Data Statement
	Model Statement
	Procedure Statements
	Other Statements

	A Note About Parameters
	Differences between Version 1 and Version 2
	Changes and new features in version 2
	Converting version 1 programs to version 2

	RUNNING AN MLE PROGRAM
	Introduction
	Command line options
	Help options
	Other options

	DATA SETS
	Introduction
	Reading data from a file
	Naming the data file
	The DATA statement
	Dropping or keeping observations
	Frequency of observations
	Transformations
	Creating dummy variables
	Skipping initial lines in the data file
	Delimiters in the data file

	Creating observations without a file
	Printing observations and statistics
	Number formats
	An example of creating a data file

	THE MODEL STATEMENT
	Introduction
	Structure of the MODEL statement
	Runlist

	Expressions used in MODEL statements
	The PARAM function
	Setting parameter information

	The PDF functions
	PDF time arguments
	The Hazard parameter

	The DATA function
	The LEVEL function
	The LEVELDELTA function

	STATEMENTS AND PROCEDURES
	Introduction
	List of statements
	Assignment statements
	BEGIN...END statement
	The DATA statement
	FOR statement
	IF statement
	MODEL statement
	Procedure statement
	REPEAT statement
	WHILE statement

	List of procedures
	
	DATAFILE(s)
	HALT
	OUTFILE(s)
	PRINT(a1, a2, . . .)
	PRINTLN(a1, a2, . . .)
	SEED(i)
	WRITE(a1, a2, . . .)
	WRITELN(a1, a2, . . .)

	FUNCTIONS
	Introduction
	The DERIVATIVE function
	The FINDMIN function
	The FINDZERO function
	Identifiers and expressions
	Algebraic, boolean and logical expressions
	Operator precedence

	The IF function
	The INTEGRATE function
	The LEVEL function
	The PARAM function
	Setting Parameter Information

	The PDF function
	PDF time arguments
	The Hazard Parameter

	The PREASSIGN and POSTASSIGN functions
	The PRODUCT function
	Simple functions
	The SUMMATION function
	List of simple functions
	ABS(x)
	ADD(x, y)
	ANDF(x, y)
	ARCCOS(x)
	ARCCOSH(x)
	ARCCOT(x)
	ARCCOTH(x)
	ARCCSC(x)
	ARCCSCH(x)
	ARCSEC(x)
	ARCSECH(x)
	ARCSIN(x)
	ARCSINH(x)
	ARCTAN(x)
	ARCTANH(x)
	BESSELI(x, y)
	BESSELJ(x, y)
	BESSELK(x, y)
	BESSELY(x, y)
	BETA((, ()
	BOOL2STR(x)
	CEIL(x)
	COMB(x, y)
	COMP(x)
	COMPN(x, n)
	CONCAT(x1, x2)
	COS(x)
	COSH(x)
	COT(x)
	COTH(x)
	CSCH(x)
	DEC(x)
	DEFALULTOUTNAME
	DELTA(x, y)
	DIVIDE(x, y)
	DMSTOD(x, y, z)
	DMSTOR(x, y, z)
	DMYTOJ(x, y, z)
	DTOR(x)
	ERF(x)
	ERFC(x)
	EXP(x)
	FACT(x)
	FISHER(x)
	FISHERINV(x)
	FLOOR(x)
	FRAC(x)
	GAMMA(x)
	GCF(x, y)
	HEAVISIDE(x)
	IBETA(p, (, ()
	IBETAC((p, (, ()
	IDIV(x, y)
	IGAMMA(x, y)
	IGAMMAC(x1, x2)
	IGAMMAE(x1, x2)
	INC(x)
	INT(x)
	INT2STR(x)
	INVERT(x)
	IRAND(x, y)
	ISEQ(x, y)
	ISEVEN(x)
	ISGE(x, y)
	ISGT(x, y)
	ISLE(x, y)
	ISLT(x, y)
	ISNE(x, y)
	ISNEAR(x, b, ()
	ISODD(x)
	JULIAND(x)
	JULIANM(x)
	JULIANY(x)
	LCM(x, y)
	LEAPYEAR(y)
	LEFTSTRING(x, y)
	LN(x)
	LNFACT(x)
	LNGAMMA(x)
	LOG(x)
	LOG10(x)
	LOGBASE(x, y)
	LOGISTIC(x)
	LOGIT(x)
	LUNARPHASE(j)
	MAX(x, y)
	MIN(x, y)
	MIX(p, x, y)
	MODULO(x, y)
	MONTHDAYS(m, y)
	MULTIPLY(x, y)
	NEGATE(x)
	NOTF(x)
	ORD(c)
	ORF(x, y)
	PERMUTATIONS(x, y)
	POLARTORECTX(r, a)
	POLARTORECTY(r, a)
	POWER(x, y)
	PUT(x)
	RAND
	REAL2STR(x, l, s)
	RECTTOPOLARA(x, y)
	RECTTOPOLARR(x, y)
	RECTTOSPHERER(x, y, z)
	RECTTOSPHEREA1(x, y, z)
	RECTTOSPHEREA2(x, y, z)
	REMAINDER(x, y)
	RIGHTSTRING(x, y)
	ROOT(x, y)
	ROUND(x)
	RRAND(x, y)
	RTOD(x)
	SEC(x)
	SECH(x)
	SGN(x)
	SHIFTLEFT(x, y)
	SHIFTRIGHT(x, y)
	SIGN(x, y)
	SIN(x)
	SINH(x)
	SPHERETORECTX(r, a1, a2)
	SPHERETORECTY(r, a1, a2)
	SPHERETORECTZ(r, a1, a2)
	SQR(x)
	SQRT(x)
	STANDARDIZE(x, (, ()
	STRING2INT(s)
	STRING2REAL(s)
	SUBSTRING(x, y, z)
	SUBTRACT(x, y)
	TAN(x)
	TANH(x)
	TOLOWER(x)
	TOUPPER(x)
	TRIM(x)
	TRIML(x)
	TRIMR(x)
	TRUNC(x)
	WEEKDAY(x)
	XORF(x, y)
	YEARDAY(x)

	Calculator mode

	SOME EXAMPLE PROGRAMS
	Survival analysis—Exact measurements
	Survival analysis—Exact failure and right censored observations
	Survival analysis—Interval censored observations
	Current status analyses
	Survival analysis—With left-truncated observations
	Survival analysis—right-truncated observations
	Survival analysis—With left-and right-truncated observations
	Survival analysis—Accelerated failure time
	Survival analysis—Hazards model
	Survival analysis—Immune subgroup
	Linear regression in the likelihood framework

	SOME DETAILS
	Maximizers
	Conjugate gradient method
	Simplex
	Direct method
	Simulated annealing method
	Stopping criteria
	Looping through methods

	Output options
	DATA reports
	MODEL reports
	Standard error report
	Variance-covariance matrix
	Confidence interval report
	Printing distributions
	Other printing options

	Integration methods
	Logistic equations
	The interactive debugger
	Predefined variables and constants

	PDFS AND THEIR CHARACTERISTICS
	ARCSINE
	ASYMPTOTICRANGE
	BERNOULLITRIAL
	BETA
	BINOMIAL
	BIRNBAUMSAUNDERS
	BIVNORMAL
	CAUCHY
	CHI
	CHISQUARED
	COMPOUNDEXTREME
	DANIELS
	DISK
	EXPONENTIAL
	GAMMA
	GAMMAFRAIL
	GENGAMMA
	GENGUMBEL
	GEOMETRIC
	GOMPERTZ
	HORSESHOE
	HYPERBOLICSECANT
	HYPERGEOMETRIC
	HYPER2EXP
	HYPO2EXP
	INVBETA1
	INVBETA2
	INVCHI
	INVGAMMA
	INVGAUSSIAN
	LAPLACE
	LARGEEXTREME and GUMBEL
	LINEARHAZARD
	LNGAMMA
	LNLOGISTIC
	LOGISTIC
	LOGNORMAL or LNNORMAL
	LOGSERIES
	LOWMAX
	MAKEHAM
	MAXWELL
	MIXMAKEHAM
	NEGBINOMIAL
	NORMAL or GAUSSIAN
	PARETO
	PASCAL
	POISSON
	POWERFUNCTION
	RAISEDCOSINE
	RANDOMWALK
	RAYLEIGH
	REVPOWERFUNCTION
	RINGINGEXP0
	RINGINGEXP180
	SHIFTEXPONENTIAL
	SHIFTGAMMA
	SHIFTLOGNORMAL
	SHIFTWEIBULL
	SILER
	SMALLEXTREME
	STERILE or IMMUNE
	SUBBOTIN
	UNIFORM or RECTANGULAR (Continuous)
	VONMISES
	WEIBULL

	NUMBERS, SYMBOLS, CONSTANTS, FUNCTIONS, AND CONVERSIONS
	Symbols
	Constants
	Function definitions
	The Greek alphabet
	Metric prefixes
	Temperature conversions
	Selected Systéme International d'Unités
	Angles
	Time
	Avoirdupois weight
	Long measure
	fluid flow (volume/time)
	Power (energy/time)
	Kinematic Viscosity

	ERROR AND WARNING MESSAGES
	Messages from command line options
	Warning messages
	Run-time errors
	Errors from the parser
	Error messages from data routines
	Error messages from function calls:
	Error messages from symbol table routines
	
	Error (sym table): Wrong type: can't assign <name> (<type>) to <name> (<type>).
	Error (sym table): Variable of type <type> is too large

	REFERENCES

