COmmand reference

mle program

MLE  <statement> [...] END

Statements

Assignment statement formats:

<var> = <expr>                       {simple assignment}

<var>:<type>                         {simple declaration}

<var>:<type> = <expr>                {simple declaration with initialization}

<var>:<type>[i TO j]                 {array declaration}

<var>:<type>[i TO j] = <expr>        {array declaration with initialization}

<var>:<type>[i TO j, ...]            {multidimensional array declaration}

<var>:<type>[i TO j, ...] = <expr>   { ... with initialization}

BEGIN <statements> END

DATA

  <var> [FIELD i [LINE j]] [= <expr>] [DROPIF <expr> | KEEPIF <expr> ...]

  ...

END

FOR <i> = <iexpr> TO <iexpr> DO <statements> END

IF <bexpr> THEN <statements>

[ELSEIF <bexpr> THEN <statements>...]

[ELSE <statements>]

END

MODEL

  <expr>

RUN

  FULL | REDUCE <v>=<expr> [<v>=<expr>...]

  ...

END

Procedures (see below)

REPEAT <statements> UNTIL <bexpr>

WHILE <bexpr> DO <statements> END

Built-in procedures

DATAFILE(x)

DUMPSYMBOL(x)

DUMPTABLE

HALT

OUTFILE(x)

PRINT(x1, x2, ...)

PRINTLN(x1, x2, ...)

READ(x1, x2, ...)

READLN(x1, x2, ...)

SEED(x)

WRITE(x1, x2, ...)

WRITELN(x1, x2, ...)

Functions

numeic constant (see below)

identifier

array identifier

DATA [FORM = SUMLL | SUM[MATION] | PROD[UCT]] <expr> END

DERIVATIVE [(<expr>)] <var> = <expr> [<expr> [<expr>]] END

FINDMIN <var> (<expr> <expr> [<expr> [<expr> [<expr>]]]) <expr> END

FINDZERO <var> (<expr> <expr> [<expr> [<expr> [<expr>]]]) <expr> END

IF <bexpr> THEN <expr> [ELSEIF <bexpr> THEN <expr>...] ELSE <expr> END

INTEGRATE <var> (<expr> <expr> [<expr>]) <expr> END

LEVEL <bexpr> THEN [FORM = SUMLL | SUM[MATION] | PROD[UCT]] <expr> END

LEVELDELTA <expr> THEN [FORM = SUMLL | SUM[MATION] | PROD[UCT]] <expr> END

PARAM <var> [HIGH=<expr>].[LOW=<expr>] [START=<expr>] [TEST=<expr>]

            [FORM=<paramform>]

  [COVAR <var> <expr> . . . ]

END

PDF <PDF name> (<expr> <expr> ... )

  <expr> <expr> ...

  [HAZARD COVAR <var> <expr> [COVAR <var> <expr> ...]]

END

POSTASSIGN <expr> <statement> END

PREASSIGN <statement> <expr> end

PRODUCT <var> (<expr> <expr> [<expr>]) <exp> END

QUANTILE <PDF name> (<expr> [<expr> [<expr>]])

  <expr> <expr> ...

  [HAZARD COVAR <var> <expr> [COVAR <var> <expr> ...]]

END

<simple function>  (see below)

SUMMATION <var> (<expr> <expr> [<expr>]) <exp> END

Param forms

NUMBER

ADD

EXPADD

MULTIPLY

EXCESS

LOGLIN

INVMULTIPLY

INVADD

INVLOGLIN

INVERT

DIVIDE

POWER

POWEREXP

LOGISTIC

LOGIT

 

PDF names

ARCSINE

ASYMPTOTICRANGE

BERNOULLITRIAL

BETA

BINOMIAL

BIRNBAUMSAUNDERS

BIVNORMAL

CAUCHY

CHI

CHISQUARED

COMPOUNDEXTREME

DANIELS

DISK

EXPONENTIAL

FAILED

GAMMA

GAMMAFRAIL

GAUSSIAN

GENGAMMA

GENGUMBEL

GEOMETRIC

GOMPERTZ

GUMBEL

HORSESHOE

HYPERBOLICSECANT

HYPERGEOMETRIC

HYPER2EXP

HYPO2EXP

IMMUNE

INVBETA1

INVBETA2

INVCHI

INVGAMMA

INVGAUSSIAN

LAPLACE

LARGEEXTREME

LINEARHAZARD

LNGAMMA

LNLOGISTIC

LNNORMAL

LOGISTIC

LOGNORMAL

LOGSERIES

LOWMAX

MAKEHAM

MAXWELL

MIXMAKEHAM

NEGBINOMIAL

NORMAL

PARETO

PASCAL

POISSON

POWERFUNCTION

RAISEDCOSINE

RANDOMWALK

RAYLEIGH

RECTANGULAR

REVPOWERFUNCTION

RINGINGEXP0

RINGINGEXP180

SHIFTEXPONENTIAL

SHIFTGAMMA

SHIFTLOGNORMAL

SHIFTWEIBULL

SILER

SMALLEXTREME

STERILE

SUBBOTIN

UNIFORM

VONMISES

WEIBULL

 

Simple functions

ABS(x)

ADD(x, y)

ANDF(x, y)

ARCCOS(x)

ARCCOSH(x)

ARCCOT(x)

ARCCOTH(x)

ARCCSC(x)

ARCCSCH(x)

ARCSEC(x)

ARCSECH(x)

ARCSIN(x)

ARCSINH(x)

ARCTAN(x)

ARCTANH(x)

BESSELI(x, y)

BESSELJ(x, y)

BESSELK(x, y)

BESSELY(x, y)

BETA(n, w)

BOOL2STR(x)

CEIL(x)

COMB(x, y)

COMP(x)

COMPN(x, n)

CONCAT(x1, x2)

COS(x)

COSH(x)

COT(x)

COTH(x)

CSCH(x)

DEC(x)

DEFALULTOUTNAME

DELTA(x, y)

DIVIDE(x, y)

DMSTOD(x, y, z)

DMSTOR(x, y, z)

DMYTOJ(x, y, z)

DTOR(x)

ERF(x)

ERFC(x)

EXP(x)

FACT(x)

FISHER(x)

FISHERINV(x)

FLOOR(x)

FRAC(x)

GAMMA(x)

GCF(x, y)

HEAVISIDE(x)

IBETA(p, n, w)

IBETAC((p, n, w)

IDIV(x, y)

IGAMMA(x, y)

IGAMMAC(x1, x2)

IGAMMAE(x1, x2)

INC(x)

INT(x)

INT2STR(x)

INVCHISQ(p, d)

INVERT(x)

INVNORMAL(p)

IRAND(x, y)

ISEQ(x, y)

ISEVEN(x)

ISGE(x, y)

ISGT(x, y)

ISLE(x, y)

ISLT(x, y)

ISNE(x, y)

ISNEAR(x, b, d)

ISODD(x)

JULIAND(x)

JULIANM(x)

JULIANY(x)

LCM(x, y)

LEAPYEAR(y)

LEFTSTRING(x, y)

LN(x)

LNFACT(x)

LNGAMMA(x)

LOG(x)

LOG10(x)

LOGBASE(x, y)

LOGISTIC(x)

LOGIT(x)

LUNARPHASE(j)

MAX(x, y)

MIN(x, y)

MIX(p, x, y)

MODULO(x, y)

MONTHDAYS(m, y)

MULTIPLY(x, y)

NEGATE(x)

NOTF(x)

ORD(c)

ORF(x, y)

PERMUTATIONS(x, y)

POLARTORECTX(r, a)

POLARTORECTY(r, a)

POWER(x, y)

PUT(x)

RAND

REAL2STR(x, l, s)

RECTTOPOLARA(x, y)

RECTTOPOLARR(x, y)

RECTTOSPHERER(x, y, z)

RECTTOSPHEREA1(x, y, z)

RECTTOSPHEREA2(x, y, z)

REMAINDER(x, y)

RIGHTSTRING(x, y)

ROOT(x, y)

ROUND(x)

RRAND(x, y)

RTOD(x)

SEC(x)

SECH(x)

SGN(x)

SHIFTLEFT(x, y)

SHIFTRIGHT(x, y)

SIGN(x, y)

SIN(x)

SINH(x)

SPHERETORECTX(r, a1, a2)

SPHERETORECTY(r, a1, a2)

SPHERETORECTZ(r, a1, a2)

SQR(x)

SQRT(x)

STANDARDIZE(x, m, s)

STRING2INT(s)

STRING2REAL(s)

SUBSTRING(x, y, z)

SUBTRACT(x, y)

TAN(x)

TANH(x)

TOLOWER(x)

TOUPPER(x)

TRIM(x)

TRIML(x)

TRIMR(x)

TRUNC(x)

WEEKDAY(x)

XORF(x, y)

YEARDAY(x)

 

Predefined variables and constants

ALT_LOGISTIC

ANNEALING

ATOMICMASSU

AVOGADROSN

BOHRMAGNETON

BOHRRADIUS

BOLTZMANNSC

BRENT_ITS

BRENT_MAGIC

CGRADIENT1

CGRADIENT2

CI_CHISQ

CI_CONVERGE

CI_EVALS

CI_LIMIT_DELTA

CI_MAXITS

CONVERGENCE

CREATE_OBS

DATAFILE

DEBUG

DEBUG_DATA

DEBUG_INT

DEBUG_LIK

DEBUG_PARSE

DEBUG_SYM

DEGREESPERRADIAN

DELIMITERS

DELTA_LL

DIFF_DX

DIRECT

DIST_DX_SCALE

DIST_T_END

DIST_T_N

DIST_T_START

DX_MAXITS

DX_START

DX_TOOBIG

DX_TOOSMALL

D_OBS

E

EPSILON

EULERSC

EVALS

EXP_HAZARD

FALSE

FIND_EPS

FIND_MAXITER

FREE_PARAMS

GRAVITATIONALC

HIGH_DEFAULT

INFINITY

INFO_METHOD1

INFO_METHOD2

INPUT_SKIP

INTEGRATE_METHOD

INTEGRATE_N

INTEGRATE_TOL

ITERATIONS

ITERATION_PRINT

I_AQUAD

I_SIMPSON

I_TRAP_CLOSED

I_TRAP_OPEN

LARGEST_LIKELIHOOD

LARGEST_LLIKELIHOOD

LARGE_ZERO

LIGHTC

LINES_PER_OBS

LINE_NUMB

LNINFINITY

LOGLIKELIHOOD

LOG_10

LOW_DEFAULT

MACHINE_EPSILON

MAXEVALS

MAXINT

MAXITER

MAX_BOOLEANS

MAX_CHARS

MAX_INTEGERS

MAX_REALS

MAX_STRINGS

METHOD

METHOD_LOOP

MINIMUM_ITS

MIN_SIGNIFICANT

NEGINFINITY

NEWTON

N_OBS

N_VARS

NOTSINGULAR

oo

OUTFILE

PARSE_ONLY

PI

PLANCKINV2PI

PLANCKSC

POWELL

PRINT_BASIC

PRINT_CI

PRINT_COUNTS

PRINT_DATA_STATS

PRINT_DISTS

PRINT_FIELDS

PRINT_FREE_PARAMS

PRINT_INFO

PRINT_LLIKS

PRINT_OBS

PRINT_SE

PRINT_SHORT

PRINT_VCV

PROGRAM_NAME

RADIANSPERDEGREE

RANDOM_SEED

RELEASE

REVISION

RYDBERGC

SA_ADJ_CYCLES

SA_ADJ_LOWERBOUND

SA_ALT_ADJUSTMENT

SA_COOLING

SA_EPS_NUMBER

SA_STEPLENGTH

SA_STEPLENGTH_ADJ

SA_STEPS

SA_TEMPERATURE

SIMPLEX

SIMPLEX_ALPHA

SIMPLEX_BETA

SIMPLEX_GAMMA

SMALLEST_LIKELIHOOD

SMALLEST_LLIKELIHOOD

SMALLEST_NUMBER

SQRT_EPSILON

START_DEFAULT

SURFACE_POINTS

SYM_TABLE_SIZE

SYSTEM

TEST_DEFAULT

TITLE

TRUE

UNIVERSALGASC

VCV_EVALS

VCV_WIDTH

VERBOSE

VERSION

 

 

 

 

Number formats

Format

Examples

Conversion

Result

d

1, 200

 

integer

 d.d, d.

3.1415, 3.

 

real

ds, -ds, d.ds, -d.ds,

14%, 23.7M, 45.7da, 2n, 2.418E

Suffix (see below)

real

dEd, dE-d, d.dEd, d.dE-d,

d.Ed, d.E-d

3e23, 511E-10, 31.416e-1, 7.0E-10, 12.e-6, 1.45E-3, 1.0E0

Standard exponential format.

xEy Þ x ´ 10y

real

0Rv

0RXLVII, 0rMXVI, 0rmdclxvi

Roman numerals to integer

integer

dXy

2x1001 (binary), 8X3270 (octal), 16xA4CC (hex), 32x3vq4h (base 32).

Converts y from base d (from 2 to 36) into integer.

integer

d:d:d,  d:d:d.d,  d:d, d:d.d

10:42, 14:55:32, 10:40:23.4, 16:53.2

24-hour time into hours.  Hours must be 0-24.

real

d:d:dAM, d:d:dPM, d:d:d.dAM, d:d:d.dPM, d:dPM, d:dAM, d:d.dAM, d:d.dPM

10:42AM, 2:55:32pm, 10:40:23.4am

12-hour time with AM and PM suffixes into hours.  Hours must be 0-12.

real

dHd'd", dHd'd.d", dHd', dHd.d'', dHd.d''

230h16'32", 14H32'6", 100h22', 30H32.2', 0h12', 0H12'3"

Degree/hour minute, second format.  Converted to real angle/time.

real

d`d'd", d`d'd.d", d`d', d`d.d'', -d`d'd", d`, d.d`, d°d'd", d°d'd.d", d°d', d°d.d'', d°, d.d°

230`16'32", 14`32'6", 100`22', 30`32.2', 14`, 230°16'32", 14°32'6", 270°10'0", 30°18.2', 3.4°

Degree, minute, second format, converted to radians.

real

d'd", d'd.d", d', d.d', d", d.d"

12'32", 166'12.9", 19', 14.7', 12", 607.3"

Minute-second and second format, converted to radians.

real

d_d/d

12_5/16, 3_2/3, 0_1/7

Fraction notation.

real

dDdMdY

16d12m1944y, 1D6M1800Y

Date converted to Julian day

integer

dMdDdY

12m16d1944y, 6M1D1800Y

Date converted to Julian day

integer

dYdMdD

1944y12m16d, 1800Y6M1D

Date converted to Julian day

integer

dmmmy

14Dec1999, 30jun1961, 1MAY1944

Date converted to Julian day

integer

d is a strings of one or more positive digits; s is a one or two character case-sensitive metric or percent suffix , v is a string of one or more Roman numeral digits {IVXLCDM}, y is a string of one or more characters, mmm is a 3-character English month name (jan, Feb, MAR, etc). The degree (°) and micro (m) characters  are available on some hardware platforms as ASCII codes 230 and 248 respectively.  On many Intel platforms, the characters are availabel by holding down the <ALT> key and type the code on the numeric keypad.

Metric and other number suffixes

Suffix

Name

Conversion

 

Suffix

Name

Conversion

 

Suffix

Name

Conversion

da

deka

´10

 

d

deci

´10-1

 

Ki

kibi

´210

h

hecto

´102

 

c, %

centi, percent

´10-2

 

Mi

mebi

´220

k

kilo

´103

 

m

milli

´10-3

 

Gi

gibi

´230

M

mega

´106

 

m, u

micro

´10-6

 

Ti

tebi

´240

G

giga

´109

 

n

nano

´10-9

 

Pi

pebi

´250

T

tera

´1012

 

p

pico

´10-12

 

Ei

exbi

´260

P

peta

´1015

 

f

femto

´10-15

 

 

 

 

E

exa

´1018

 

a

atto

´10-18

 

 

 

 

Z

zetta

´1021

 

z

zepto

´10-21

 

 

 

 

Y

yotta

´1024

 

y

yocto

´10-24