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Preface

mle is the culmination of years of tinkering, punctuated by occasional bursts of concentrated activity that
beganin 1991. At thetime, | was a graduate student in biological anthropology and demography working
on several projects that used parametric survival analysis. Some of the parametric models | was working
with—a bivariate normal, and a negative exponential distribution with lognormally distributed frailty and
an immune fraction—were not available in software | had at hand. Instead, | pieced together a series of
numerical routines, some translated from FORTRAN to Pascal, into a special-purpose program for my
needs. Ken Weiss suggested that there was a need for a general -purpose program for specifying and
solving likelihood models. That suggestion and encouragement from Jim Wood and Robert Jones led me
to develop mle.

Since then, | have progressively added language features, functions, probability density functions, and
numerical methods to the program. For a spell, | was obsessed with collecting probability density functions
the way some people collect shoes—many will never be used for serious work, but | can peer into the
wardrobe and take great satisfaction in seeing them tidily arranged. During another compulsive period, |
decided that mle ought to recognize a plethora of number formats, including dates, times, angular formats,
numbers in arbitrary bases, numbers with metric and computation suffixes, and Roman numerals.
Eventually, the language was generalized to recognize and work with different variable types, including
integer, real, complex, boolean, character, string and file types. This led to a preoccupation with adding
predefined mathematical, boolean, and string functions.

Recent additions to mle have included full programming language capabilities. The language was largely
modeled after Pascal, with some major differences. Firgt, | jettisoned most punctuation—those pesky
semicolons that separate statements, and the commas and semicolons that separate lists of arguments. In
mle, commas are always optional where they make sense. Sometimes they are helpful for appearance or to
separate an argument beginning with a negative sign [so that (a, -b) istreated as two arguments and not the
algebraic expression (a—b)].

In an important way, the mle programming language breaks sacred rules from the halls of Computer
Science: variables can be automatically declared when first encountered in an assignment statement. The
pitfalls of permitting this, in my opinion, are offset by ease of usein a statistical programming language.
Formal declarations are intimidating to the occasional programmer (although | insist on writing the mle
interpreter in alanguage that strictly enforces variable declaration). The suite of programming features was
completed with the addition of user-defined procedures and functions.

Currently, mle is embodied as about 25,000 lines of Pascal. Earlier DOS versions of the mle interpreter were
compiled in Borland Pascal version 7. | till use the Borland environment for most devel opment and
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debugging. The most recent release is compiled using the Free Pascal Compiler, FPC (Van Canneyt,
2000), which benchmarks at three to six time faster than the Borland compiler, with dightly smaller code
size. FPC has also relaxed the small data set limitation as data variables and arrays can now be allocated
larger than 64 Ki. With FPC, | can now release versions for Linux (ELF binaries), Windows
95/98/2000/NT, and, in the off chance that there is demand, OS/2, FreeBSD, Solaris/Intel, Commodore
Amiga, and Atari ST. The Unix version of mle has traditionally been Solaris for the Sun Sparc architecture.
This version was created by trandating Pascal into ¢ using the p2c trandator (Gillespie 1989), and then
compiling the result with ac compiler. An old version of mle (2.0.10) is still available for Solaris/Sparc, but
| have made the agonizing decision to restrict future development to architectures supported by FPC.

For the first-time user of mle, | would like to offer this encouragement. Many of the uninitiated find the
ideas behind maximum likelihood estimation completely foreign. Y et, the principles, once grasped, are
utterly straightforward and fundamental. A Zen-like attitude really helps—empty your mind of traditional
statistical teachings. Learning the mle language for doing likelihood estimation essentially involves
thinking about the likelihood of an observation, and specifying the likelihood for that observation in away
that is useful to the computer. Once you begin thinking in this mindset, the rest is straightforward hard
work.

Many people have contributed their ideas, insights, criticisms, and bug reports. Other's have given me time
or space for development, datasets, interesting analytical challenges, or have given of hisor her timein
reading or testing. | thank Ken Bennett, Adam Connor, Henry Harpending, Dennis Hogan, Robert E.
Jones, George Kephart, Goeff Kushnick, Lyle Konigsberg, Arindam Mukherjee, Kathleen O'Connor, Paul
Riggs, David Steven, Bethany Usher, Kenneth Weiss, and James Wood. Their encouragement and interest
are deeply appreciated.

| suspect that few software manuals come complete with dedications. But, it iswith great pleasure |
dedicate this manual to my undergraduate advisor, the late Dr. Robert E. Miller. Dr. Miller was an
anthropologist, a South Asianist, afuturists, and an ardent advocate of systems thinking. He taught with an
enthusiasm that was both infectious and inspiring. | suspect that my career as an anthropol ogist has been
motivated (subconscioudly) by the words that ended a number of our philosophical debates, “Darryl, you
simply can’t quantify love!” If Dr. Miller’s conjecture is ever disproven, | am sure that likelihood will
have played a pivotal role.
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Chapter 1
| ntroduction to mle

mle is asimple programming language for building and estimating parameters of likelihood models.
The language was originaly intended for building and estimating the parameters of surviva
models, but it has evolved to be general enough to estimate parameters for many other types of
likelihood models. Indeed, the language attempts to be a genera-purpose tool for likelihood
estimation.

This chapter provides an overview of mle. The basic concepts of the programming language are
introduced and some examples are given. Additiona examples of mle programs and program
fragments are sprinkled throughout this chapter, the rest of this User’s manual and the Reference
manual.

The mechanics of running mle from DOS or Unix is given in Chapter 2. Formal descriptions of the
mle programming language are saved for later chapters. Another later chapter is devoted to
examples of different type of likelihood models.

Preliminaries

This manual gives only a superficia treatment of topics like probability theory, probability models,
stochastic modeling, and maximum likelihood estimation. 1n order to write mle programs, you will
need a basic understanding of these topics. Some helpful, generally applied, introductions to
dtatistical modeling and maximum likelihood estimation can be found in Burnham and Anderson
(1998), Cullen and Frey (1999), Edwards (1972), Hilborn and Mangel (1997), Holman and Jones
(1998), King (1998), Nelson (1982), Morgan (2000), Pickles (1985), Royall (1999) and Wood et al.
(1992). Guittorp (1995) and Morgan (2000) give accessible introduction to stochastic modeling.

Programs written in mle are, in many respects, similar to those written in SAS, S+, SPSS, BMDP, or
other datistical programming languages. The language consists of keywords like MODEL, END,
DATA, and so on. Like al languages, mle has rules of syntax that must be drictly followed to
produce a valid program. The resulting mle program is trandated into actions (like parameter
estimation) by the mle interpreter.*

Themle interpreter typically works with three files: the mle program file, the data file, and the output
file. The next three sections discuss these files in more detail.

! Notice that mle has two distinct meani ngsin this document. First, it is a programming language for building likelihoods described herein.
Second, it is the name of the computer program that interprets the language and finds maximum likelihood estimates of model

parameters.
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The Program File

The program file contains a program written in the mle programming language. The first line of this
file begins with the word M_E and the program ends with a matching END. The program—consisting
of aset of zero or more statements—falls between the M_E and the END.

Most programs will have statements that name the data file and the output file, a DATA statement
describing how to read (and possibly transform) observations from a data file, and specifications of
one or more likelihood models along with parameters to find. Parameter estimates are then found
by an iterative search that maximizes the likelihood given a set of observations. The resulting
parameter estimates are then written to the outpuit file.

The mle program file is created as an ordinary text file using ailmost any editor. Y ou can create and
edit the mle program using Notepad (in Windows), the EDIT command (in DOS), v, pico, or Emacs
(in Unix), or any other editor that will read and write afile as ASCII text. Word processors, such as
Microsoft MSWord, can be used as well, but you must remember to save your work using the "text
(with line breaks)" option.

The Data File

The data file contains lines of observations. The observations are read, and perhaps transformed,
when the mle program isrun. The observations are then used with the likelihood function (specified
in the mle program file) to find parameter estimates. Data files are standard ASCII text files.
Typically, one line in the file represents one observation (although a single observation can span
more than one line). Within each observation is a series of fields that are separated by spaces, tabs,
commeas, or some other user-specified delimiter. Numeric fields can be read into mle variables.

The Output File

The output file is where results are usually written. The name of the output file is specified in the
mle program file. The program file aso specifies what kind of result will be written to the output
file, and how much of the details will be included.

You can aso specify that mle write partial results and messages to the screen (or standard output as
itiscaled). Thisishepful for monitoring progress while estimation is taking place.

Skeleton of an mle Program

An mle program begins with the word M_.E and ends with a matching END. A typical program
includes four types of statements between the M_E and END.

A DATA statement describes the format of the input data file, and provides smple data
transformations and mechanisms to drop observations.

A MoDEL statement defines the likelihood function along with the parameters to be estimated.
A second part of each MODEL statement contains the keyword RUN that specifies how the
model is to be estimated.

Assignment statements define variables and change the values of the variables, including
some that affect the behavior of the DATA and MODEL statements.
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Procedure statements, like DATAFILE() and OUTFILE(), take a list of arguments and
performs some predefined action. DATAFI LE(), for example, names and opens up the file
read in by the DATA statement.

The following code fragment shows the skeleton of atypical mle program. The first two statements
are procedure cals that define the data file and the output file. The DATA statement comes next,
followed by aMoDEL statement. Omitted sections of code are specified <like this>.

ME
DATAFI LE("nmydatafile.dat") {for exanple}
OQUTFI LE("myoutfile.out")
TITLE = "..."
MAXI TER = 100
DATA
<Dat a specification>
END
MODEL
<Expr essi on>
RUN
<Run specification>
END
END

Figure 1 is an example of an mle program that estimates the parameters of a likelihood. The
problem at hand is to estimate the distribution of gestational ages at birth given for the observations
shown in Figure 2. These observations are counts of gestational ages at hirth that were (mostly)
recorded two within one week. We will use survival analysis to estimate the parameters (mand s)
for the best-fitting normal distribution.

Thisis an example of survival analysis with interval censored observations. In this example, each
line in the data file represents multiple observations. The number of observations on each lineis
given as frequencies within each interval.
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ME
TITLE = "Di stribution of gestational age" {Data are from Hames
and Trel oar (1970) Am J Pub
Heal th 60: 1496- 1505}
MAXI TER = 50 {Maxi mum nunber of iterations allowed}
EPSI LON = 0. 0000001 {Criterion for convergence of the nodel}
DATAFI LE( " hammes. dat ") {Opens the input data file}
OUTFI LE( " hammes. out ") {Opens the output file}

DATA {This is the data statenent}
{Data are interval censored and are
in units of days as per Table 2 of Hammes and Trel oar}

t open FIELD 1 {tine at opening the interval}
tcl ose FI ELD 2 {tinme at closing the interval}
frequency FlIELD 3 {Frequency from Menstrual History Progran}
END {dat a}
MODEL
DATA {function to |l oop through all observations}
PDF NORMAL(t open, tcl ose) {Define the paranetric distribution}
PARAM nmean LON = 100 HI GH = 400 START = 270 END
PARAM st dev LON= 0.1 HGH = 100 START = 20 END
END {pdf}
END {dat a}
RUN
FULL {run the nodel with both paraneters free}
END {nodel }
END {nie}

Figure 1. Programto estimate parameters for the distribution of gestational ages at birth.

Program Constants and Variables

Comments

A number of variables and constants (e.g. MAXI TER) are pre-defined in mle. Frequently, you will
want to change the value of these variablesin order to fine tune the behavior of the program, change
the type of output produced, etc. MAXI TER is a pre-defined variable that changes the maximum
number of iterations permitted in estimating the moddl parameters. In this example, the value of
MAXI TERis changed from the default value of 100 to amaximum of 50.

The TI TLE variable is also assigned to a string variable (i.e. a series of characters). The TI TLE
variable is smply written to the output file. The variable EPSI LON isassigned avalue aswell. This
variable determines how precisaly the parameters are to be found: normal convergence occurs when
the change in the log-likelihood from one iteration to the next falls below this vaue.

Comments can be placed throughout the body of a program by enclosing the text in curly brackets{
and }. Likewise, the curly brackets can be used to effectively remove large sections of code. A
second way to comment out all or part of asingle lineisto put a pound sign (#) at the point where
you want the comment to begin. mle ignoresall text from the pound sign to the end of theline.

Reading Data

The data file called hammes. dat , is shown in Figure 2. Datafiles are standard ASCI|I text files of
numbers. The numbers are organized into a series of fields. Each field is usually delimited by
white space (tabs or spaces as used in Figure 2) or commas. Y ou can specify your own list of field
delimiters, for example, if your data are separated by colons or semicolons. This is done by
changing the value of the variable called DELI M TERS (see the DATA chapter for details).

The datain Figure 2 are structured as three columns of numbers. Thefirst field is the last observed
gestational age prior to birth. The second field is the observed gestational age after a birth was

4
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observed. These two times form an interva within which the birth occurred (i.e. the birth occurred
at some unknown time within this interval). The third field is the number of births that were
observed within the interval.

0

141
197
218
225
232
239
246
253
260
267
274
281
288
295
302
309
316
323
329

141 0
196 9
217 11
224 2
231 12
238 17
245 22
252 40
259 69
266 134
273 324
280 653
287 724
294 382
301 125
308 47
315 26
322 10
329 1
-1 6

Figure 2. Datafileread by the programin Figure 1. Column 1 isthe minimum gestational age in a category, column 2 is the maximum
gestational agein a category. Together they define a birth weight interval. The -1 in the last row denotes an open birth weight interval
(i.e. aweight of 329+). Column 3 isthe frequency of birthsin each birth weight interval.

The DATA statement given in Figure 1 specifies how the datafile isto be read. The three variables,
t open, t cl ose, and fr equency that come between DATA and its matching END are read in for each
observation (i.e. each line in Figure 2). In fact, each of these variables will be created as an array,
each having twenty elements, each element corresponding to one line in the data file.

The variable name f r equency is special. mle treats variables with the name f r equency (and freq
as well) as a count of repeated observations. The likelihood is "adjusted” for the number of
observations so that the contribution will be the same as if multiple identical observations been read
in from thefile.

Likelihood M odéel

Model .

@

The next part of the program is the MoDEL statement. The MODEL statement consists of two parts: an
expression that comes between the MoDEL and RUN that defines the likelihood, and a list of one or
more specifications between the RUN and END, each giving some details of how parameters are to be
estimated.

Run Part of the Model Statement
Within the MODEL. . . RUN part of the statement is a single function that definesthe likelihood. 1nthis
example, we specify the likelihood:

N
L(ms) = O [Sltopen IMS) - Sltgoss IMS)
i=1

]ﬂamaxm

where N is the number of age categories (i.e. the number of lines of observations), frequency isthe
frequency of observations per age category, §() is a survival density function for the normal
distribution, topen and tyese are the two times read from the data file into the variables t open and
t cl ose, and mand s are the parameters that will be found by maximizing the likelihood.

The first part of the likelihood expression is a DATA. . . END function. This function specifies that

observations are to be "fed" to the likelihood one at atime, corresponding to the product (O) shown

in the likelihood above. Do not confuse the DATA function (found within the MODEL statement) with

the DATA statement (discussed above). The DATA function loops through al observations that were
5
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previously read in by the DATA statement. Within the DATA. . . END function comes the rest of the
likelihood, which is shown to the right of the O in likelihood (1).

Within the DATA. . . END function is the individual likelihood. As parameter estimates are being
found, the individua likelihood is evaluated for each observation, and the log of that likelihood is
taken. Each individua loglikelihood is multiplied by the f r equency of the current observation and
added to the total likelihood.

In short, the DATA. . . END function takes a series of observations and an expression for an individual
likelihood. It computes and returns the total 1og-loglikelihood.

The individua likelihood for this example (specified within the DATA function) consists of a PDF
function. A NoRwAL distribution is specified with two arguments (t open, tcl ose). These times
denote the time interval within which births occur. Because the arguments (which were read from
column 1 and 2 of the data file) differ from each other, the PDF function returns the area under a
normal PDF between t open, and t cl ose. The area corresponds to the probability of observing a
birth within that interval. If, instead, we had specified one argument to the PDF function (or if
t open was egual to t cl ose), the PDF function would have returned the probability density at that
point, corresponding to exact ages at birth.

Within the PDF NORVAL function call are two PARAMfunctions. These functions define parameters
that will be changed in order to maximize the likelihood. Naturally, you can specify limits, starting
values, etc. for these parameters.

Run. . . End Part of the Model Statement

Between the RUN and the END part of a MoDEL statement comes a list specifying how to run the
model. The full model is run by specifying FULL; all parameters defined in the model will be
estimated. Various reduced forms of the model can be run by specifying a REDUCE command. More
details on this are given below and in alater chapter.
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Di stribution of gestational age
Paraneter file: hammes.nle
Input data file name: hames. dat
Qutput file name: hammes. out

3 variabl es read

18 lines read fromfile hames. dat
18 (bservations kept and O observations dropped for each variable

ROW t open tcl ose frequency
MEAN  258.722222 253.555556 144.111111
VAR 5338. 56536 6032.37908 51267.3987
STDEV 73.0654868 77.6683918 226.423052
M N 0. 00000000 -1.0000000 0.00000000
MAX 329. 000000 329.000000 724.000000
Mbdel 1 Run 1 : Distribution of gestational age

METHOD = DI RECT

Maxi mum | terations MAXI TER = 50

Maxi mum function eval uati ons MAXEVALS = 100000

Conver gence at EPSILON = 0. 0000001000

LogLi kel i hood: -6459.238 AlIC. 12922.476 Del (LL): 0.0000000000
Iterations: 3 Function evaluations: 146 Converged normally

PDF NORMAL with 2 free paraneters

Name Form Estimat e Std Error t agai nst
nmean 279.1204377949 0. 370066272387 754.244465444 0.0
st dev 23.02007362180 0. 365987430388 62. 8985361530 0.0

Vari ance/ covari ance matrix
0. 13694904596 -0.0586570132
-0.0586570132 0.13394679920

Li kel i hood CI Results
Log Likelihood = -5915.1352 after 4 iterations. Delta(LL)=0.00000000
PDF NORMAL with 2 free paraneters

Name Form Estimate Lower Cl Upper CI
mean 279. 7654969512 279. 1863052702 280. 3447034638
st dev 13. 04605798312 12. 64289497881 13. 47052893809

Figure 3. Output generated by the programin Figure 1.

The mle program is run by typing the line m e hamres. m e a the command line prompt (see
Chapter 2 for details). Theresultswritten to the output file are shown in Figure 3. Thefirst section
of the output provides summary statistics for each of the variables read from the data file. The
parameter estimates are given in two ways: once with estimated standard errors (including at-test of
the hypothesis that the estimate is zero) and once with likelihood confidence intervals.

A Note About Parameters

The ultimate goa of putting together a likelihood model is to estimate one or more parameters of
the moddl. In mle, the PARAM . . END function defines parameters to be estimated. This use of the
word "parameter” can be confusing, so lets clear up the issue. In any mathematical language, we
can refer to afunction's arguments as "parameters’. For example, in the statement a = sin(b), sin()
is afunction with one "parameter”, b. This manua will avoid the word "parameter” in this general
sense.  Ingtead, the word argument will be used to refer to the arguments of a function in this
general sense. So, the sin() function has the argument b.

As used in this manual, the word parameter in mle refers to an unknown quantity of a probability
model whose value is to be estimated.?  Parameters, in this sense, are frequently arguments to
functions, but not all arguments are parameters.

2 A more accurate definition of a parameter is an unknown quantity whose distribution of valuesisto be estimated. The standard errors or
confidence intervals provide information about the distribution of possible parameter values.

7
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Parameters are sometimes the constants defined within a function. For example, in the equation for
the dope of aline, y = mx + b, we would call mand b the parameters of the equation, and x the
argument. Thisis clearer when we rewrite the equation for adope asf(x | m, b) = mx + b, which is
read, "f of xgivenmandb. ..." Thisfunction has a single argument x, and the parameters are m
and b. Typicaly a series of x values are known, and the goal is to find the best values for
parametersmand b. By "best”, of course, we mean the best in some datistical sense. In mle, mand
b would be called parameters if and only if they were quantities to be estimated.

The one exception to this usage of parameter is for the built-in probability density functionsin mle,
where we refer to intrinsic parameters. For example, the normal distribution, f(tjm s), has two
intrinsic parameters, mand s. Typically we wish to estimate these intrinsic parameters. If so, the
intrinsic parameters mand s are also model parameters.

As described later, most probability density functions take four argument for t. Combinations of
these arguments allow you to specify

The probability density function (1 argument, or 2 identical arguments).

The cumulative density function (2 arguments: the 1st argument £ minimum range of the
PDF).

The survival density function (2 arguments: the 2nd argument is 3 maximum range, or the
2nd argument < the 1st argument).

An area under the probability density function (2 arguments within the range of the PDF).
The hazard function (3 identical arguments).

Any of the above with right and left truncation of the distribution. (The 3rd and 4th
arguments define the left and right truncation points).

Thus, in the syntax of mle , there is a natural delineation between arguments and intrinsic
parameters. Consider the following function call: PDF NORMAL(0, 4, 0, 40) 10, 20 END. This
function call has the four "time" arguments O, 4, 0, and 40. Together they specify a normal
distribution truncated over the range 0 and 40, with the area between 0 and 4 returned. The two
intrinsic parameters of the norma are passed as m= 10 and s = 20. There are no mode
"parameters’ in this example, smply because there are no PARAMfunctions specified.

Writing mle Programs

This section gives additional details needed to write mle programs. The smplest way to create a
new mle program is to modify aworking program (like that given in Figure 1) to make it do the task
at hand.

Style Conventions

mle is a free format language. That is, a program can be written on a single line, or spaced across
multiple lines. Indenting, spacing within a line, and spacing across lines is never done for the
computer. Rather, the use of indentation is solely for the benefit of human readers.
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Good programming practices can greatly aid in reading, understanding and debugging a program.
Good formatting consists of selecting and consistently using indentation to reflect logical levels and
blocks within a program. Comments are indispensable for making a program understandable.

Throughout this manual, mle programs use indentation to show, for example, the matching MoDEL
and END. This manual uses two spaces to indent each natural "level". Keywords that are a part of
mle are always upper-case letters and user-defined words are lower-case (this is not required since
mle is not case senditive). Finaly, each matching END is usually followed by a comment denoting
what key-word the END matches. This last convention is helpful in complex programs that involve
many nested functions.

Typographic Conventions

Typographic conventions are used in this manual to distinguish between mle language components
and English text.

Keywordsin mle are shown in a fixed-pitch font as uppercase words. MODEL END, DATA END,
and DEFAUL TOUTNAME.

User-defined variables and identifiers are shown in a fixed-pitch font as lowercase words:. y
= slope + intercept*x.

Within programs, items placed in < and > and italicized are used to denote an omitted or
unspecified parts of the code. For example, <Statenments> denotes a list of program
statements that have been omitted. Other commonly used phrases are <expr > to denote an
expression, <v> to denote an identifier, <rexpr> to denote an expression of type REAL,
<i expr> to denote an | NTEGER expression, <bexpr> to denote a BOOLEAN expression,
<sexpr> to denote a string expression. Here is an example. WH LE <bexpr> DO
<st at ement s> END.

When syntax diagrams are shown, items shown within [] are optional arguments. Note that
the brackets are italicized. Un-italicized [] are part of the language (used for arrays). For
example, WRI TELN] ( [fexpr[,]] <expr> [[,] <expr> ...] ) ] shows that the
VRl TELN statements has an optiona set of arguments enclosed within parenthesis. The first
argument can optionally be a file expression. At least one expression must be enclosed
within the parentheses. Commas separating the expressions are optional.

Ellipses (.. .) are used in two ways. First, they denote that a pattern can be repeated an
unlimited number of times. Hence, in the previous point, the ellipses indicate that an
unlimited number of expressions can be placed within the WRl TELN statement. The second
use denotes that parts of a statement or function are not shown. For example, MODEL. . . END
uses elipsesin this way.

A list of dternatives are separated by the vertical bar (| ). For example, the DATA function
has a series of optional forms specified this way:

DATA [ FORM = SUMLL | SUMMATION | SUM | PRODUCT | PROD ]
<expr>
END
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What is a Statement?

Every program begins with the word MLE and ends with the matching word END. Any text after the
final ENDisignored. Between the M_E and its matching END comes the body of an mle program asa
series of statements. The most basic outline of an mle program looks like this:

M_LE
<Statement 1>
<St atement 2>
<St atement 3>

END

A dtatement is a single complete instruction. When a program is run, each statement is executed in
turn. Here are some things statements do:

Print messages to the screen (WRI TELN statement)

Create data sets (DATA statement)

Find maximum likelihood estimates (MODEL statement)

Define variables (assignment statement)

Assign or change the value of a variable (assignment statement)

Define adatafile (acall to the DATAFI LE procedure)

Loop through a series of statements (FOR, WHI LE, Or REPEAT statements)
Conditionally execute one series of statements over of another (1 F statement)
Create user-defined procedures or functions (PROCEDURE Or FUNCTI ON statements)

Call a user-defined procedure (procedure call)

Each type of statement is briefly discussed below.

Assignment Statement

Assignment statement serves two purposes. The primary purposeisto assign valuesto variables. A
secondary purpose is to define new variables. A great number of pre-defined variables are
available to change or fine-tune the behavior of mle, and the values of these variables can be
changed with assignment statements.

Assignment statements may be placed anywhere within the body of the mle program—that is,
between the MLE and its matching END.®> Some examples are;

3 Normally assignment statements do not occur withinthe DATA. . . ENDand MODEL. . . END statements. Assignment-like statements
occur within the DATA statement for transformations. Additionally, the PREASSI GN and POSTASSI GNfunctions allow alist of one or
more assignment (or other) statementsto be used. Finally, the PARAM . . END statement uses assignment-like statements, like to define
start, highest, and lowest values of parameters.

10
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MAXI TER = 100

{Set the maxi mum nunber of iterations}

EPSI LON = 0. 0000001 {Set the criterion for convergence}
PRI NT_OBS = TRUE {print all observations after transformations}

The smplest assignment statement is generically defined in this way: <variable name> =
<expression>. The <variable name> name can be a preexisting variable (e.g. MAXI TER, EPSI LON),
or a user-defined variable. The <expression> that follows the equal sign can be a simple constant,
another variable, or a mathematical expression. Details of the syntax and functions that can be used
to make up expressions are given in a later chapter. The following are some examples of
assignment statements using expressions:

pie P
bm _nax

t ot al

| ast _age
area

one

wei ght _nmax/ hei ght _max”2

el _count + e2_count + e3_count + e4_count

I F linear THEN max_age ELSE SQRT(nax_age) END

PDF NORMAL(-2, 2) 1, 3 END {gives area from-2 to 2 for N(1, 3)}
SIN(total )*2 + COS(total )"2

Variable Names

You can create new variables for the purpose of holding values. A few rules must be observed for
naming variable (and other identifiers, such as user-defined procedure and function names).

A variable name must begin with aletter.

After the initial letter, any combination of letters, numbers, the underscore character () and
the period (.) character may be embedded in the name. Punctuation other than a period and
underscore character is not permitted.

Variable names in mle are insensitive to case: the variable G&G is the same as ggg, Ggg, and
9Qg.

Variable names cannot be identical to mle keywords, such as PROCEDURE, DATA, FCR, €iC.
Also, a variable cannot take on the name of an intrinsic procedure (READLN, SEED, OUTFI LE,
etc.).

Variable names can be the same as an intrinsic function. You are discouraged from doing
this—it can become extremely confusing. If you do define variable with the same name as a
function, the function will no longer be available for use by the program.

Here are some examples of valid variable names:

11




mle 2.1 manua

> o
o
=N e

a23 =1
nmeasure. | eft

test = 2

school nunber

1

a =
a ....... =3
sin =4

a...b =3

O 123E23 = 2
1423 =4

{identical identifier: ais the sane as A}

a_long_variable_name = 1

1

Uni t ed_St at es. W sconsi n. Madi son. | ongi tude = 40. 1388333

{ Here are some | egal names that are of questionable value }

{legal, if odd, nane}

{ditto}

{bad name -- could be confused with the sin() function}
{confusing name. Looks |ike a subrange of some sort}
{confusing legal name. The |eading oh |ooks |like a zero}
{confusing |l egal name. The leading el |looks like a 1}

Here are sonme exanpl es of inproper variable nanes:
{Bad vari abl e nanes}

{TEST is an m e reserve word}

{MODEL is an m e reserve word}
{WRITELN is an nle intrinsic procedure}
{doesn't begin with a letter}

{doesn't begin with a letter}

{enbedded punctuati on}

{enbedded space}

Variable Types

Most examples so far have shown assignments using real numbers and integers. There are, in fact,
seven different types supported by mle: REAL, | NTEGER, COVPLEX, BOCLEAN, STRING CHAR
(character), and FI LE.

A variable'stype refers to the domain of values that the variable can take on. For example, | NTEGER
variables can take on a limited range of integer values, BOOLEAN variables can only take on the
values TRUE and FALSE. Variables can be defined for each of the seven types; expressions always
take on one of these types. Hereis an explanation of each:

Real variables represent the continuous real number line* Many mathematical functions
like GAMVA() , BETA(), and BESSELI () return real values, and so the variable to which these
functions are assigned must be type REAL aswell. Integer variables and functions can always
be assigned to real variables—they are automatically converted to real values on assignment.
On the other hand, you must use the ROUND() or TRUNC() functions to convert area number
into an integer value for assignment to an integer varuable.

I nteger variables take on whole number values over a machine-dependent range of humbers.
For most versions of mle this range is [-2,147,483,648 to 2,147,483,647]. Arguments to
some functions require | NTEGER type variables, like 1 DI V() .

Complex variables include areal number part and an imaginary part. Complex numbers are
specified by expressionssuch as 1. 2 + 0. 4i . Most mathematical functions are defined for
complex types. For example, SQRT(-1 + 0i) returns 0. 000+1. 000i . There is no natura
ordering for complex variables, so that the comparisons <, <=, >, and >= are undefined.

Boolean variables take on one of two states: TRUE or FALSE. No other value is allowed or
recognized. Boolean expressions are frequently used to test conditions. For example, the
IF...THEN .. ELSE. .. END function evauates the first expression (between the | F and THEN) to

“Be aware, however, that the computer representation for real numbersis not strictly continuous. Occasionally difficulties arise with
round-off error because of the discrete computer representation of real numbers.

12
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either TRUE or FALSE and decides which of the remaining two expressions will be evaluated and
returned. An example of aboolean expressionisthis: 3.5 == 4. 5, which returns the value FALSE.

String variables hold a sequence of character constants. A string written as a constant is a
sequence of characters, enclosed within quotes (). The single quote character (') can be
used as well for strings greater than one character (see Character below for an explanation).
String variables are typically used to assign file names, titles, etc. Some functions take on
string (or character) variables, other functions return strings. For example, the CONCAT(s1,

s2) function will add together two string variables and return it as alonger string.

Character variables take on the value of a single character. When written as a constant in a
program, character constants consist of a single character enclosed within single quotes ().
Character constants are not typically used within a user's program, but are available if
needed. Usually, character constants and variables can be used anywhere string variables are
allowed.

Filevariables are used to reference files. Most of the time, file variables are transparent, and
you need not explicitly define or manipulate file variables. This is because mle defines and
does the bookkeeping for the data file, the output file, the plot file, and the screen (or
standard output) file. File variables can be created should you wish to create and manipulate
other files.

When a variable is first used in an assignment statement, its type will be determined by the type
returned from the expression on the right-hand side. Here are some examples to illustrate the point:

large_data = N_OBS > 5000 {large_data will be type BOOLEAN}
subtitle = "Analysis: " + DEFAULTOUTNAME {subtitle will be type STRI NG

ni ne =3* 3.0 {nine will be REAL}

five =2+ 3 {five will be | NTEGER}

You can explicitly define the type for a variable when it is first referenced in an assignment
statement. Here are some examples:

c:STRING = 'x' {c would default to CHAR, but is explicitly defined as a STRI NG vari abl e}
nine:REAL = 3 * 3 {nine would default to INTEGER, but will be a REAL vari abl e}

t: BOOLEAN = TRUE {t is explicitly declared as Bool ean, although this is the default}

ang: REAL = SIN(2*pi) {ang is explicitly declared as real, although this is the default}

Array Variables

Multidimensional arrays and matrices of all types are supported by mle. Array variables must be
explicitly defined the first time the variable is mentioned in the program. The format is <var> :

<type>[ <minl> To<max1>,<min2> To<max2>,. . . ]. Someexamplesof declarations are:
s : STRING 1 TO 5] {Defines a one-di mensional array of strings}
r : REAL[1 TO 10, 1 TO 10] {Defines a 10 x 10 matrix}
b : BOOLEANJO TO 1, 0 TO 1, 0 TO 1] {Defines a 3 dinensional BOOLEAN array}
Values within an array variable are accessed using brackets to denote subscripts. The following
example creates an array of radian angles for integral degree angles, and prints out a table of sine
values.
r : REAL[O TO 359]
FORi = 0 TO 359 DO
r[i] = DTOR(i) {assignment to elenment i of array r}
witeln("Sin(" i ") =" SINr[i]) ) {access the ith el ement of array r}
END

13
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Initialized Array Variables

Arrays can be initialized in the same time they are defined. There are three ways to initialize an
array. First, the value of aconstant can be assigned to the array. Examples are;

s : STRRN1 TO5] ="" {Defines s and initializes all values to an enpty string}
r : REAL[1 TO 10, 1 TO 10] = 0 {Defines a 10 x 10 natrix and initializes everything to 0}

An array can be used to initialize another array, provided that the arrays are identically defined.
That is, they must have the same number of subscripts and the same subscript ranges. Hereis an
example:

a : REAL[1 TO 20]

FOR x =1 TO5 DO
az2[x] = x

END {for}

b : REAL[1 TO 5] = a2

Arrays can aso beinitialized with a list of values, one per element. A specia function is defined
that that is enclosed within brackets ([ 1), and within the function, brackets are used to nest the
valuesto different levels. Hereisan example:

a: REAL[1 TOS5, 1 TO2] = [[1.1 1.2]
[2.1 2.2]
[3.1 3.2]
[4.1 4.2]
[5.1 5.2]]
FOR x =1 TO5 DO
FORy =1 TO 2 DO
WRITE(" a[" x "'y '"]=" a[x, Vy])
END {for vy}
WRI TELN
END {for x}

Here are the results of running this example:

a[ 1, 1] =1. 1000000000 a[ 1, 2] =1. 2000000000
a[ 2, 1] =2. 1000000000 a[ 2, 2] =2. 2000000000
a[ 3, 1] =3. 1000000000 a[ 3, 2] =3. 2000000000
a[ 4, 1] =4. 1000000000 a[ 4, 2] =4. 2000000000
a[ 5, 1] =5. 1000000000 a[ 5, 2] =5. 2000000000

Data Statement

Most mle programsinclude aDATA. . . END statement. The purpose of a DATA statement isto create a
series of observations, which will be used to compute likelihoods. The DATA. .. END statement
defines the format of the data file, defines variables to be read in, provides a way of transforming
variables, and provides a way of selecting and dropping observations. Only an overview of the
DATA statement is given here. Details are given in chapter three.

Formats for the DATA statement are:

DATA
<variabl e> FIELD x {reads variable fromfield>
<variable> FIELD x LINE y {multiline version}
<variable> FIELD x [LINE y] = <expr> {reads and transforns}
<variable> FIELD x [LINE y] [DROPI F <expr> | KEEPIF <expr> ...] {generic fromw th Fl ELD}
<variabl e> = <expr> {creates from an expressions}
<variable> = <expr> [DROPIF <expr> | KEEPIF <expr> ...] {creates and conditionally keeps}

<variable> [FIELD x [LINE y]] = <expr> [DROPIF <expr> | KEEPIF <expr> ...]

END

A description of each field follows:

14
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<variable> is the name of the variable being defined. The variable must not already exist.
All variables created by the DATA statement are defined to be type real. Integer values will
be read in from the data file and converted to real numbers. Text strings can exist within a
fields of atext file, but must not be assigned to avariable.

FI ELD refers to which column within an input file a variable is found in. In the hamres. dat
file, four fields (or columns) existed in the input file. The field specifier must be a positive
integer constant.

LI NE provides a way to read observations spread across multiple linesin the datafile. When
the LI NE keyword is used, the maximum number of lines specified (e.g. 2 for LI NE 2) is
taken as the number of lines for all observations. |f observations each take but one line, the
statement LI NE 1 may be dropped—one line per observation is assumed as a default. The
line specifier must be a positive integer constant.

<= expr > defines a data transformation expression. The expression may refer to the variable
being read, or any variables defined prior to the current variable. Theline newar FIELD 3
= newar”2 will read newar from field three of the data file; the value of newar is then
squared and assigned back to newvar .

DROPI F provides a mechanism to drop observations. The expression following DROPI F will
evaluate to TRUE or FALSE. If TRUE, the observation is dropped. The line newar FIELD 3
DROPI F newar <= 0 will drop all observations when the variable in field three is not
positive.

KEEPI F provides another mechanism to drop observations. The expression following KEEPI F
must evaluate to TRUE or FALSE. If FALSE, the observation is dropped (that is, not kept). The
line newar FIELD 3 KEEPI F newar > 0 will drop all observations for which the variable
in field three is not positive. KEEPI F and DROPI F expressions can be far more complex, but
must return TRUE Or FALSE.

Usuadly, data are read from a data file. The DATAFI LE() procedure defines and opens this file.
Hereisan example:

DATAFI LE("test . dat ")

DATA
o_tinme FIELD 1 = o_tinme*365. 25
DROPI F (o_tinme > 1000)
c_tinme FIELD 3 = 1F c_tinme = -1 THEN c_tinme ELSE c_tine*365.25 END
hei ght FIELD 6 DROPIF height <=0
hei ght sq = hei ght”"2
m ssing FIELD 4 DROPIF missing_data <> 1
frequency FIELD 5 DROPIF frequency <= 0
END

The variable names FREQUENCY or FREQ are taken as frequencies for each observation. (If both
variable names are used, FREQUENCY is taken as the frequency variable). The frequency of each
observation is used to compute a proper likelihood asif multiple lines of identical observations were
read. If the FREQUENCY or FREQ keywords are missing, a frequency of one is assumed for each
observation.

The DATA statement is used in conjunction with the DATA function. Within a MODEL statement, you
can use the DATA function to evaluate the likelihood, one observation at atime. Do not be confused
by the fact that there is both a DATA statement and a DATA function. They complement each other.
Simply remember that a DATA statement is used as a statement, and there is typically one such
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statement per program. The DATA function can only be used as part of an expression—typically
only within the likelihood expression of a MoDEL statement.

M odel Satement

The MODEL. . . RUN. . . END statement defines the underlying probability model used by mle, defines
the parameters to be found for the model, and defines constraints under which parameters are to be
estimated. Only an overview of the MODEL statement is given here. An entire chapter is devoted to
the MoDEL statement, including some details for specifying likelihoods.

The basic structure of the MODEL statement looks like this:

MODEL

RUN

END

<expr essi on>

<run specifications>

Between MODEL and RUN isa single expression that is the likelihood. Within the likelihood is one or
more PARAM . . END functions. These define the parameters, whose values will be found so that the
likelihood is maximized. One of the most important aspects of learning mle is the design and
construction of the expression for the likelihood.

A list of <run specifications> is given between the RUN and the END part of the MODEL statement, this
provides away of evaluating the full model aswell as a series of nested or reduced models. If all of
the parameters (defined by PARAM . . END functions) are to be found, a smple FULL command is
placed between the RUN and its matching END. Reduced models, where one or more parameters are
congtrained to a constant or another parameter, are specified as REDUCE followed with alist of one
or more "reductions’. For example, you might constrain a parameter called nean to be zero and
only alow the parameter called st dev to be found. Then you would put REDUCE nean = 0
between the RUN and the END.  Any number of REDUCE commands (along with one FULL) can be used
inasinglemodd. The various forms of the model will be evaluated in turn.

Intrinsic Procedures

Intrinsic procedures are predefined, single word statements that perform a specific task on a list of
zero or more arguments. When called, a procedure executes a series of actions using the arguments.
(Procedures do not return a value the way a function does). For example, the statement
DATAFI LE(" hanmmes. dat ") found in the earlier example defines and opens the file used by the DATA
statement. A list of all procedures, with examples, can be found in alater chapter. Here are some
example procedure statements:

SEED( 9734) {Seeds the random nunber generator}
HALT {stops a program fromrunning further}
WRI TELN("Fi nal value is ", total) {Wites text to the screen}

DATAFI LE( " hammes. dat ") {Defines and opens a data file}

OUTFI LE( " hammes. out ") {defines and opens an output file}

User-defined Procedures

mle provides capabilities for users-defined procedures (and functions). A procedureis asingle-word
command that takes alist of zero or more arguments; when called, a procedure executes a series of
statements and returns to the place whence called. User-defined procedures are something like
subroutines in FORTRAN; they are very similar to Pascal's user-defined procedures. User-defined
procedures must be understood as two components: the procedure definition and a call to the
procedure.

16
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A user-defined procedure must be defined prior to being invoked (called). By convention, user-
defined procedures (and functions) are usually placed near the beginning of the program. Hereisan
example of auser-defined procedure being defined and later called.

M.E
a: STRING = "Hello world"
PROCEDURE myproc (a: | NTEGER b: REAL c: STRI NG {Define the procedure here}
nmeg = " ais "
WRI TELN(" In nyproc: a =", a, " b=", b, "c=", ¢

IF a < 10 THEN
WRI TELN(msg "< 10")
a = a + ROUND(b)

ELSE
WRI TELN(nmsg "> 10 ")

END {if}

WRI TELN(" Exit myproc with a ="', a)
END {procedure} {End of user-defined procedure definition}
t =4
WRI TELN(' Cal | nyproc with t ="' t)
myproc(t, 4.2, a) {Here is a call to the user-defined procedure}
WRI TELN(' Back fromnyproc with t =" t)

END

The definition begins with the word PROCEDURE and ends with the corresponding END.  The word
following PROCEDURE is the name of the procedure, in this case nyproc. The nameisfollowed by a
list of O or more arguments that are formally defined—that is, a name and type must be specified for
each argument. In this example three arguments (a, b, and c¢) are defined. The argument names and
all of the variables defined within the procedure (like nsg) are "private" to the procedure. Names of
preexisting variables (like a) are not affected by and do not affect declarations outside of the
procedure.

The procedure definition does not actually do any (visible) work in a program. The work comes
when a procedure is caled, as in the line nyproc(t, 4.2, a). Once called, each argument is
evaluated and a copy of the result is assigned to the formal argument defined in the heading of the
procedure. The statements within the procedure are executed, and control is passed back to the
main program. Here are results from the sample program:

Call nyproc with 4
In nyproc: a =
ais <10
Exit myproc with a = 8

Back frommyproc witht =4

t =
4 b 4.2000000000 ¢ = Hello world

A careful examination reveals an interesting behavior in this example: the arguments passed from
outside the procedure are not affected by any manipulation within the procedure. Specificaly, t in
the call was not changed by the assignment to a in the procedure. The reason is that a copy of each
argument is passed to the procedure. This behavior prevents accidental side-effects (outside of the
procedure) resulting from manipulations within procedures. Additionally, this permits recursive
callsto a procedure (i.e. a procedure that calls itself).

Sometimes it is helpful to permit the procedure to change the variables back in the main program
(or cdling procedure). It is possible to pass a variable to a procedure so that its value can be
manipulated within the procedure. This is done by preceding the variable in the formal argument
list of the procedure by the name VAR. (Thismechanismisamost identical to variable argumentsin
Pascal and Modula.)) Suppose we rewrite the previous example by adding vAR before the formal
declaration of variable a:

PROCEDURE nyproc (VAR a: | NTEGER b: REAL c: STRI NG
msg =" ais "
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Now, any changes to variable a within the procedure will be reflected in changes to variable t
outside of the procedure.

Call nyproc with
In nyproc: a =
ais <10
Exit myproc with a = 8
Back frommyproc witht =8

4

t =
4 b 4.2000000000 ¢ = Hello world

Here are some other notes about user-defined procedures

VAR arguments require that variables be passed (instead of constants), since the variable may
be modified

Arrays can only be passed as VAR arguments

Procedures can be defined and called within a procedure (but will not be available outside
that procedure)

Procedures can "overwrite" the name of intrinsic procedures

User-defined Functions

mle provides capabilities for user-defined functions. A function is a singleword command that
takes alist of zero or more arguments, performs some operation, and returns a result. User-defined
functions in mle are very similar to Pascal's user-defined functions. They must be understood as
two components: the function definition and a call to the function.

A user-defined function must be defined prior to being caled. By convention, they are usudly
placed near the beginning of the program. Here is an example of a user-defined function being
defined and later used.

ME
FUNCTI ON i nt _power (a: REAL j: | NTEGER) : REAL
{ -- raises a to integer power j}
RETURN = 1.0

WH LE j > 0 DO
I F 1 SODD(j) THEN
RETURN = RETURN*a
END {if}
a = a*a

i j DIV 2
END {whil e}
END {int_power}

VRl TELN(
i nt _power (SQRT(4), 2), ' '
int_power(4.5, 2), "'
int_power (10/2, 3)
)

END

The definition begins with the word FUNCTI oN and ends with the corresponding END.  The word
following FUNCTI ONis the name of the function, in thiscasei nt _power . The nameisfollowed by a
list of O or more arguments that are formally defined—that is, a name and type must be specified for
each argument. In this example two arguments (a and j ) are defined. The argument names and all
of the variables defined within the function are "private" to that function.

The function declaration does not actually do any work in a program. The work comes when the
function is called, as in the WRl TELN line that calls the function. Once called, each argument is
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evaluated and a copy is assigned to the formal argument defined in the heading of the function. The
statements within the function are executed, and the result is passed back to the expression.

Within a function, the variable RETURN is automatically declared. RETURN can be used as an
ordinary variable. When the function exits, the value stored in RETURN is passed back to the calling
expresson. Hereiswhat this example produces:

4.0000000000 20. 250000000 125. 00000000

Here are some other notes about user -defined functions

Like procedures, VAR arguments can be defined
Arrays can only be passed as VAR arguments to user-defined functions

Functions and procedures can be defined and called within a function (but will not be
available outside that function)

User-defined functions can "overwrite" the name of intrinsic functions

BEGIN...END Statement

The BEG N. . . END statement provides a means of providing multiple statements in contexts where
only asingle statement isallowed. Theformat is

BEG N
<st at enent s>
END
The most important use for this statement is with the PREASSI GN. . . END and POSTASSI G\. . . END
functions discussed in a later chapter.
FOR Statement
The FOR statement provides a means of looping through statements. The formats are
FOR <v> = <expr> TO <expr> DO {form 1}
<st at enent s>
END
FOR <v> = <expr> TO <expr> STEP <expr> DO {form 2}
<st at enent s>
END
FOR <v> = <expr> TO <expr> STEPS <i expr> DO {form 3}
<st at enent s>
END
FOR <v> = <array> DO {form 4}
<st at enent s>
END

Form 1 isasmplelooping statement. The variable <v> must either not be previoudy defined or, if
it dready exigts, it must be an integer or real variable. Itsvalue will change as the FOR statement is
executed. The first <expr> will be executed once and will define the starting value of <v>. The
second <expr> will be executed once and will define the last value of <v>. Every iteration through
the loop, the value of <v> will be incremented by 1.

Here is an example that will print sine and cosine tables in one degree increments as well as
creating atable of radians for each degree:
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r : REAL[O TO 359]
FOR x = 0 TO 359 DO

r[x] = DTOR(X)

WRI TELN(x " degrees (" r[x] " radians): SIN()=" SIN(r[x]) ", COS()=" COS(r[x]))
END

Form 2 of the FOR statement is like form 1 except that the <expr> after STEP will be used as the
increment (or decrement) value instead of one. The step size can be any real or integer value. If the
value is pogitive, then <statements> will not be executed unless the start <expr> is less than or
equa tothe To<expr>. Likewise, if the step sizeisless than zero, then the start <expr> should be
greater than or equal to the TO<expr>.

Form 3 of the FOR statement performs the loop in a fixed number of steps, defined by the <expr>
after STEPS, in equally spaced values from the start <expr> to the TO<expr>. Thevariable <v> is
declared astype REAL (or must be REAL if it isaready defined). Hereis asmple example that goes
from0to1in100steps: FOR x = 0 TO 1 STEPS 101 DO ... END.

Form 4 of the FOR statement takes an array variable (or a dataarray) and loops through the array
fromitslowest bound to its highest bound. The index variable may be any type and must match the

type of the array elements. Here is an example using a dataarray: FOR x = [ TRUE FALSE FALSE
TRUE TRUE] DO ... END.

REPEAT Statement

The REPEAT statement |oops through statements until some condition ismet. The format is

REPEAT
<st at enent s>
UNTI L <bexpr>

The <statements> are executed and then the Boolean expression<bexpr> is evaluated. If the result
iS FALSE, the loop repeats and < statements> are executed again. When <bexpr> evaluates to TRUE,
the loop terminates. A REPEAT statement always executes the <statements> at least once.

WHILE Statement

The wH LE statement loops through statements while some condition istrue. The format is

WHI LE <bexpr> DO
<st at enent s>

END
The Boolean expression <bexpr> is executed first. If the value is TRUE, the <statements> are
executed once and <bexpr> is evaluated again. The sequence continues until <bexpr> evaluates to
FALSE. That is, when <bexpr> is FALSE, the loop terminates. Unlike the REPEAT statements, the
statements will not be executed once if the condition initialy fails.
|F Statement

The 1 F statement provides a means of conditionally executing statements. The following types of
| F statements are available:

| F <bexpr> THEN
<st at enent s>
END

Thisform will conditionally execute the <statements> only if <bexpr> evaluatesto TRUE. AnELSE
clause can be added to the statement so that one of two sets of statements will always be executed:
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| F <bexpr> THEN
<st at enent s>
ELSE
<st at enent s>
END

In addition, one or more ELSEI F clauses can be added to the statement to alow multiple conditions
to be tested:

| F <bexpr> THEN
<st at enent s>
ELSEl F <bexpr> THEN
<st at enent s>
ELSEl F <bexpr> THEN
<st at enent s>
ELSE
<st at enent s>
END

Hereisan example of an | F statement:

| F SYSTEM = "MS- DOS" THEN
PRI NTLN("Run from an Ms-DOS systent)

SEP = "\'

DATAFI LE("C:" + SEP + DIR + SEP + NAME)
ELSE

PRI NTLN("Run on a uni x systenl')

SEP = '/

DATAFI LE(DI R + SEP + NANE)
END

The Break Statement

The BREAK statement works within loop statements (WH LE, REPEAT, and FOR). When a BREAK
statement is encountered, the loop is immediately exited. The behavior of a BREAK statement
outside of aloop causes the current "scope" to be exited. This means that within the main program
(outside of a user-defined procedure or function) aBREAK acts like aHALT statement. Within a user-
defined procedure or function, the procedure or function is exited.

The Continue Statement
The CoNTI NUE statement works within loop statements (WHI LE, REPEAT, and FOR). When a

CONTI NUE statement is encountered, all further statements are skipped until the end of the current
loop.

The Exit Statement

The ExI T statement immediately exits the current procedure or function. When an EXI T statement
is encountered outside of a procedure or function, the program exits.

Differences Between Version 2.0 and Version 2.1

Version 2.1 offers improved speed, greater memory capacity, and the addition of some significant
new capabilities. With one minor exception (FOR loops using DOWWTO), version 2.0 programs should
work without change in verson 2.1. Hereisalist of the most important changes:

User-defined procedures and functions are now available.
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BREAK, CONTI NUE, and EXI T statements have been added.
DOS/Windows versions of mle execute from two to five times faster.

Versions are now available for Linux (and other) operating systems. New versions are not
available for SolarisSPARC systems.

The 64 ki limit on user-defined arrays and DATA variables in DOS/Windows versions has
been lifted.

The dataarray structure for defining arrays (single or multidimensional) [ <expr>, <expr>,
... ] hasbeen added for assigning initial values to array variables.

Array variables can be assigned to other array variables of identical size.

Complex numbers are now supported. Many functions have been extended to return
complex numbers. Complex numbers are specified as the expression, for example, 2. 7 -
3. 4i.

The REAL2STR function has been modified to provide for many new formats.

Some predefined files are now flushed (i.e. buffered data are written) before the program
exits

SYMBOLI CI NFI N is a hew Boolean variable that, when TRUE (the default) writes oo and - oo
for infinity. When false, it printsanumber. Thisis useful when writing output to be used by
other programs. Also, the value of infinity can be changed by assigning a new vaue to
I NFINITY.

The default width of real numbers is controlled by the REALW DTH and the default number of
decimal placesis controlled by the REALDECI MALS variables. Likewise, the default width and
decimal places for complex numbers is controlled by COVPLEXW DTH and COVPLEXDEC! MALS.

Plotting routines have been added for generating GNUPLOT output: PLOT, CURVE, and
MULTI PLOT. Also the MODEL statement has been modified to plot estimated distributions
(with confidence intervals) and likelihood surfaces. See the PLOTTING chapter in the
Users manual for details.

The FOR statement has been greatly enhanced. The STEP keyword provides for different step
sizes. Thelooping index variable can be either real or integer. The STEPS keyword specifies
the number of steps to loop over between the two limits. Finally, the FOR statement can take
adataarray or an array variable and loop over each element of the array (of any type). Since
astep size of -1 can be used, the DOMTO statement is no longer supported.

A great number of intrinsic functions have been added: CLOCKSEED, EXECQ( <cmd>, <args>) ,
PLOTFI LE(), NORMAL( X) , NORNMAL CDF( x) , CHI SQ x, df ), STUDENTT( x, df ),
| NVSTUDENTT(p, df ), FDIST(x,df1,df2), |INVFDI ST(p,df1,df2), |NVBETA(p,V,W,
DI REXI STS, FILESIZE(), ENVCOUNT, ENVSTRI NG ), ARGOOUNT, ARGSTRINE ), GETD R,
ZETA() , SETRANSFORM <expr >) .
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Added some new procedures. Among them: ERASE, EXEC(<cmd>, <args>), RENAME(n1,
n2), CHDIR(nl), MKDIR(nl), RMDI R(nl), GETDATE(), GETTIME(), WRI TEPLOTLN),
VRl TEPLOT( ), PLOTFI LE(), PTRANSFORM ) , FI NI SHPLOT. Additionally, 1 NC(x) and DEC( x)
are defined as both procedures and functions.

New predefined PDFs: zI PF, BETABI NOM AL, THOVAS, POL YAEGGENBERGER.

A restart file option has been added assist in rerunning programs. The —sw writes updated
parameter START values to the file <name ><model_number>.<run_number> each iteration.
The —sr option on the command line instructs mle to read parameter START vaues from the
file.

A termination file option has been added. When the -t is given, the program will
periodically check for the file <name>.TRM. If the file exists, the program will terminate.

The RUN part of the MODEL statement can now take a W TH clause in addition to FULL and
REDUCE. A list of parameter names follow the w TH keyword. The model will be run using
only those parameters. Other parameters will be set to the TEST value set in the PARAM
function. Additionally, one or more parameter names can be enclosed in parentheses
following the w TH keyword. All possible models (2" for N parameters) that include and
exclude these parameters will be formed.

A Bayesian model selection report is now available. Setting Al C_SELECT=TRUE will produce
a report based on Akake's information criterion (AlIC). Setting Al CC_SELECT=TRUE will
produce a report based on a sample-size corrected Akaike's information criterion (AICC).
Setting BI C_SELECT=TRUE Will produce a report based on Bayesian information criterion
(BIC). For each report, the most parsimonious model is selected. Parameters for the
selected model are reported with new estimates of standard errors that include model
selection uncertainty. The variable | C_ SAMPLE_SI ZE can be set to the effective sample size
for aset of observations used for AICC and BIC report.

The RUN part of the MODEL statement now takes on a THEN <statements> END clause. The
statements are executed after each sub-model is solved. Likewise THEN <statements> END
can be used after each FULL, REDUCE, and W TH clause to run statements after the model.

Differences Between Version 1 and Version 2

Changes and New Featuresin Version 2

There are a number of syntax differences and other changes between mle version 1 and version 2.
Hereis a summary of the most important changes:

General algebraic expressions are now recognized. Standard operatorsinclude: +, -, *,/, »,
AND, OR, XOR, NOT, MOD, DI V, SHL, SHR, >, <, <>, =, ==, >=, <=. These operators can be used to
build algebraic and Boolean expressions of nearly unlimited complexity. Both = and == are
allowed for specifying Boolean comparisons. The standard operator precedence, common to
most programming languages, is recognized by mle:

Operator(s) Precedence  Category
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- + NOT High Uniary operators

A Exponent operator

* [/ DIV MDD AND SHL SHR Multiplying operators
+ - OR XCOR Adding operators

= (or ==) <> < > <= >= low Relational operators

The expression -23+4*-273 is equivalent to ADD(NEGATE(23),  MULTIPLY(4,
PONER( NEGATE(2), 3))) which returns - 55. Parenthesis can be used to override operator
precedence. For example, 2*5 + 3*7 will evaluate each multiplication before the addition.
Addition can be forced to occur first with parenthesisasin 2 (5 + 3) *7.

The DATA statement has been rewritten to have a more intuitive transformation mechanism.
The transformation looks like an assignment statement following the FI ELD and LI NE
specification (if any). A list of DROPI F <expr> and KEEPI F <expr> statements can then be
specified (replacing the old DROP and KEEP statements). Here are some examples:

DATA
age FIELD 1 age*365.25 + 270 {convert to days since conception}
wei ght FIELD 2 = weight * 1000 DROPIF weight <= 0
hei ght FIELD 3 KEEPI F height > 0
bm hei ght / wei ght ~2
END { dat a}

The formal specification for each variableisthis
<var> [Fl ELDX [LI NEY]] [= <expr>] [DROPI F <bexpr> | KEEPI F <bexpr> ...]

The first example above reads a value in the first field of the data file and assigns the value
tothe variable age. After that, the expression age*365. 25 + 270 is evaluated and the result
assigned to the variable age. The second example reads the second field and assigns the
value to the variable wei ght . Following that, the expression wei ght *1000 is evaluated and
assigned to the variable wei ght . Then the expression wei ght <= 0 is evaluated. If TRUE,
the observation is dropped. If not, the observation is kept.

Observations can now be ssmulated or otherwise created within mle, without reference to a

data file. This is done by setting CREATE_0BS to some positive value. The following
example will create 100 uniform random observations:

CREATE_OBS = 100
DATA

vl FIELD 1 = RAND
END { dat a}

A number of useless functions that were used with the old data transformations have been
eliminated, e.g.: ONE, SECOND, ONEI F, RESPONSE, €tC.

A number of new functions have been added, e.g.. DEFAULTOUTNAME, FI SHER, | SODD,
STRI NG2REAL, | NT2STR, EOF, EQLN. A fairly complete set of functions are now available to
work with calendar dates. A full list of smple functions can be generated by typing m e -h
functi ons.

The PREASSI GN and POSTASSI GN functions have been generdlized so that any single

statement is allowed in the statement part of the function. By usingaBEG N ... END block,

more than one statement can be used in the assignment part of the functions. For example:
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PREASSI GN
BEG N {This is the statenent part}
r : REAL[O TO 359]

FORi = 0 TO 359 DO
r[i] = DTOR(i)
END {for}

END {begin —this is the end of the statement part of the PREASSI G\}
PDF NORMAL(a, b) ¢, d END {This is the function returned by PREASSI G\}
END { preassi gn}

The conditional expressions in the | F THEN ELSE END and LEVEL functions take a Boolean
expression of any complexity, eg., IF (a = b) AND (c"2 + 2 <= 23) OR (d > 1) THEN
ELSE ... END.

The IF .. THEN...ELSE ..END function has been generdized so that multiple
ELSEI F... THEN. .. conditions may be added. The following assignment is an example:

status = | F height < 48 THEN
-1
ELSElI F (hei ght >= 48) and (hei ght <= 60) THEN
0
ELSE
1
END {if}

Types can be optionaly defined for variables when they are first encountered. Valid types
are | NTEGER, REAL, CHAR, STRI NG BOOLEAN, and FI LE. For example:

x : REAL = 23 {x would be integer, but is defined to be real}
c: STRING = '!I'" {c woul d be char, but is defined to be string}

In general, types are handled better. Adding two integers variables together, for example,
returns an integer value. The I F... THEN. .. ELSE. .. END function can return any type, but
the type after the THEN must match the type after the ELSE.

Multidimensional arrays are supported for all types. Subscripted values are accessed as, for

example, z[i, j, k]. Arraysaredeclared as
a: REAL[1 TO5, -1 TO1 =0 {Declare and initialize matrix a}
b : INTEGER[ -4 TO 4, 0 TO 1] {Decl are but no assignnent}

A new DERI VATI VE function numerically finds the value of a derivative at a specified point
along some function. For example, DERI VATI VE x = 2, 3*x72 + 2*x + 4 END, whichis
the derivative of 3x° + 2x + 4 evaluated at x = 2, returns 14. 0.

The new FI NDM N function finds the value that minimizes a bounded function. An example
ISFINDMN x (0, 2*Pl) COS(x) END, which finds a minimum of the function cosine(x)
between 0 and 2p. It returns 3. 1415925395570 (p is an exact solution). The accuracy of the
solution may be specified as a third argument within the parenthesis.

The new FI NDZERO function finds the value of an argument for which the function goes to
zero. AnexampleisFI NDZERO x (0, Pl) COS(x) END, which findsavalue of x for which
cosing(x) is zero. It returns 1. 5707963267949 (which is close to the exact solution of p/2).
The accuracy of the solution may be specified.

An important syntactical change is that every PARAMfunction must have a matching END.
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The default FOrRM for the PARAM function is NUMBER if no covariates are specified and LOGLI N
if one or more covariates are specified.

The covaAR specification part of the PARAM function has been generalized to COvAR <expr>
<expr>. A typical specificationis

PARAM x LOW0 H GH=100 START=25
COVAR z PARAM beta_z LOW-5 HI GH=5 START=0 END
END

Nevertheless, other expressions are legal. For example

PARAM x LOMO HI GH=100 START=25
COVAR z 1
END { par ant

The PARAM Options HI GH, LOW START, and TEST are treated like assignment statements which
are evaluated just prior to maximization. The right-hand side of the assignment can be any
valid expression. For example,

PARAM a LOW=1Fy >3 THEN O ELSE 3 HIGHd = x"2 + 2x - 4 START =y - 1 END

The ConST part of the MODEL  statement is longer supported.

A number of procedures have been added that can be used wherever a statement is allowed,
including

OPENAPPEND(,) {Opens a file for appendi ng}
OPENREAD(, ) {Opens a file for reading}
OPENWRI TE(,) {Opens a file for witing}

VRI TE() {wites to standard output}

VARl TELN() {wites a line to the standard output}
READ( ) {Reads variables fromthe standard input}
READLN( ) {Reads one line of variables fromthe standard input}
PRI NT() {wites to the output file}

PRI NTLN() {wites aline to the output file}
CLOSE() {Coses a file}

SEED( ) {seeds the random nunber generator}
DATAFI LE() {defines the data file}

QUTFI LE() {defines the output file}

HALT {halts the progrant

A variety of statements have been added that can be used wherever a statement is alowed,
including

| F <bexpr> THEN <statenments> ELSEIF . . . ELSE <statements> END

FOR <v> = <expr> TO <expr> DO <statenments> END

BEG N <st at enent s> END

WHI LE <bexpr> DO <st at ement s> END

REPEAT <st at enent s> UNTI L <bexpr>

BREAK {exits the current WHI LE, REPEAT, FOR | oop, or BEG N...END bl ock}
CONTI NUE {Skips to the next iteration of a WH LE, REPEAT, or FOR | oop}

A new QUANTI LE function returns the value that gives the gth quantile of any of the
predefined pdfs. For example, the median (where q = 0.5) can be found for the RANDOWALK
pdf, with arguments 2 and 3, as. QUANTI LE RANDOMWALK(O0.5) 2, 3 END. It returns
7. 4595847118228. The function uses algebraic solutions for many pdfs. When no closed
for solution is known, an iterative solution is found.
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Fundamental physical constants have been updated to the most recent recommend values
provided in Mohr and Taylor (1999).

Strings can be delimited by either " or ', except that a one-character sequence using ' is a
character constant.

Converting Version 1 Programsto Version 2

Programs written in earlier versions of mle can be converted into later versions without much
difficulty. The most important things to change are given below.

Change al INFILE = "nydata.dat" statements to DATAFI LE("nydat a. dat") procedure
calls.

Change all QUTFILE = "results. out" statementsto OUTFI LE("resul ts. dat") procedure
cals.

Change all SEED = 5352 statements to SEED( 5352) procedure calls.

Eliminate all consT blocks that may have been used at the beginning of MODEL statements.
Instead, define the constant outside of the MODEL statement. Alternatively, use a PREASSI GN
function within the MODEL statement to create temporary variables within that statement.

Add an END after all PARAM functions.

Some older versions of mle did not have or alow the DATA. . . END function within the MODEL
statement. In more recent versions, a DATA. .. END function is almost always required to
cycle through al observations in the data set. MODEL statements should usually look like this:

MODEL

DATA

END {data}
RUN

FULL
END {odel }

{the rest of the likelihood goes here}

Some older versions of mle used the keyword FREQfollowed by a variable name within a PDF
function to denote the a frequency variable. These must be deleted. The specia variable
names FREQ and FREQUENCY should be used in the DATA statement to denote frequencies of
observations.

The method of transforming variables within the DATA statement has changed in version 2.
All transformations must be re-coded following the new syntax (described earlier in this
chapter and in a later chapter). Additionally, the method of dropping or keeping variables
within the DATA statement has changed. An example of the old syntax is
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DATA
vl FIELD 1 DROP < 0
v2 FIELD 2 ADD 10 MJULTIPLY 2
v3 FIELD 3 KEEP >= 24
v4 FIELD 4 SUBTRACT 10 POAER 3 DROP <= 1

END {dat a}
and the correspondi ng new syntax is
DATA

vl FIELD1 DROPIF vl <0

v2 FIELD 2 = (v2 + 10)*2

v3 FIELD 3 KEEPIF v3 >= 24

vd FIELD 4 = (v4 - 10)"3 DROPIF v4 <=1
END {dat a}
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Chapter 2
Installing and running mle

Themle interpreter is a small, self-contained program that can be run from the command line of the
operating system. This chapter describes how to install mle in both the DOS environment and the Windows
environment. A brief tutorial is given on how to run mle, and how to edit program files using a text editor.
Additionally, the editor emle is described. All command line options are described.

Installing mle

Under Windows, mle isinstalled using a built-in installer. Thiswill install the interpreter along with a
rudimentary editor that can be used to edit and run mle programs. If you prefer, you can install everything
by hand under Windows as well (thisis especially helpful if you want to run mle from the DOS command
line.

The current releases of mle can be found on the web at http://faculty.washington.edu/~djholman/mle. For
the purposes of this manual we will assume that the current releaseis 2.1.16.

Unix

Find the current release of mle. For aLinux ELF binary, the current release might be called: ni e-
2.1.15.1inux.i 386.tar.Z Experienced Unix userswill recognize this as a compressed tar file. Here
are the steps for installation:

Copy the file to a subdirectory (say, ~/mle).

Uncompress the archive with the command unconpress:
me-2.1.11. linux.i386.tar.Z

Extract everything from the archive with the command
tar —xvf me-2.1.11.1inux.i386.tar

Make sure you have permission to execute the program.  Type
chrmod u+x me

The directory now contains the executable (m e), example programs, etc. At
this point you can run programs from within the directory. Y ou can add the
directory to your PATH so that you can execute the program from anywhere.
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Alternatively, you can move the executable program to a directory in your
path. For example: nv mi e ~/bin

Windows

Find the current release of the mle setup and installation program. The current release might be called:
me 2 1 15 setup. exe. Notethat there are versionswith and without the mle documentation. The
versions should be apparent from the file names. Here are the steps for installation:

The easiest way to install mle is to “open” the setup program via a web
browser.  Windows will, in effect, execute the instal the package.
Alternatively, you can download the setup program to any directory, and
then run the program (from a DOS window or using the Start> Run...
command).

The setup program will walk you through a number of steps for installation.
If you are not an administrator or power-user on the computer, you will
want to change the location where the program is installed from the default

of C:\Program Files\nl e to some  other location like
C:.\Docunments and Settings\<usernanme>\m e

Once the installation is complete, you can optionally modify your PATH
variable so that mle can be run from any directory on the command line. The
PATH variable can be changed in most versions of Windows via
Start-> Settings—> Control Panel - System—> Advanced-> Environment Variab
les.

Editing a program

Writing an mle program requires that you edit thetext of the program, and then “submit” it to the mle
interpreter. The next step isto view the output of the program. Depending on the results, you will then edit
the program again and submit it again. Almost any text editor can be used to edit a program. Additionally,
the Windows version of mle comes with a simple text editor that istailored to editing and running programs.
This section first describes some text editors available in DOS and Unix that can be used for editing
programs. Then the mle editor is briefly described.

Under Unix, there are anumber of de facto standard editors that are used for programming. The vi editor,
in particular, is available on amost every installation. Other commonly used text editors on Unix systems
are Pico and EMACS Before you can develop mle programs, you will need to know one of these editors.

Under DOS or Windows, there are a number of editors available (besides the one that comes withmle). A
standard editor availablein al later versions of DOS iscalled EDIT. Alternatives that come as part of
Windows are NOTEPAD and WordPad. Even word processing programs (like MS-Word) can be used,
although you must be certain to save the programs as text files.

emle

A rudimentary editor is now available with Windows versions of mle. This section of the manual briefly
describes the editor and its functions.

32



mle 2.1 manud

The editor can be started from the Start> Program menu. A window pops up that looks like the this:

T st a

1 1 Insert

Alternatively, the editor can be opened from a DOS command line. To do so, the eni e. exe command
must be in your path or current directory. Thecommandem e nyfil e. m e will open the editor and load
(or create) thefile myfilemle

The text being edited is displayed in the black area of the screen (although the color can be changed). The
top of the screen shows the current menu. The bottom of the screen shows status information. The first **’
means that the current file has been changed. The line number and column number come next. The
“Insert” or “OvrWrt” indicates the mode the editor isin. Finally the filename is given if afileis opened for
editing.

Editor commands can be accessed through the keyboard (there is currently no mouse support). Keystrokes
work as expected— that is, the arrow keys navigate around the text, <PgUp> and <PgDn> keys scroll up
and down through the text, etc. Additionally, menu items (which are listed at the top of the screen) are
accessed using the <Alt> key along with the highlighted character.

Menus

This section shows and describes the menu commands availablein emle.

File menu

From the main menu, <Al t >F brings up the File menu. The File menu provides a number of commonly
used file-related operations. The menu contains these elements:

Open <Al t >0 provides a menu for opening up afile. The arrow keys can
be used to move through files and directories. Note that the special
file*..” isused to change to the previous directory.

Save Saves the current file.

saveAs Prompts for a new name and then saves the current work as that
name.

Close Closes the current file.

eXit Exits the program.

Backups Toggles whether or not back-ups are made while saving files.

Dos Escapesto a DOS session.
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From the main menu, <Al t >E brings up the Edit menu. The Edit menu provides some specia editing
functions. The menu contains these elements.

Del line

Flipcase

Lowercase
Uppercase
Cirl_key
Quit

Block menu

Deletes the current line.

Flips the case of al characters from the cursor to the end of the
current line.

Changes charactersto lower case to the end of the current line.
Changes characters to upper case to the end of the current line.
After selecting this, a control key can be entered into the text.

Quits this menu.

From the main menu, <Al t >B> brings up the Block menu. This menu provides editing functions for
selecting, moving and performing other functions on blocks of text. The menu contains these elements.

markBegin
markEnd
Goto
Copy
Delete
Move
cLear
Write
Quit
Search menu

Marks the beginning of a block.
Marks the end of the block.

Goes to the currently marked block.
Copies the current block.

Deletes the current block.

Moves the current block.

Removes the current block.

Writes the current block to afile.

Quits this menu.

From the main menu, <Al t >S brings up the Search menu. This menu provides text searching and
replacement functions. The menu contains these elements.

Find

Find (Next)
Find (Opts)
Replace
Replace (neXt)
Replace (oPts)
Goto line
Quit

Mle menu

Searches for a string of text.

Searches for the next occurrence of the text.
Searches for text after setting the search options.
Searches and replaces text.

Searches and replaces text again.

Searches and replaces text after setting some options.
Goes to the specified line number

Exits the menu.

From the main menu, <Al t >Mbrings up the Mle menu. This menu provides some several mle-related
special functions. The menu contains these elements.



Parse

Run

Expression
template (Insert)
template (Options)

Quit

Window menu
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Submits the current file to mle with the parse option (-p). This, in
effect, checks for syntax errors.

Submits the current file to mle, so that the program is run.
Prompts the user for an expression to evaluate viamle.
Inserts a code template at the current location.

Sets options (intent level, case for code, case for comments) for the
templates.

Exits the menu.

From the main menu, <Al t >Whbrings up the Window menu. This menu provides some several mle-related
special functions. The menu contains these elements.

Backcolor
Forecolor
Wordwrap
Setmargins
Ruler
reDraw
Quit

Help menu

Switches through the background color for the text.
Switches the foreground color of the text.

Toggles word-wrap

Sets the left and right margins.

Toggels aruler display (Off, Top, Bottom).
Redraws the current screen.

Exits the menu.

From the main menu, <Al t >H brings up the Help menu. This menu provides for several types of help
information. The menu contains these elements.

Editor_keys
Key_map
Mle help

mle_Search

About
Quit
Default settings

Displays the current mapping between editor commands and the
keyboard.

Displays the current mapping of key to editor commands.

Submits the current word (the word the cursor is currently sitting on)
to mle with the help option (-h) option. Any mle help messages that
match the keyword exactly will be displayed.

Submits the current word to mle with the help option (-H) option.
Any mle help messages that match any part of the keyword will be

displayed.
Shows information about the editor.

Exits the menu.

The editor preserves a number of settings from one editing session to the next: foreground color,
background color, insert status, word wrap status, right and left margins, ruler setting, mle indent setting, mle
keyword case setting, mle comment case setting, back-up setting, search “from top” flag, search “ignore

case” flag.
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The information for these settings is stored in the fileenl e. cf g which resides in the same directory as
en e. exe.

The configuration file can also save a series of user-defined commands that are executed whenever the
editor is started. To add commandsto thefile, use the Al t _F9 command, which prompts for additional
commands before saving the configuration file.

Default command mapping

The default mapping between editor commands and the keyboard is described in this section. Notice that a
command can have more than one key assigned to it. The default keyboard mapping can be changed by
saving the current map (Shi f t _F9 by default), and editing the resulting file. The editor will then read the
keyboard map by default. The keymap is stored in thefile enl e. kbmwhich residesin the same directory
asenl e. exe.

Cursor control commands

REAIT oo, Go to next character
LEAIT (o Go to previous character
Ctrl_PgUp ............. Go to beginning of file
Ctrl_PgDn.............. Go to end of file
End.....ccooiiiin, Go to end of line
Home.......cocoeeeee Go to beginning of line
DNAIT .o, Go to next line
UPAIT e Go to previousline
(20 5] o I Go down one page
PQUP oo Go up one page
Ctrl 1o, Go to next tab
Shift_Tab.............. Go to previous tab
Ctrl_Home............. Move window up
Ctrl_End................ Move window down
Ctrl_RtArr ............. Skip ahead one word
Ctrl_LtArr ............. Skip back one word

Insert and delete commands
Delete.......ccceeueene Delete character (del)
Ctrl H..oooovree Delete character (backspace)
Ctrl_J, Ctrl_ M ....... Break line at current position
INsert....ccocoevevneenns Toggle insert/overwrite
CtrlY e, Deleteline
Ctrl B Delete to beginning of line
Ctrl_ E..ccovvveeenene. Delete to end of line
Ctrl_ N..cooeeernee. Insert new line
(011 [ = S Delete word

File commands

<not assigned>....... Closefile. Save if necessary

<not assigned>....... Close file without saving

<not assigned>....... Save and closefile

Ctrl O Open. Save current file if necessary
<not assigned>....... Open without saving current file
<not assigned>....... Save current and open

Alt X s Quit. Save if necessary

Ctrl_ K., Quit without saving
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Shift_ F3.....cooeeee Save and quit
<not assigned>....... Save as

<not assigned>....... Save

<not assigned>....... Savefile

Alt F3...ooie. Set whether backup files are made
Block commands
Shift_F4, Alt_-....... Mark beginning of block
Alt Pos Copy block
Alt Qe Delete block
Ctrl_F4, Alt =....... Mark end of block
Alt O Go to block
Alt C.oeee Clear block marks
Alt V, Alt F4........ Move block
Alt To Write block to afile
Page formatting commands
Ctrl_F5....ccov Set background color
Shift_F5....ccoeee Set foreground color
Shift_F8......ccceeeee Set margins
FSee, Redraw the screen
Alt Koo, Toggle ruler display
F8. e Toggle word wrap
Help commands
Floiiiees Displays editor commands
Alt F1......e. Displays keys mapped to commands
Ctrl_ Fl....cccceeeee. Give help on an mle keyword
Shift Fl......ccoee Match and give help on a keyword

<not ass gned>....... Program information

FO e Open up OS window
Shift F2................. Parsein mle
F2.ee, Runinmle
Alt F2 .., Run an mle expression
Search commands
[ T Find text
Shift_F6................. Find next occurrence
Ctrl_F6......cocoen. Find with options
F7 e Find and replace
Shift F7...cccovene Find and replace next occurrence
Ctrl_F7.ooiee Find and replace options
Alt G Goto line
Other commands
Ctrl_T, F10............ Insert an mle template
Shift_F10............... Change mle template options
Ctrl_Foreiee Change caseto end of line
(©11 ¢ [ Change to lower case to EOL
Ctrl_ Ui Change to upper case to EOL
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Alt A Enter ASCII code
Ctrl Ve Accept <Ctrl> key
Shift_FO.....cceeee Writes startup key map file: emle.kbm
Ctrl_F9...covreen Reads key map file: emle.kbm
Alt FO...oi. Saves configuration information to the file: emle.cfg
Alt F8...ccovvie. Shows internal information (used for debugging).
Alt F5 .., Turns debugging on
Menu commands
<not assigned>....... Main menu
Alt F,F3.............. File menu
Alt E.cooeoe Edit menu
Alt B, F4............... Block menu
Alt_S..e, Search menu
Alt M., mle menu
Alt We., Window menu
Alt H.., Help menu

Default keyboard mapping

The default keyboard map is described in this section. The default keyboard mapping can be changed by
saving the current map (Shift_F9 by default), and editing the resulting file.

Ctrl_A o, unmapped...............

Ctrl Booooeeees linedelBOL ............. Delete to beginning of line
Ctrl_ Cooeeeees unmapped...............

Ctrl Do unmapped...............

Ctrl_E....covveennee linedelEOL ............. Delete to end of line

Ctrl_ Foeieiees flipcase.......cccoenneen. Change caseto end of line
Ctrl G unmapped...............

Ctrl H..oooveee chardelback ............ Delete character (backspace)
Ctrl 1o, tabnext.........cccee... Go to next tab
Ctrl_Jooeeiiees enter ...coovieeeeens Break line at current position
Ctrl K. quitnosave............... Quit without saving

(©11¢ [ SO tolower .......ccceeneee. Change to lower case to EOL
Ctrl Moo enter ...coovieeeeene Break line at current position
Ctrl_ N lineins......cccccoeveee.. Insert new line

Ctrl O (0] 010 I Open. Save current file if necessary
Ctrl_ P, unmapped...............

Ctrl_ Q.o unmapped...............

Ctrl Ro..vveeene wordde .................. Delete word
Ctrl_S..ooiiies unmapped...............

Ctrl T mletempl ................ Insert an mle template
Ctrl_ U....cooeees toupper ......ocoeeeneeen. Change to upper case to EOL
Ctrl Ve Crl e Accept <Ctrl> key

Ctrl_ W, unmapped...............

Ctrl_ X oo unmapped...............

Ctrl Y e linedd ......ccconnee. Deleteline

Ctrl Z.ooooeeee, unmapped...............

(©11¢ [ IR unmapped...............

Ctrl_\..ooi unmapped...............

(©11¢ [ IR unmapped...............
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Ctrl M e, unmapped...............

Ctrl__ s unmapped...............

Shift_Tab............. tabprev ..o Go to previous tab
Alt Qe blockdd................... Delete block

Alt Wl windowmenu.......... Window menu

Alt E.oooviis editmenu................. Edit menu

Alt R, unmapped...............

Al T e blockwrite............... Write block to afile
ALY . unmapped...............

Alt U, unmapped...............

Alt I, unmapped...............

Alt O ..o, blockgoto................ Go to block

Alt Pooo, blockcopy............... Copy block

Alt A, P2 o | I Enter ASCII code
Alt. S.is searchmenu............. Search menu

Alt D .o, unmapped...............

Alt Fos filemenu................. File menu

Alt G, gotoline.......c..c....... Goto line

Alt H.... helpmenu................ Help menu

Alt Jo, unmapped...............

Alt K., rulertoggle.............. Toggle ruler display
Alt Lo, unmapped...............

Alt Z..ooii. unmapped...............

Alt X o, QUIT ... Quit. Save if necessary
Alt C.eeee clearmarks.............. Clear block marks
Alt V . blockmove.............. Move block

Alt Bureeees blockmenu.............. Block menu

Alt N .o, unmapped...............

Alt M.................. mlemenu................. mle menu

e helpedit .................. Displays editor commands
F2uiiiies mlerun.......ccceeeeene Runinmle

F3e e, filemenu................. File menu

Fho s blockmenu.............. Block menu
FSaiee redraw .......ccccoceeene Redraw the screen

FO oo find...coooiiiiee, Find text
. replace.......cccceee.... Find and replace

F8. e, wordwraptoggle......Toggle word wrap

FO i, EXEC..oeieeeeineeeeneeanns Open up OS window
F10.oiiiiieen. mletempl ................ Insert an mle template
Home.......ccceneeee. linebegin................. Go to beginning of line
UPAIT e, lineprev .................. Go to previousline
PQuUp ..o pageup.......cccocueeenn. Go up one page

LEAIT e, charprev ................ Go to previous character
REAIT oo charnext.................. Go to next character
End.....cooeiiiiies lineend........ccevene Go to end of line
DNAIT .o linenext ........cccoeee Go to next line

(0] o I pagedown............... Go down one page
Insert.....ccccoeeenneen. inserttoggle............. Toggle insert/overwrite
Delete.................. chardel................... Delete character (del)
Shift_F1.............. helpmlesearch......... Match and give help on a keyword
Shift_F2............... mleparse................. Parsein mle
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Shift F3............... quitsave.........ccoe..... Save and quit

Shift_F4.............. blockbegin.............. Mark beginning of block
Shift_F5............... colorforeset ............ Set foreground color
Shift_F6............... findnext................. Find next occurrence

Shift F7............... replacenext ............. Find and replace next occurrence
Shift_F8............... marginset................ Set margins

Shift_Fo............... writekeymapfile......Writes startup key map file
Shift_F10............. mletmplopts............ Change mle template options
Ctrl_ Fl................ helpmle................... Give help on an mle keyword
Ctrl_ F2...ccoenee. unmapped...............

Ctrl_F3....coeceee. unmapped...............

Ctrl_F4................ blockend................. Mark end of block
Ctrl_F5.......c........ colorbackset ........... Set background color
Ctrl_F6................ findopts......ccceennee. Find with options
Ctrl_F7..coveeee. replaceopts............. Find and replace options
Ctrl_F8.....ccee.... unmapped...............

Ctrl_F9...cceeeeee. readkeymapfile....... Reads key map file
Ctrl_F10.............. unmapped...............

Alt F1................ helpkeyboard.......... Displays keys mapped to commands
Alt F2 ..., mleexpr ........cce...... Run an mle expression

Alt F3...e makebackup ........... Set whether backup files are made
Alt F4................ blockmove.............. Move block

Alt F5. ..o, debug ....cccoceeeiiienne Turns debugging on

Alt F6.....coee... unmapped...............

Alt F7 .. unmapped...............

Alt F8....ccovee debugscreen............ Shows internal information

Alt F9...oiie configsave............... Saves configuration information
Alt F10............... unmapped...............

Ctrl_Prtsc............ unmapped...............

Ctrl_LtArr........... wordprev ................ Skip back one word

Ctrl_RtArr ........... wordnext ................ Skip ahead one word
Ctrl_End.............. windowdown.......... Move window down
Ctrl_PgDn............ fileend......ccoeeeee. Go to end of file
Ctrl_Home........... windowup............... Move window up

Alt 1., unmapped...............

Alt 2., unmapped...............

Alt 3., unmapped...............

Alt 4., unmapped...............

Alt 5., unmapped...............

Alt 6., unmapped...............

Running a program

mle programs are usually run by typing m e followed by any command-line options, followed by the name
of the program file on the DOS or Unix command line The mle interpreter will then read in and parse the

entire program file, and the program statements will be executed.

If mle encounters an error in the program, an error message is printed and further execution terminates.

Warning messages are printed from mle without terminating the run.

40



mle 2.1 manud

The following sections provide more details on how to run mle from the command line.

Specifying the Program Fileand Command Line
Options

There are several methods for specifying the program file. Typically, the program file is specified on the
command line. Here are some examples of how the mi e command is used to run a program file called
test.me:

c:\test>nle test.nme Runs me on the file analysis.ne.
c:\test>nle -v test.nle Runs m e, verbose option is set.
c:\test>nle -p test.nle Parses test.nle, reports syntax errors.
C\test>mne me will request the input file name.
me Programfile to run? test.nle

The last example shows that if a program file name is not given on the command line, you will be prompted
for the program file name.

The middle two examples show command line options (- v and - p) being specified. Command line options
are used to changet he behavior of me, and are discussed below. |f you type an erroneous
conmand line option, or the fileis not recognized by mle the following synopsisis given:

c:\test>nle -z analysis.nme There is no -z option.
Error: Incorrect nunber of paraneters

Usage: me [-v] [-p] [-i] [-dd] [-de] [-di] [-dI] [-dp] [-ds] [-dx] [mefile]
-v lteration histories and other nessages are witten to the screen
-p Only parses the me file
-i Runs nmle interactively
-dd Turns on data debuggi ng
-de Echos characters while parsing
-di Turns on integration debuggi ng
-dl Turns on likelihood debuggi ng
-dp Turns on parser debuggi ng
-ds Turns on synbol table debugging
-dx Turns on debuggi ng during execution
mefile is the nane of the file with the program

Usage: me -h [namel name2 . ]
hel p for PDFs, functions, synbols, paranmeter transforns
-h matches words exactly, -H searches w thin words

Usage: me -pn nl n2 . . . .
parses n's and returns values and type

Table 1 givesalist of valid command line options. A useful command line option is - p (parse only) which
tell mle to parse the program (without running it) and report any errorsin the grammar. The statements
within the program are not executed. Another very useful option isthe - v (verbose) option, which tells mle
to provide periodic status reports while solving alikelihood. Among other things, the status report prints
out the likelihood and parameter values at each iteration.

Help Options

mle predefines alarge number of functions, variables, constants, and reserved words. The - h (help) option
provides short summaries of mle language parts, PDFs, and concepts. Typing nl e - h yields
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Type m e -h <keyword> to match keywords exactly.
Type m e -H <keyword> to match partial keywords.

me -h MLE gives a program outline.

m e -h PROCEDURES |ists procedures.

me -h PDFS |ists PDF types.

me -h FORMS |ists paraneter forns.

m e -h HAZARD gi ves an exanpl e of a hazard specification.

me -h SYMBOLS lists pre-defined vari abl es.

m e -h NUMBERS |ists nunber formats.

me -h FUNCTIONS |ists sinple functions,

Help is available for the followi ng types of functions/expressions:

| DENTI FI ER FUNCTI ON ARRAY DATA DATAARRAY
DERI VATI VE FI NDM N FI NDZERO FUNCTI ON I F

| NTEGRATE LEVEL LEVELDELTA PARAM PDF
PHAZARD PPDF POSTASSI GN PREASSI GN PRODUCT
QUANTI LE QDF SUMVATI ON

Help is available for the follow ng statenents:

ASSI GNMENT  BEGI N BREAK CONTINUE CURVE DATA EXIT FOR
FUNCTI ON I F MODEL MULTIPLOT PLOT  PROCEDURE REPEAT WHI LE

This option is particularly hel pful for providing a short sunmary of intrinsic
paraneters for predefined PDFs. For exanple, typing me -h weibull vyields:
WEI BULL Distribution
4 continuous variables: t(open), t(close), t(left trunc), t(right trunc)
Exact failure when t(open)=t(close)
Range: t: (Tine) 0 <=1t < +o00
2 intrinsic paraneters:
a: (Scale) 0 < a < +oo0
b: (Shape) 0 < b < +o00
a is the characteristic life ~= 63.2th %in units of a
f(t) = S(t)h(t); S(t) = exp[-(t/a)”b]; h(t) = [b*t"(b-1)]/(a"b)
mean a*Gamma[ 1+1/b]; var = (a”2)*Ganmma[ 1+2/b] - { Gamma[ 1+2/ b] }*2
node a(1l-1/b)~(1/b) for b>1; mbde = 0 for b<=1; nedian = a*log(2)"0.5
Gamme(x) is the ganma function
Covariate effects may be npdel ed on the hazard
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Table 1. Command line options.

Option Description

-V Sets VERBOSE to TRUE so that an iteration history and other information is printed to standard
output while solving a likelihood model.

-h Provides help information about PDFs, functions, variables, constants, reserved words, and

h<n parameter transformations. When <name> is replaced by a PDF name, a transformation name,
afunction, or a predefined variable, a brief hdp messageisgiven. If <name> is not aknown
topic, alist of topicsis printed.

—H <name> | Provides help information like —h, but matches anything that contains the string <nane>. If
<name> is not given, all help messages are given.

—i Runs mle interactively. Commands are typed directly in from the keyboard. Using interactive
mode is helpful for using mle as a probability calculator. Interactive mode is discussed later in
this chapter.

—p The program file is parsed for errors and not run. Setsthe internal variable PARSE = TRUE.

-| <path> Specifies afile system path to include while searching for include files (see command
I NCL UDE).

-b Batch mode. Turns off keyboard monitoring (for interactive debugging) while executing
models.

-t Tells mle to watch for atermination file while solving amodel, and if it is found, terminates
solving the model at the end of the next iteration.

-Sr Tellsmle to read in values from the “ start-file” to initialize start values for a MODEL statement.
The start-file is automatically created by the —Sw option.

-Sw Tellsmle to write a “ start-file” following each iteration during a MODEL statement. The values
areread and used as “ updated” start values when the —Sr option is used.

-S A special flag equivalentto -Sr —Sw -t -v

-af A flag used by the editor emle to interact with mle.

—pn # mle supports various number formats (dates, times, Roman, etc.). This command line option
takes alist of numbers, parses them, and reports the results.

-VX Prints out a version number string.

—dd Turns on data debugging, where details are printed as each observation is read from the datafil
and converted into adata set. Sets DEBUG DATA = TRUE.

—de Echos each character in the program file asit isbeing read. Sets DEBUG_ECHO = TRUE.

—di Turns on debugging for the integration routines, so that a report for each integration cal is
written to the standard output. Sets DEBUG | NT = TRUE.

—dl Turns on likelihood debugging, so that parameter estimates and an individual likelihood is
written to standard output for every likelihood evaluation. Sets DEBUG LI K = TRUE.

—dp Turns on debugging while reading and parsing the program file. Sets DEBUG _PARSE = TRUE.

—ds Turns on debugging for the symbol table routines, so that information is printed to standard
output whenever variables and symbols are created or destroyed. Sets DEBUG _SYM= TRUE.

—dx Turns on debugging while running (executing) the program file, so that a message is written to
the screen just prior to executing each statement. Setsthe internal variable DEBUG_EXEC =
TRUE.

—d# Setsthe internal variable DEBUGtO the value set by #. When # is greater than zero, debugging

messages are printed. The nature and type of messages changes, and the output is used for
program development. A value of O turns off debugging.
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which shows that there are two intrinsic parameters. Note that equations are given for the probability
density, survival function, or hazard function. At least one of these is given for other PDFsaswell. Hereis
another example: ml e -h pi

Synmbol : PI{REAL Const Static} = 3.14159265359
And, a third exanple: me -h besseli
Functi on BESSELI (x1, x2)
returns the nodified Bessel fcn | (integer order x1) of real x2

The-h option provides summaries for afew topics. For example, m e - h FUNCTI ONS, will list al of
theintrinsic simple functions, and mi e - h SYMBOLS which lists al variablesin the symbol table. Typing
m e -h functions | noreisauseful way to examine al mle intrinsic functions because the nor e
program will stop the display after each page of output is listed.

The-H <nane> option issimilar to the - h option except that any function, variable, constant, or reserve
word that includes <nane> as some part of the reserve word is printed. The- Hoption is particular useful
when you cannot recall the exact name for some keyword. Thus,m e - H i nt egra listsall keywords with
the string "integra’:

I NTEGRATE v (exprl, expr2) expr3 END
| NTEGRATE v (exprl, expr2, exprd) expr3 END
v is the variable of integration.
exprl is evaluated for the lower linit of integration.
expr2 is evaluated for the upper linit of integration.
expr3 is the integrand, and nay reference v.
expr4 is an optional convergence criterion
| NTEGRATE_METHOD = | _TRAP_CLGOSED uses cl osed trapezoidal integration
| NTEGRATE_METHOD = | _TRAP_OPEN uses open trapezoi dal integration
| NTEGRATE_METHOD = | _SI MPSON uses open sinpson integration
| NTEGRATE_METHOD = | _AQUAD (default) uses adaptive quadrature integration
| NTEGRATE_N i s the nunber of iterations (default: 100)
| NTEGRATE_TCL is the convergence criterion (default: 1.0E-0006)

| NTEGRATE_METHOD{ | NTEGER} = 3
| NTEGRATE_N{ | NTEGER} = 100
| NTEGRATE_TOL{ REAL} = 0. 00000100000

Debugging Options

A number of command line options assist in debugging models, data files, program options, numerical
methods, and the mle program interpreter itself (see Table 1). The- dx option provides away of tracing the
execution of each statement in turn. The - dI option is useful for examining likelihoods every time a
complete likelihood is computed. More advanced debugging options assume some familiarity with the
internal workings of parsers, symbol tables, and an advanced understanding of likelihood estimation. The -
di option offers help with debugging problems of numerical integration in mle.

The debugging and help options send output to the screen (or standard output device). The standard DOS
and Unix redirection symbols">" and "|" can be used to redirect the output to other devices. For example,
thecommandm e -d 25 test.nle > test.dbg will create a(possibly large) file called test.dbg. The
output file specified within the test.mle program will not be affected.

Other Options

testing number formats

mle supports many formats for numbers. Each number begins with anumeral, but can contain additional
symbols to specify different meanings. A full discussion of the number formatsis given in the data
chapter. You can test the way in whichmle reads numbers by using the - pn option. The command line
m e -pn 8x3017 22' 16" 12k returns
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"8x3017" is the integer 1551
"22'16"" is the real 0.0064771107796
"12k" is the real 12000. 000000000

A list of al number formatsisgiven withm e -h nunbers

Sart-file options
The-Sr and —Sw optionswork together to read and write temporary resultsto afile, called a start-file,
while aMODEL statement is executing. When the —Sw option is used, the current parameter estimates are

written at each iteration. The—-Sr option will read the start-file and replace the START= parameter values
with the start-file values.

The purpose for using these options is to preserve intermediate results for models that take along time to
solve. For example, if a program will take weeks or months to solve, using these options can prevent the
loss of work in the event the computer crashes.

Batch options

“Batch” refersto running programsin an unattended mode. Typically, batch mode is used when a user (or
another program) starts running a program and then logs out. mle provides afew optionsthat assist in
running in a batch mode.

The -b option turns off keyboard monitoring (for interactive debugging) while executing models.
Normally, a user can interrupt mle while solving a model, and the interactive debugger can be used.
However this can potentially lead to difficulties because the keyboard must be monitored. While running
in abatch mode, the —b option turns off this monitoring and sightly speeds up execution.

The termination file option —t tellsmle to watch for atermination file while solving amodel. The term file
is given the same name as the program file name, but with a. t r mfile extension replacing the . ml e. If the
fileisfound, mle terminates solving the model at the end of the next iteration.

inter active mode

mle can be run interactively using the-i command line option. When run interactively, commands are
typed directly into the command line. This option is particularly useful when mle isused as a"calculator”,
which is described in the last section of thismanual. Of course, afull program can be written directly from
the keyboard using this option.

Calculator Mode

mle can act like acalculator. In this mode, instead of a program filled with assignment statement, data
statements, and model statements, a series of expressions are given to mle. The expressions are evaluated
and theresult is printed. This can be done either interactively (using the -i command line option) or by
reading in a program file.

This“calculator” mode is assumed when the first keyword of a program isnot M_LE. mle will then execute
all subsequent commands as expressions to be interpreted. Here is an example
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c:\>me -i
sin(pi * 3) This is the user-defined expression
2. 168404E- 0019 And this is what was returned

PDF normal (2, 3) 1, 2 end Conpute the area under normal pdf from2 to 3, nrl, s=2
0. 1498822726114 resulting area

| NTEGRATE z (2, 3) PDF NORMAL(z) 1, 2 end end Expressions can be nested. Integrate
for 2 to 3 a normal pdf with mrl, s=2
0. 1498822847945 This should be close to the previous result

gamm( 3. 8) Eval uates the gamma function

4.6941742051124

sunmmation i (1, 10) 1/i”2 end Sumfrom1 to 10, 1/i2
1.5497677311665

end Ends and returns to DOS

In version 2 of mle, when using calculator mode interactively, there will always be a delay of one
expression before the resultsisreturned. Thisis because an expression can continue indefinitely. For
example, the expression "SI N( 2* pi ) " followed by a carriage return does not complete the expression
because the next line may be "+ 1/2". A new expression is needed to denote the end of the old expression.
Thus, typing "1 pi 2" followed by a carriage return will result in two complete expressions (returning 1
and 3. 1415926535898). The third expression is not yet complete.

Note that if you begin mle with the options -i - v and begin typing expressions, the verbose result will
show the entire expression in functional form (i.e. as a series of functions). For example
c:\>me -i -v
sin(pi~2/4 + 1) This is the user-defined
expressi on
returns
SI N(ADD( DI VI DE(POAER( Pl , 2), 4), 1)) -> -0.320074806512
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Chapter 3
Creating data sets

As a first step in parameter estimation, a data set must be read in or created. This chapter
discusses aspects of creating a data set, including

How to read a data set into mle

How to set up adatafile

How to transform variables

How to drop unwanted observations

The number formats recognized by mle

Reading data from afile

Data sets are read into mle from an input file. They consist of at least one, and usually many,
observations. Each observation is a collection of one or more variables. The mle DATA statement
defines how observations are to be read from afile. The data statement also has mechanisms for
doing transformations to the data as they are being read. In the current implementation of mle the
transformations and other data manipulations provided by the data statement are adequate for
most tasks, but are not particularly powerful. Other programs (spreadsheets or database
managers, for example) can be used for complicated data transformations, and the resulting data
set can be then used by mle.

Naming the datafile

Data sets are created by a DATA statement. The data statement typically works by reading
observations from a data file. This file must be named and opened with a call to the DATAFI LE()
procedure. The call to DATAFI LE() is usualy defined near the top of the program, before the
DATA statement, as in the example in Chapter 1. The data statement begins with the word DATA
and is terminated by a matching END. So, if the name of the data file is MYDATA. DAT, you include
the statement DATAFI LE(" MYDATA. DAT") prior to the DATA statement. Full path names are
permissible: you might call the DATAFI LE procedure as
DATAFI LE(" C: \ STATS\ MLE\ BONES\ DATAFI LE. DAT") .
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The DATA statement

The DATA. . . END statement reads in the data file. Within the DATA. . . END is a sequence of one or
more variable names. Here is a simple DATA statement that creates three variables.

DATA

END

DATAFI LE("test. dat ")

first_tine FI ELD 3
m ssing_data FI ELD 4
last _tinme

FIELD 1

This example shows three components for defining each variable, the variable name, the key
word FI ELD and afield number.

Variable name: Variables names begin with a letter and can then contain any combination of
letters, numbers, the underscore, and period characters. A variable name may be up to 255
characters long and all characters are significant. Examples of valid variable names are:
LAST_ALI VE, VAR ABLE_14 , A REALLY_LONG VAR ABLE_NAME, and A. Variable names are not
case sensitive so the variable abc is the same as ABC and aBc.

In the current version of mle, all variables created in the DATA. . . END statement are defined to be
typereal. Thisis so even if the number format suggests that the variable should be type integer.
Integer values read from the data file are simply converted to real number values. Text strings
can exist within atext file, but must not be assigned to a variable.

mle pre-defines many built in constants and variables, so you should avoid variable names that
exist for some other purpose such as an mle constant (a list of all variables appears in a later
chapter). Likewise, mle uses the period as an internal delimiter for some purposes. Conflicts
might arise if your variable names contain a period; you are free to use periods, but an underscore
might be a better choice.

Field: The word FI ELD refers to which column within an input file a variable is found in. In the
hanmes. dat file used in Chapter 1, four fields (or columns) existed in the input file. The field
specifier must be a positive integer constant.

A number of other elements can be added to a variable definition as well. These are defined
below, but the grammar used for specifying each variable is:

<vari abl e

name> [FIELD x [LINE y]] [= <expr>] [DROPIF <expr> | KEEPIF <expr> ...]

Line: Sometimes observations take up multiple lines in the data file. An example might be times
to first birth for a married couple in which female characteristics appear on the first line and the
mal e characteristics occur on the second line. When the LI NE keyword is used, e.g. LI NE 2, mle
keeps track of the maximum number of lines specified this way. Then, all observations are
assumed to have the maximum number of lines. If observations are each on one ling, the
statement LI NE 1 may be dropped—one line per observation is assumed. The line specifier must
be a positive integer constant.

The remaining specification provides ways of transforming variables and dropping (or keeping)

observations. The next several sections discuss transformations and gives additional examples of
declaring variables in the DATA section.
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Dropping or keeping observations

A series of statements to drop (or keep) individual observations from the input file can be
specified as the last items in a variable declaration within the DATA statement. Here are some
example of this:

DATAFI LE("test. dat")
my_drop_val ue = 100
DATA
first_tine FIELD 3 DROPIF first_time <=0
m ssing_data FIELD 4 DROPIF missing_data <> 1
last _tinme FIELD 1 KEEPIF last_time > 0
DROPIF (last_time == INFINITY) OR (first_time < last_tine)
alt_m ssing FIELD 5 KEEPIF alt_missing == missing_data
END

The DrRoPI F keyword specifies that a condition will be tested; if the condition is true, then the
entire observation is dropped. The first DRoPI F statement here specifies that the entire
observation isto be dropped if first_time islessthen or equal to zero. The KEEPI F keyword is
like DROPI F except that the observation will be kept if the condition is true, and dropped
otherwise. The grammar is KEEPI F <bexpr> and DROPI F <bexpr>, where <bexpr> is a boolean
expression. A boolean expression is one that evaluates to true or false. Typically, boolean
expressions use relational operators (>, >=, <, <=, ==, <>) and boolean operators (NOT, AND, CR,
XOR). Functions that return boolean values can be used as well.

Multiple KEEPI F and DROPI F statements can be used for a single variable. As mle reads in
variables, each condition is tested in sequence, until the end of the tests are reached or the
observation deemed dropped (that is, boolean short-circuiting will be used to drop variables at the
first opportunity). The third example is a test that keeps the observation if | ast _ti ne is greater
then zero; the second test will examine if the value is equal to I NFI NI TY (a built-in constant) or
lessthanfirst_time, and drop the observation if either condition istrue. Then, if the variableis
to be dropped, the entire observation is dropped. Note that the value of other variables in the
current observation may be used in aDROPI F and KEEPI F statement.

Observation frequency

Each observation in a data file (which typically occurs on a single line) is usualy a single
observation. Sometimes it is convenient to place multiple identical observations on a single line
along with a count of how many observations are represented. The names FREQUENCY Of FREQ
have a special meaning when defined as variables in a DATA statement. They are taken as the
frequency (or count) for each observation. (If both variable names are used, FREQUENCY is taken
asthe frequency variable). For example:

DATAFI LE("test. dat")

DATA
frequency FIELD 1 DROPIF frequency <= 0
start_tine FI ELD 2
last _tinme FI ELD 3

END

will take the first field in "test.dat" as the frequency for each observation. The maximizer will
automatically use the frequency variable as a count of repeated observations.

Transformations of data

A number of simple data transformations can be made within mle. The transformations are done
while the data are being read from the input file. Examples of transformations are:
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DATA
event _tine FIELD 5
direction FI ELD 6
wi ngl engt h FI ELD 8
est age

END

(event _time - 1900)*365.25 DROPIF event_tine < 0
COS(di rection)

LN(w ngl engt h/ 2. 25)

3.7 + winglength*12. 76 + wi nglength”2 * 1.14

Transformations begin with '=" which is followed by an expression. Expressions are discussed in
great detail in the reference manual. Basically, expressions in mle are similar or identical to
expressions found in other computer languages and spreadsheets.

In the first variable declaration of the example, event _ti me isread in from the input file. That
initial value of event _ti me isthen used in the transformation, and a new value of event_time is
computed as (event _time - 1900)*365.25. This result is assigned back to event _ti ne.
Following that, the DROPI F statement will conditionally decide whether or not the observation is
to be dropped.

Variables are read in the same order in which they are defined. This is true even if they are read
over severd lines. Once a variable is defined, its value can be used in later transformations.
Then, when reading in the data file, mle will take the value of that variable for the current
observation for use in the later transformation. An example might be:

DATA
subject_id FIELD 1 DROPIF subject_id =1022 DROPIF subject_id = 3308
bi rths FIELD 6 DROPIF births = -1

m scarriages FIELD 8 DROPIF miscarriages = -1

abortions FIELD 9 DROPIF abortions = -1

pregnancies = births + miscarriages + abortions KEEPIF pregnancies > 0
END

This data statement will read subj ect _i d, then bi rt hs, then i scarri ages and then abor ti ons.
These variables will then be added together and assigned to the variable pregnancies. An
observation will be dropped if any of births, ni scarri ages, Or aborti ons are negative one (in
this case, the "missing” code), or if two particular subj ect _i ds are found, or if pregnancies =
0.

Creating dummy variables

Dummy variables (sometimes called indicator variables) are variables that take on the values O
and 1 to denote two different states for an observation. A typical example is a dummy variable
for an individual's sex, taking a 0 for femalesand a 1 for males. Frequently dummy variables are
used to simplify a more complex continuous or ordinal variable. Materna age, for example,
might be measured as a continuous variable, but the characteristics of interest are teen mothers,
mothers from 20 to 35, and mothers over age 35. Two dummy variables can be created from the
continuous measure of age. The reference age group can be defined as mothers from 20 to 35.
One dummy variable is created that takes on the value 1 for mothers under 20 and O otherwise.
And the second dummy variable takes on a value of 1 for mothers over 35, and a 0 otherwise.

Dummy variables are easy to create within the DATA statement. Suppose you are measuring the
length of some study animal. Y ou want to create four dummy variables for the length range short
[0 to 30 mm)°, medium [30 to 40 mm) long [40 to 50 mm) and very long [50+ mm):

® The [xxx, yyy) notation defines an interval that includes exact number xxx and up to, but not including yyy.
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DATA
I ength
is_short
i s_medi um
is_long
i s_veryl ong
END

i nm
]

D 5 DROPIF length <= 0
length < 30 THEN 1 ELSE 0
(length >= 30) AND (length < 40) THEN 1 ELSE 0
(length >= 40) AND (length < 50) THEN 1 ELSE 0
length >= 50 THEN 1 ELSE 0

Skipping initial linesin the datafile

Data files may have initial descriptive lines at the top that must be skipped. The | NPUT_SKI P
variable controls how many linesto skip in adatafile. For example, if the first four lines must be
skipped, the line

INPUT_SKIP = 4

should appear before the DATA statement. It will direct mle to discard the first four lines of the
datafile. The default valueis zero so that no lines are skipped.

Delimitersin t

he datafile

Data files consist of a series of text elements separated by one or more delimiters. One or more
delimiters must appear between each record within a data file. The delimiters define the fields
within each line in which variables reside. By default, the characters space, tab, and comma are
treated as delimiters. You can redefine the delimiters by changing the variable DELI M TERS
before the DATA statement. If, for example, you wanted the colon and semicolon character as the
only valid delimiters, you would add the line:

| DELI M TERS = "

Creating observations without afile

Sometimes it is useful to create observations, rather than reading observations from afile. For
example, you can smulate data sets using the random number generator in mle. To create
variables, smply set the variable CREATE 0OBS to some positive number, prior to the DATA
statement. That number of observations will be created. Hereis an example

SEED( 8936)
DATA

CREATE_OBS = 10

{create 10 observati ons}

{set the random nunber generator seed}

var 1l = QUANTI LE WEI BULL(RAND) 3.2, 2.5 END {draw variates froma Wibull(3.2,2.5) pdf}
var 2 = | RAND( 100, 200) {draw di screte variates froma unifornt
var 3 = si n(pi *RAND) {sine-transforned vari at es}

END

that yields the following data set:

varl var2 var3

2.6679777032 157.0 0.9809586099

3.7136215828 117.0 0.2439682743

3.8714564727 173.0 0.7307000229

4.6521659697 139.0 0.8642639946

2.5649275178 197.0 0.8824737096

0.6017912164 136.0 0.0966561712

2.6553390371 136.0 0.3989167160

0.7412253145 198.0 0.7812333882

2.7631538913 185.0 0.3651667470

4.0772026291 193.0 0.4812826931
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Printing observations and statistics

Some other variables can be used to fine-tune the DATA statement.

The variable PRI NT_DATA_STATS, when set to TRUE, prints summary statistics for each variable,
including the mean, variance, standard deviation, minimum and maximum. The default is TRUE,
so thisreport can be suppressed with PRI NT_DATA_STATS = FALSE.

When PRI NT_OBS is set to TRUE, each observation is printed to the output file. The report is
printed after all transformations have been done. The default value is FALSE, so you must have
the statement PRI NT_OBS = TRUE to print the observations.

The variable PRI NT_COUNTS, when set to TRUE, prints out how many lines were read from the
input file, how many observations were kept, and how many observations were dropped. The
default value is TRUE, so these reports can be suppressed with PRI NT_COUNTS = FALSE.

The PRI NT_BASI C variable, when TRUE directs that the title, parameter file name, input file name,
and the count of variables to be read from the input file are printed. The PRI NT_FI ELDS variable,
when TRUE, prints out the name of each variable and the field it is read in from the input file.

An example of creating and reading a datafile

Data file are read as ordinary ASCII text files, which means they can be created with any text
editor. Word processors can be used to create files as well, but the results must be saved as
ASCII text file. Nearly all word processors provide an ASCII text option. An example of a
typical data file can be seen in Chapter 1, but here we will examine a more complicated data file
and write the mle program to read and process the file.

The current version of mle creates variables of type real, and attempts to read real numbers from
each field for which a variable is defined. Even so, any delimited text can appear in fields that
are not assigned to variables. Consider how we would create a DATA statement to read the
numeric values for the following file:

Last
Smith
Jones
Connor

First,M Age Anpunt Mor e Rate Tine
Janes, A 42 12000 TRUE 18% 4.2
Davi d, J 38 8000 FALSE 12% 3.1
Mary 50 11000 TRUE 19% 2.1

First of all, notice that the first line of the fileis acomment. Clearly, we do not want mle to treat
this line as an observation, so we can discard the line by setting | NPUT_SKI P=1. From there, the
data file has one line per observation, with each variable corresponding to one column (meaning
that we will not need to use the LI NE specification here; Some data files place each observation
across multiple lines, so that the LI NE option in the DATA statement must be used).

This sample data file consists of seven fields delimited by space characters. Since the space
character is one of the default delimiters, we do need to change the DELI M TERS variable to
recognize the space as such. But, since we have commas embedded in the text that should not to
be taken as a delimiter, we must redefine DELI M TERS to exclude the comma and include the
space (and the tab character, if necessary). The numeric values appear in fields 3, 4, 6, and 7.
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We do not need to do anything with fields 1, 2, and 5. Let suppose that we want to convert Time
from years into months. Here is the complete mle code to read and process this file (but no
analyses are specified):

M.E
DATAFI LE( " THEDATA. DAT")
PRI NT_OBS = TRUE {print out each observation}
INPUT_SKIP =1 {get rid of the header I|ine}
DELI M TERS = " {spaces only--treat conmmas as text}
DATA
age FI ELD 3
amount FIELD 4 DROPIF ampunt <= 0
rate FI ELD 6 {%is a legal nunber suffix in me}
tine FIELD 7 = tine*12
END
END

Running mle on this file produces the output to the screen (or standard output) since no OQUTFI LE
procedure was called. Here are the results:

Table 2. Sandard metric/S suffixes (Taylor 1996) and |EC suffixes for integer and real numbers.

Suffix Name Conversion Suffix Name Conversion
da Deka " 10 d deci 10"
h Hector “10° c,% centi, percent 71072
k Kilo "10° m milli "10°®
M Mega “10° mu micro ~10°
G Giga “10° n nano 710°
T Tera -~ 10%2 p pico “101%2
P Peta “10% f femto 10
E Exa ~10% a atto “108
z Zeta “10* z zepto “10%
Y Yotta “10% y yocto “10*
Ki Kibi " 210
Mi Mebi ~ %0
Gi Gibi 2%

Ti Tebi g
Pi Pebi %0
Ei Exbi g
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3 lines read fromfile THEDATA. DAT

3 Observations kept and 0 observations dropped

NAVE age amount rate tinme
1 42.0000000 12000.0000 0.18000000 50.4000000
2 38.0000000 8000.00000 0.12000000 37.2000000
3 50.0000000 11000.0000 0.19000000 25.2000000

MEAN  43.3333333 10333.3333 0.16333333 37.6000000

VAR 37.3333333 4333333.33 0.00143333 158.880000

STDEV 6.11010093 2081.66600 0.03785939 12.6047610

M N 38. 0000000 8000.00000 0.12000000 25.2000000

MAX 50. 0000000 12000.0000 0.19000000 50.4000000

Accessing observations

Variables created by the DATA statement are treated somewhat differently than are other variables.
The value of a particular variable changes depending on a counter that keeps track of the current
observation. The value of a variable for the current observation is accessed by specifying the
variable name. What determines the current observation? Within MODEL statements, the current
observation is usually set by the DATA function. Internally, the DATA function loops through all
observations and sums the individua likelihood computed for each observation. The LEVEL and
LEVELDELTA functions work in similar ways.

Here are more specific details on how the individual observations are accessed. Consider the
variables read in the example above. When the DATA function is specified with a model, a
variable called D_I DX isinitialized to the value of 1. When D_I DX is 1, any reference to the DATA
variables returns the value of the first observation. Thus, the variable age yieldsthe value 42. As
each likelihood (within the DATA function) is computed, the value of D_I DX is incremented up to
the last observation.

The total number of observations read by DATA statement is accessed by the variable N_0BS. This
variable is assigned the count of lines of observations read in (assuming one line per observation)
and kept (i.e. not dropped). However, this variable is incorrect if a single line represents more
than one observation. For example, if the FREQUENCY variable is defined and some observations
have frequencies other than one, the N_oBs will no longer represent the correct number of
observations. Another variable, TOTAL_OBS, isthe sum over all FREQUENCY observations, and can
be used as a count of the total number of observations.

Internally, variables are stored as special array variables. Whenever a data variable name is
specified, the value of D I DX is used as the index into the array. All observations are easily
accessed outside of the DATA, LEVEL, or LEVELDELTA functions by directly manipulating D I DX.
Here is an example that builds on the previous example. The following code, which is placed
after the DATA statement, counts and prints the number of observations under and over the age of
40:

| essthan40 = 0
greaterthan40 = 0
FOR D IDX = 1 TO N.OBS DO
| F age >= 40 THEN
greaterthan40 = greaterthan40 + 1
ELSE
| essthan40 = | essthan40 + 1
END {if}
END {for}
WRI TELN(| esst han40, " < 40 and ", greaterthan40, " >= 40")
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Number formats

The mle language primarily works with numbers. With this in mind, a wide variety of number
formats, including some automatic conversions, are supported. The standard formats for real and
integer numbers are recognized, so that "3. 14159", "-12. 14" and "0. 001" are read as would be
expected. Real numbers must have a digit both before and after the decimal point, so ".23" is not
valid but "0. 23" is. Real numbers can be specified in scientific notation so that "2. 1E- 23",

"0. 3E12", "- 1e4", "12345e- 67" are valid numbers.

Table 3. Sandard number formats.

Format Examples Conversion Result
D 1, 200 integer
d.d, d. 3.1415, 3. real
ds, -ds, d.ds, -d.ds, 14%, 23.7M, 45.7da, 2n, 2.418E Metric / other suffix (Table2)  rea
dEd, dE-d, d.dEd, d.dE-d, 3e23, 511E-10, 31.416e-1, 7.0E-10, Standard exponential format. rea
12.e-6, 1.45E-3, 1.0E0 ,
d.Ed, d.E-d XEy b x* 10’
ORv ORXLVII, OrMXVI, Ormdclxvi Roman numeralsto integer integer
dXy 2x1001 (binary), 8X3270 (octal), Convertsy from base d (from  integer
16xA4CC (hex), 32x3vg4h (base 32). 2 to 36) into integer.
d:d:d, d:d:d.d, d:d, d:dd 10:42, 14:55:32, 10:40:23.4, 16:53.2 24-hour time into hours. real
Hours must be 0-24.
d:d:dAM, d:d:dPM, d:d:d.dAM, 10:42AM, 2:55:32pm, 10:40:23.4am 12-hour time with AM and rea
d:d:d.dPM, d:dPM, d:dAM, PM suffixesinto hours. Hours
d:d.dAM, d:d.dPM must be 0-12.
dHd'd", dHd'd.d", dHd', dHd.d", 230h16'32", 14H32'6", 100h22', Degree/hour minute, second real
dHd.d" 30H32.2', O0h12', OH12'3" format. Converted to rea
angle/time.
ddd',dddd', d'd,ddd", - 230'16'32", 14°32'6", 100°22, 30°32.2,  Degree, minute, second real
ddd', d, dd, d°dd", d°dd.d", 14°, 230°16'32", 14°32'6", 270°10'0", format, converted to radians.
d°d, d°d.d", d°, d.d° 30°18.2', 3.4°
dd', ddd", d, dd, d", d.d" 12'32", 166'12.9", 19', 14.7', 12", 607.3"  Minute-second and second real
format, converted to radians.
d dd 12 5/16,3 2/3,0 17 Fraction notation. real
dDdMdY 16d12m1944y, 1D6M 1800Y Date converted to Julian day integer
dMdDdY 12m16d1944y, 6M 1D1800Y Date converted to Julian day integer
dydvdD 1944y12m16d, 1800Y 6M 1D Date converted to Julian day integer
Dmmmy 14Dec1999, 30jun1961, IMAY 1944 Date converted to Julian day integer

d isastrings of one or more positive digits; sisaone or two character case-sensitive metric or percent suffix (see Table 2), visastring of
one or more Roman numera digits {IVXLCDM}, y isastring of one or more characters, mmmis a 3-character English month name.
E.g. jan, Feb, MAR, etc. The degree character (°) is available on some hardware platforms as ASCII code 230. On many Intel platforms,
holding down the <ALT> key and typing 230 on the numeric keypad gives the degree character.

The Greek letter micro (n) is available on some hardware platforms as ASCII code 248. On many Intel platforms, holding down the
<ALT> key and typing 248 on the numeric keypad gives this character.
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Less common formats include numbers with metric and percent suffixes, numbers interpreted as
times, numbers in an angle notation (one format that converts degrees to radians), numbers in
bases from 2 to 36, Roman numerals ("why?' you ask. Why not!), numbers in fraction notation,
and severa date formats. These formats are supported in data files as well as numeric constants
within an mle program. Table 3 is a comprehensive list of formats recognized by mle , and Table 2
isalist of suffixes permissible on standard integer and real format numbers.
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Chapter 4

Building Likelihood M odels

The MODEL statement is at the heart of parameter estimation. It specifies the likelihood, defines
parameters, and specifies which parameters are to be estimated. A complete understanding of
how models are built in mle requires an understanding of the structure of the MODEL statement,
an understanding of parameters and how they are specified, an understanding of how expressions
are specified and are built into likelihoods, and an understanding of the specification for running
models.

This chapter discusses the MODEL statement. It is assumed that you understand the basics of
expressions and data types for the mle language. The reference manual and Chapter 1 provides
much of the necessary background on expressions. This chapter covers several aspects of
expressions that are primarily used for building typical likelihood models in mle: the PARAM
function, the PDF function, the DATA function, and LEVEL functions.

Structure of the MODEL Statement

The basic structure of the MODEL statement looks like this:

MODEL
<expr essi on>

RUN [ THEN ... END]
<runlist>

END

The single <expression> in the MODEL statement defines the likelihood that is to be maximized.
Technical details about writing expressions are given in the Reference manual; some details are
provided here as well.

The optional THEN..END clause gives you a way to do something after each model is solved. For
example, you could insert code to transform the parameters from one form into another, plot
distributions, or write results to another file. Most legal statements can come between the THEN
and END (except DATA..END and MODEL ..END statements).

The <runlist> is aseries of one or more commands that specify which of the parameters are to be
changed in maximizing the likelihood. The commands are FULL, REDUCE, or W TH.

A simple example

Here is an example of asimple model for finding the two parameters of anormal distribution from a series of interval-
censored observations. Suppose there are N interval-censored observations. The interval in which events occur fall between
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the times topen aNd tyose. The goal isto estimate the parameters mand s of the normal distribution (we will use mu and si gna
as parameter names).

The likelihood needed for this problem looks like this:

N
Lngs(tOPeﬂ ImS)' S(tclosa |mS)H

where S(t) is the survival function for a normal distribution. The mle program for this likelihood
looks like this:

{1}
{2}
{3}
{4}
{5}
{ 6}
{7}
{8}
{9}

MODEL
DATA
PDI

EN
END
RUN
FULL

{10} END

F NORMAL(topen, tclose)

PARAM nu LONV =5 H GH = 14 START = 8 END
PARAM sigma LOW= 0.1 HHGH =5 START = 1.2 END
D {pdf}

{dat a}

Everything beginning with the DATA function on line 2 to the END on line 7 is a single expression
that defines the likelihood. The DATA function corresponds to the product in the likelihood. It
loops through all data and evaluates the expression nested within it for each observation.

The expression PDF NORMAL(t open, tcl ose)..END defines the area under a normal distribution
in the interval [topen, tclose). Finaly, the PARAM functions tell mle that mu and si gma are the
parameters in the model that are to be changed in pursuit of maximizing the likelihood. Values
for the parameters nu and si gma will be tried until those that maximize this likelihood are found.

The word FULL between RUN and END tellsmie that al parameters defined in the likelihood—in this
case nu and si gma—are to be manipulated in order to maximize the likelihood. Alternatively, the
REDUCE or W TH keywords can be used in place of FULL.

Another example

The expression that defines the likelihood within a model statement can become much more
complicated than the first example. Consider the following likelihood:

N
L:O{ pgs(topeq |nl1sl)_ S(tclose‘ |n1151)H+(1' p) gs(topeq |n-b’sz)_ S(tclosq |®’SZ)E}'

i=1

Thisisthe likelihood for a mixture model, in which observations are drawn from two distributions (that is, two different sets
of parameters for the same distribution), and mixed at some fraction p. This type of model arises when one cannot tell which
of the two distributions observations are drawn from. An example might be a collection of people heights with no
information on the sex of each individual. Even without such information, the proportion of each sex can be treated as a
latent variable, and sex-specific parameters can be estimated along with the proportion.

This more complicated likelihood can be coded as follows:
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MODEL {m xture of two normal distributions}
DATA
M X(
PARAM p LOWNW=0 HGH=1 START = 0.5 END

PDF NORMAL(t open, tcl ose)

PARAM nul LOW=5 HGH = 14 START = 8 END
PARAM sigmal LOWNW= 0.1 HGH =5 START = 1.2 END
END { PDF}

PDF NORMAL(t open, tcl ose)
PARAM  nu2 LONV= 0 HI GH
PARAM sigma2 LOW= 0.01 H GH
END { PDF}
) {mi x}
END { dat a}
RUN
FULL
END {odel }

6 START = 2 END
5 START = 1.2 END

Here, again, the <expression> begins with the DATA function and ends with a matching END just
before the RUN. Within the DATA function, the M X function is immediately called, and the M X
function contains three arguments separated by commas. Each of these three arguments contains
an expression. Here, we see one parameter p (a mixing proportion) and two function calls:
PDF. . . END. Within each PDF. . . END, two parameters are defined.

The model contains a total of five parameters. The FULL keyword specifies that al parameters
will be estimated.

Runlist

Parameters that are defined with the PARAM.END function can be free parameters, and therefore
estimated as part of maximizing the likelihood. Alternatively, they can be constrained for the
purpose of hypothesis testing or otherwise modifying the model. Parameters may be held
constant, or fixed to the value of another parameter. These are called fixed parameters, and an
estimate will not be found for them when the likelihood is maximized. The <runlist> in mle
provides the mechanism to specify a series of one or more models containing different
combinations of free and fixed parameters.

For example, in the mixture model likelihood above, we may have reason to believe that the
proportion parameter (p) ought to be 0.5. Perhaps this is because of the nature of the system
being modeled. We could first fit our collection of t values to the model with parameter p free,
and secondly fit it with p held constant to 0.5. Statistical criteria (alikelihood ratio test, Akaike's
Information Criterion, or a Walt test) can then be used to determine whether p deviates from the
value 0.5.

The run list defines which parameters are free and alows the user to test reduced models. The
run list begins with the word RUN and ends with a matching END. Between the RUN and the END
comes a list that specifies how the model is to be run. Each model can be run with a different
combination of free and fixed parameters. Generically, arunlist looks like this:

RUN
FULL [ THEN ... END]
REDUCE <reducel i st> [ THEN ... END]
WTH <withlist> [ THEN ... END]

END
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FULL
When FULL is specified, all model parameters defined with the PARAM .END function are taken to
be free parameters and estimated. Only one FULL is usually needed for a model.
REDUCE
The ReEDUCE keyword provides a mechanism to constrain some parameters of the model. The
REDUCE keyword isfollowed by alist of constraints. All parameters of amodel will be considered
free except those constrained in the <reducelist>. Parameters may be constrained to other
parameters, to constants or to variables. More than one REDUCE keyword may occur in a single
run list.
The <reducelist> is a set of one or more congtraints that look like assignment statements.
Parameters so constrained will not be estimated. Consider the following likelihood:
N 7 'b AN
L=Q gf (t [me™ *=,s)H.
i=1
This likelihood estimates the effect of the variable sex on the mean of a distribution. Suppose f(t)
isanormal distribution. This likelihood would be written as
largeeffect = -1.9
MODEL
DATA
PDF NORMAL(t open, tcl ose)
PARAM mean | ow=5 HI GH=500 START=100 FORMELOGLI N
COVAR sex PARAM b_sex LOW:-5 HI GH=5 START=0 END
END { par ant
PARAM st dev LOWS0. 001 HI GH=25 START=10 END
END {pdf nornal}
END {dat a}
RUN
FULL {Runs the npdel with no constraints}
REDUCE b_sex = 0 {One constraint}
REDUCE nean = 100 b_sex =0 {Constrains 2 paraneters}
REDUCE b_sex = | argeeffect {Fi xes sex to another param or variabl e}
END
Notice that there are four versions of the model that will be estimated. The first case (FULL)
estimates al three parameters (nmean, b_sex, and stdev). The second case constrains the
parameter b_sex to 0 (no effect), so that only two parameters are estimated. The third case
constrains the parameter nean 4 and b_sex to 0, so that only one parameter is estimated. The
forth REDUCE constrainsb_sex to the value of avariable.
WITH

The w TH keyword provides a mechanism to include certain parameters in a model. The w TH
differs from the FULL and REDUCE keywords because a single w TH command can generate more
than one model. The w TH keyword is followed by alist of parameters to aways include in each
model. Additionally, alist of parameters can be specified that will be used to create a series of
models. More than one w TH keyword may occur in asingle run list.

The <withlist> is a list of parameters. Parameters are listed in one of two ways. Parameters
listed outside of parentheses are included in every model. Parameters listed in within parentheses
are included in some models, but not others—essentially, all permutations of models are
generated from parameters listed in parentheses.
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Here is an example. Suppose the likelihood of interest specifies a logistic regression model with
three covariates:

1
1+eXp(b0 +byx; +b, %, +b3X3i)a .

NC

N
L= B4,

i=1

@@ D

B(t, p) isaBernoulli trial with parameter p; the function returns p whenever t is 1 (success) and
returns 1 — p when t is O (failure). This likelihood has four parameters. bo defines the baseline
probability of success. b, to bs are the effects of covariate x; to X3 on the baseline probability,
respectively.

A natural way of estimating this model is try every permutation of covariates, and take the most
parsimonious of the models. Hereisalikelihood that will do just that.

MODEL
DATA

PDF BERNOULLI TRI AL( success)
PARAM b_0 LOW = -500 H GH = 500 FORM = LCOd STI C

COVAR x1 PARAM b_1 LON = -10 H GH = 10 START = 0 END
COVAR x2 PARAM b_2 LON = -10 H GH = 10 START = 0 END
COVAR x3 PARAM b_3 LON = -10 H GH = 10 START = 0 END
END {parant
END {pdf}
END {dat a}
RUN
WTH b_0 (b_1 b_2 b_3)
END {nodel }
The single w TH keyword creates atotal of eight models. All of the models include the parameter
b_0. And, al models will be created from thelist (b_1 b_2 b_3). Hereisthe equivalent list of
models that will be estimated from this single w TH statement.
MODEL
RUN
WTH b_0 b_1 b_2 b_3
WTHb_0 b_1 b_2
WTH b_0 b_1 b_3
WTH b_0 b_2 b_3
WTH b_0 b_1
WTH b_0 b_2
WTH b_0 b_3
W TH b_0
END {nodel }
The use of parameters within parentheses in the <withlist> raises the issue of the number of
models that will be created. Since each parameter has two states (included and not included),
there are 2 models formed, where K is the number of parameters given in parentheses. The
practical use of w TH in this way depends on how quickly a single model solves. With eight
parameters, there are 256 models estimated. At 10 parameters, the number is 1024, and 15
parameters yields 32768 models.
THEN...END

Each of the keywords FULL, REDUCE, and W TH can be followed by an optional THEN..END clause
gives you a way to do something a particular model is solved (or set of models for w TH). For
example, you could insert code to transform the parameters from one form into another, plot
distributions, or write results to another file. Most legal statements can come between the THEN
and END (except DATA..END and MODEL ..END statements).
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Bayesian model averaging

The w TH keyword can generate many models from a single line of text. Idedlly, the uncertainty
of estimating multiple models can be taken into account. mle supports Bayesian model selection
and Bayesian model averaging. Accessible introductions to these topics can be found in
Burnham and Anderson (1998) and Raftery (1995). The following show how to enable Bayesian
model selection and the types of model selection are supported:

Al C_SELECT = TRUE {selects via Akaike's information criterion (AIQ}
Al CC_SELECT = TRUE {sel ects via sanpl e-size corrected Al C
Bl C_SELECT = TRUE {selects via Bayesian information criterion (BIC)}

When any of these three variables are set to TRUE, Bayesian model averaging will be conducted
according to the criterion. Bayesian model averaging uses certain assumptions to find relative
probabilities that each of the models is the true model or the best fitting model. A final set of
parameters (estimated according to the best overal model) is computed, and a second set of
standard errors are computed that is an average over all models, weighted by the probahility of
each model. The standard errors contain a component of variability from model-selection
uncertainty and a component for uncertainty of the parameter estimates. See Burnham and
Anderson (1998:325).

Results

The output report from a mle MoDEL statement consists of a number of smaller reports. Most
reports can be enabled or disabled by modifying variables. Some examples are: parameter
estimate reports, the variance-covariance matrix, a list of the individual likelihoods for each
observation, and tables of distributions, Bayesian model averaging reports, etc. This section
describes the output options and how to direct the output to afile.

Defining the output file

mle defines a special file that is used for the results of DATA and MODEL statements. The OUTFI LE is
used to define where the results will be sent (otherwise they are sent to the screen). A number of
variables control the format of the output. Typically, an program used to estimate a likelihood
model contains a line like the following near the top of the program:

OUTFI LE("anal ysi s. out") {wites to the file analysis.out} |

As an aternative to specifying the file name explicitly, the function DEFAULTOUTNAME can be
called. This function will use the name of the program to automatically generate an output file
name. Suppose you run the command mi e nyprog. ni e. The statement

[ cUTFI LE( DEFAULTOUTNANE) |

Will create afile called nypr og. out for the output.

Sandard Error Report

A report with estimated standard errors is printed when PRI NT_SE = TRUE. The parameters will
be written with an estimate of standard errors. By default standard errors are written to the
output file. Whenever standard errors are reported, a variance-covariance matrix will be
estimated. |If the matrix is singular (which can happen for a number of reasons), the standard
errors are +¥ .

When the variable PRI NT_SHORT = TRUE, the report format is modified so that all parameters estimates are printed on one
line.
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Variance-covariance Matrix

The estimated variance-covariance matrix is printed by setting PRI NT_VCv = TRUE. The number
of elements of the matrix printed on asingle line is normally 5, but can be changed by modifying
the value of vcv_W DTH.

The asymptotic variance-covariances of maximum likelihood estimates are found by inverting the
local Fisher's information matrix | for the n parameters:

€ 27106 ge- 7 o
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g éfa g e%9,a, g
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The expectations are, ideally, taken at the true parameter values. In practice, we have parameter
estimates, not the true values. Hence, numerical estimates of the information matrix, IA are
found by plugging in parameter estimates, EI An estimated variance-covariance matrix is then
estimated as V =1 2.

mle uses two different estimates for the variance-covariance matrix. Either one or both methods
may be used by setting | NFO_METHODL Or | NFO_METHOD? to TRUE or FALSE. The default method
(I NFO_METHODL=TRUE) computes the variance and covariance matrix by inverting Nelson's (1983)
approximation to the Fisher's information matrix. The xth, yth element of that matrix is computed
as E,, = (1L /1%) (1L /1), using the standard perturbation method for approximating the
1

partial derivative. Appropriate sizes for Dx and Dy are iteratively computed for each parameter.
mle initially uses a Dx (and Dy) of DX_START and then iteratively finds a Dx that changes the
loglikelihood by at least DX_TOOSMALL but no more than DX_TOoBI G. Up to DX_MAXI TS such
iterations are permitted. The default values are amost always suitable. The one serious
limitation of this method is that it does not work well for hierarchical likelihoods.

The second estimate of the variance-covariance matrix is computed by estimating the second
partial derivative by numeric perturbation. This method does not truly compute an expectation,
and is sometimes inaccurate—you can compare the two methods by setting both
I NFO_METHOD1=TRUE and | NFO METHOD2=TRUE. Nevertheless, when hierarchical likelihoods are
being computed, this method will produce better estimates.

Confidence Interval Report

An approximate confidence region for each parameter can be estimated by mle. The report is
printed when PRINT_CI = TRUE. When the variable PRI NT_SHORT = TRUE, the report format is
modified so that all parameters estimates are printed on one line.

The confidence interval is defined as the extent of upper and lower perturbations away from the
estimates that change the loglikelihood by a specified amount. For example, approximate 95%
confidence intervals are formed when the change in the loglikelihood in each direction is 5.0239.
This value corresponds to an expected probability of 0.025 on each tail of the chi-squared
distribution with one degree of freedom. Over both directions, the total interval can be
considered a 95% confidence interval for the parameter.
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The interpretation of the one-dimensional confidence region must be done with caution, as the
method assumes that parameters are uncorrelated. Figure 4 shows what happens when
parameters are correlated (which is quite common). Panel a shows the contour of the
loglikelihood surface when parameter 1 is changed over the p; axis, and parameter 2 is changed
over the p, axis. The bold ellipsis represents the desired confidence level (say, 95%). The dotted
lines show the confidence limits when p; is perturbed along the axis to each side of the estimate;
this occurs where the bold elipse intersects the p; axis. Pand b. shows what happens when
parameters are correlated. Now, the dotted lines still show the 95% confidence limits when p; is
perturbed from the estimate and p, is held constant at its maximum. The dashed lines show the
true confidence region defined as the greatest extend of the 95% confidence ellipse over the space
of pp and p,. It is easy to see that the one-dimensional confidence interval will aways
underrepresented the true interval p; and p;, are correlated.

Py

a b.

Figure 4 The log likelihood contour over the space of parameters p; and p,. The bold ellipse represents the target change in likelihood
that defines the upper and lower bounds of the confidence interval. Panel a: uncorrelated parameters, where the one dimensional change
in likelihood isidentical to the change over both parameters. Pandl b: correlated parameters where the change in likelihood (dotted lines)
isless than the change in likelihood over both parameters (dashed lines).

Given the limitation of these confidence intervals, why use them? There are several cases where
they are helpful:

When a single parameter is being estimated.

In some models where parameters are statistically independent, like while estimating the
location and scale parameters of a normal distribution.

There are circumstances when the variance-covariance matrix is singular. For example, this
happens when one or more parameters are collinear and don't independently contribute
information to a likelihood. Under these circumstances, the confidence intervals are helpful for
identifying poorly identified parameters so that the model can be modified to eliminate collinear
parameters.

The confidence intervals are found iteratively in one dimension at atime. For each of the limit
pairs, mle first evaluates the likelihood at the extremes Low+ Cl _LIM T_DELTA and HI GH +
Cl_LIMT_DELTA. Convergence occurs when the difference between the likelihood at the
parameter estimate and the confidence limit estimate is equal to I _cH sQ down to an absolute
error of £C1 _CONVERGE. The maximum number of iterations for each of the limitsisc _MAXI TS.
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Report with no standard error or confidence intervals

At times, it is desirable to print parameter values without standard errors or confidence intervals.
This can be done by including the assignment PRI NT_PARAMS = TRUE. This will print out an
additional report with parameter estimates. Additionally, PRINT_SE and PRINT_CI can be set to
FALSE so that neither confidence intervals nor the variance-covariance matrix are computed.

When the variable PRI NT_SHORT = TRUE, the report format is modified so that all parameters
estimates are printed on one line.

Printing Distributions
The values of all surviva function, the probability density function and the hazard function can
be tabulated for each PDF function in the likelihood. To do so, set PRINT_DI STS = TRUE. All
distributions that are in the model will be tabulated. The tabulation starts at value DI ST_T_START,
ends at the value DI ST_T_END, and is tabulated for DI ST_T_N equally spaced points. The mean
values of data variables (e.g. covariates) are used when computing the distributions.

For example, to print the SDF, PDF, and hazard function at 101 points from O to 100 use the
following code:

PRI NT_DI STS = TRUE {print out distributions}
DIST_T_START =0 {l owest value to print}

DI ST_T_END = 100 {hi ghest value to print}

DI ST_T_N = 101 {nunber of points to print}

Other Printing Options

The M N_SI GNI FI caNT variable controls the minimum number of significant digits in each
numeric field of the confidence interval and standard error reports. More significant digits are
displayed if there isroom. If the number of leading zeros becomes too large, that number will be
printed in scientific notation (e.g. 1.2343E-56).

The variable PRI NT_I NFO, when TRUE, directs mle to print basic information about the model,
including the method being used, the maximum number of iterations, the maximum number of
function evaluations, and the criterion for normal convergence.

The PRI NT_FREE_PARAMS variables, when TRUE, directs mle to print a list of all free parameters
and the attributes of those parameters.

The variable PRI NT_LLI KS controls printing of the individua likelihoods in amodel. When set to
TRUE, the likelihood and frequency for each observation will be printed to the output file.

Variables created by models

mle creates variables in order to access the results from previous runs (either within or outside of
the MODEL statement). Each MODEL statement is numbered (beginning with 1) in the order in
which they are found in the program. Furthermore, each run of the model, defined by the FULL or
REDUCE statement, is numbered beginning with 1 for each MoDEL. The following variables are
created:
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<par anp.
<par anp.
<par anp.
<par anp.
<par anp.
<par anp.
<par anp.

<me. <r>
LOW <np. <r >
H GH. <np. <r >
START. <np. <r >
UCl . <. <r >
LCl. <np. <r>
SE. <np. <r >

LOGLI KELI HOOD. <n®. <r >
FREE_PARAMS. <nP. <r >
DELTA LL. <np. <r >

| TERATI ONS. <n®. <r >
EVALS. <np. <r>
VCV_EVALS. <np. <r >

Cl _EVALS. <np. <r >

I NVERTFLAG. <n®. <r >
CONVERGENCE. <. <r >
VCV. <., <r >

where <m> is the model number and <r> is the run number for the model, and <param> is the
name for a free parameter in the model. Each vcv. <me. <r> is an n" n matrix where n is the
number of free parameters, which is available in FREE PARAMB. <ne. <r>. The variable
I NVERTFLAG <n». <r > is a boolean variable that specifies whether or not the variance-covariance
matrix was inverted without error.

Each CONVERGENCE. <ne. <r > variable has an integer value that takes on avalue given in Table 4.

Table 4. Meaning of the CONVERGENCE variable.

Vaue Meaning

~N o o0~ WOWN B O

Not done

Stopped after maximum function evaluations
Stopped after maximum number of iterations
Converged normally

Trouble converging in one dimension

Starting value is not within min and max bounds
Starting temperature is not positive

Did not converge

Building MODEL statements

Expressions are used in many ways within mle, so that you should become thoroughly acquainted
with expressions before attempting to develop mle programs. The likelihood within a MODEL
statement is a single (sometimes complicated) expression. Expressions are used to define limits
of integration, summations, and products, they can be used to define START, H GH, LOW and TEST
values for parameters, and many other things. This section briefly discusses expressions and
functions, and then provides some details on functions of specia interest when building
likelihood models. The reference manual should be consulted for summaries of expressions and
descriptions of all functions defined in mle .

At the simplest level, an expression in mle can be a numerical constant or a variable name. More
complex expressions consist of algebraic operators (*,,+, etc.) and function calls each with zero
or more arguments. Most functionsin mle are simple functions with a fixed number of arguments,
for example: PERMUTATI ONS(x, y), ARCSI N(x), ABS(x), M X(p, X, Y).
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A second class of functions are more complex, and have a more complicated syntax. These
functions begin with a keyword, and end with an END. Examples of some of these functions are
the PARAM .. END function, DATA...END function (not to be confused with the DATA END
statement described in a previous chapter), the PDF. .. END function, the | NTEGRATE a (b,
c)...END function,andthel F THEN. .. ELSE. .. END function.

Suppose you want to integrate sin(x* + 2x) from -Cp to (p. Here is an example of how that could
be coded: | NTEGRATE x (-SQRT(PI), SQRT(PI)) SIN(x"2 + 2*x) END. (The function
evauatesto » -1.525). Here it is with comments:

I NTEGRATE x ( {x is the variable of integration}
- SQRT(PI), {This is the lower lint of integration}
SQRT(PI') {This is the upper lint of integration}

{C ose of the argunment Ilist}
SIN(x*2 + 2*x) {The function to be integrated}
END {End of the integrate function}

Any of the predefined probability density functions can be used as part of an expression. For
example, the area under a normal distribution with m=10 and s=3, between 8 and 12, could be
calculated by

|PDF NORMAL(8, 12) 10, 3 END

The DATA function

The DATA. . . END function provides a mechanism to "feed" observations to the likelihood. This
function specifies that observations are to be "fed" to the likelihood one at a time, corresponding
to the product (O) over all observations shown in likelihoods (or the S shown in loglikelihoods).
The pDATA function loops through al observations that were previoudly read in by the DATA
statement. In other words, the DATA. . . END function returns the total logloglikelihood or total
likelihood, given a series of observations and an expression for an individual likelihood or
individual loglikelihood. The general form for the DATA function is:

DATA <optional _forme
<expr essi on>
END

where optional_form is one of

FORM = SUMLL — This takes the log of each individual likelihood and sums the
loglikelihoods over the data. A likelihood (rather than a loglikelihood) is specified for
<expression>. Thisisthe default value if no <formtype> is specified.

FORM = SUMOr FORM = SUMVATI ON — Sums loglikelihoods over the data without first taking
the log. This is used when a loglikelihood is specified rather than a likelihood for
<expression>.

FORM = PROD Of FORM = PRODUCT — Takes the product of likelihoods over the data and
does not take the log of the likelihood. This is used when a likelihood (rather than a
loglikelihood) is specified for <expression> and some function appears outside the data
function that takes the log.

Here are three models that yield the same overall likelihood function, but uses different forms for
the DATA function:
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MODEL
DATA FORM = SUMLL {the default fornt
PDF NORMAL(t open tcl ose)
PARAM nu LOW = 10 H GH = 100 START = 30 END
PARAM sigma LOW= 0.0001 HHGH = 10 START =1 END
END {pdf}
END { dat a}
RUN
FULL
END {nodel }
MODEL
DATA FORM = SUM {The loglikelihood is specified}
LN( PDF NORMAL(topen tcl ose)
PARAM nu LOW = 10 H GH = 100 START = 30 END
PARAM sigma LOW= 0.0001 HHGH = 10 START =1 END
END {pdf}
)
END { dat a}
RUN
FULL
END {nodel }
MODEL
LN(
DATA FORM = PRODUCT {The likelihood is specified}
PDF NORMAL(t open tcl ose)
PARAM nu LOW = 10 H GH = 100 START = 30 END
PARAM sigma LOW= 0.0001 HHGH = 10 START =1 END
END {pdf}
END { dat a}
)
RUN
FULL
END {nodel }

In theory, these three models will yield identical results. In practice, results may differ slightly
because of round-off errors. This will be most noticeable in the last model, because the product
of very small numbers will lead to smaller and smaller numbers before the log is taken of the
entire likelihood. There are several reasons for providing these three ways of specifying how the
data is used within the likelihood:

Some likelihoods are much easier to write as a loglikelihood.

Some likelihoods require things like taking an expectation outside of the individual
likelihoods, where the integration is done outside of the data function.

Some multilevel or hierarchical likelihoods require this type of control over the likelihood.

There are two functions that are closely related to the DATA function: the LEVEL function and the
LEVELDELTA funciton. These two functions provides a mechanism by which multilevel or
hierarchical models can be constructed.

The PARAM function

mle has a general method for defining all parameters to be used in alikelihood model.® The PARAM
function defines a parameter and its characteristics. The function should only be used within a
MODEL statement. When models are “solved”, free parameters are estimated by iteratively
plugging new values in for those parameters until the values that maximize the likelihood are
found. In other words, free parameters are values that are to be estimated by mle —they are the
unknowns in likelihood models. When the MODEL statement is run, mle will estimate the value of

® The word parameter is used in avery specific way, as defined in Chapter 1. Parameters are the quantities to be estimated in a likelihood
model
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that parameter, unless the parameter is constrained to some fixed value in the REDUCE part of the
model statement.

In the simplest case, parameters are specified as

PARAM <p> H GH = <expr> LOW = <expr> START = <expr> TEST = <expr> FORM = <f ornspec> END

where <p> is the name chosen for the parameter. The keywords H GH, LOW START, and TEST
specify characteristics for the parameter. H GH and Low specifies the minimum and maximum
value allowed for the parameter. mle will not exceed these values while trying to maximize the
likelihood. START tells the maximizer what value to start with. TEST denotes the value against
which to test the parameter for significance. By default, TEST is zero. Itisused for aWald test as
the parameter is being written to the output file. Additionally, thisis the value that the parameter
is constrained to when left out by the w TH command.

Setting Parameter |nformation

Five characteristics may be set for each parameter. They are: 1) the highest possible value that
can be tried for the parameter, 2) the lowest possible value that can be tried for the parameter, 3)
an initial value for the parameter, 4) atest value against which the parameter will be tested when
standard errors are computed, and 5) a form for the parameter that defines simple algebraic
transformations and the mathematical from for incorporating covariates. The following model
statement defines all five characteristics for the parameters of a beta distribution:

MODEL
DATA
PDF BETA(p)
PARAM a LOW= 0.5
PARAM b LOW= 0.5
END { pdf}
END { dat a}
RUN
FULL
END {rmodel }

10 START
10 START

1 TEST
1 TEST

1 FORM = NUMBER END

HI GH
HI GH 1 FORM = NUMBER END

The two parameters of the beta distribution are limited to the range 0.5 to 10, wheress,
mathematically, they are only restricted to positive values. The TEST = 1 specifies that the
parameter will be tested against one instead of the default value of zero, after standard errors for
the parameters are found. The START value of one simply gives mle a starting place that falls
within the Lowand HI GH values.

Use care when setting the Hl cHand Lowlimits. Most importantly, limits must be constrained to
valid ranges for the intrinsic parameters. Thus, for the M X mixing proportion parameter (the first
of the three parameters) then, H G4 = 1 and LOw = 0, should be defined as is appropriate for a
probability—unless some FORMIike FORM = LOG STI Cis used to constrain the resulting parameter
to between 0 and 1 for estimates from -¥ to ¥. Sometimesit is useful to impose narrower limits,
perhaps to avoid getting hung-up at a local maximum or to solve the model more quickly. Be
careful, though. Limits that are too narrow may exclude the global maximum—after all, the best
parameter estimates for a set of data are presumably unknown. Excessively narrow limits may
cause problems when numerical derivatives for the variance-covariance matrix are computed, as
well. Also, likelihood confidence intervals will bump up and stop at the limits you set.

The TEST = xxx part of a PARAM function provides a value against which the parameter will be
tested (in some reports). In a sense, the TEST value is a null hypothesis value (hy). The test

performed is t =(P- h,)/ SE(P), where pis the maximum likelihood parameter estimate and
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SE(P) is the standard error for the parameter estimate. The Wald test is provided for
convenience only. mle does not make use of the test in any way.

Modeling Covariate Effects

The pARAM function allows covariate effects (and their associated parameters) to be modeled
within the parameter statement. Thisis done as follows:

PARAM x HI GH = <expr> LOW = <expr> START = <expr> TEST = <expr> FORM = <fornspec>
COVAR <expr> PARAM z .H GH .. END
COVAR <expr> PARAM z .H GH . END

ENiD. . {par ant

With covariates, the <expr> following COVAR is a covariate effect. Typicaly thisis a variable
like age, sex, income, etc. The effect of the covariate is multiplied by the value of the PARAM
function that follows. The way in which covariates and parameters are modeled is discussed in
more detail below.

Here is an example of a likelihood hand-coded for an exponential PDF for exact failure times.
PARAMs and built-in simple functions, and algebraic expressions are all shown in this likelihood:

MODEL
DATA
PARAM | ambda LON= 0 H GH = 1 START = 0.23 END * EXP(-lanbda * t)
END
RUN
FULL
END
Notice that | anbda is first defined as a parameter, and thereafter is used as an ordinary variable.
Asmle iteratively seeks a solution, new values of | anbda will be tried. Asthe likelihood itself is
being computed, the PARAM function will simply return the current estimate of | anbda.
An dternative way to code this example is to define the parameter first and assign it to another
variable:
MODEL
PREASSI GN
| am = PARAM | ambda LON= 0 H GH = 1 START = 0.23 END
DATA
| amr EXP(-1 antt)
END {dat a}
END {preassign}
RUN
FULL
END {rmodel }

The PREASSI GN function is described in another chapter.

In the next example, five parameters are defined, two each for the two PDF functions and one
parameter that was added for the first argument to the m X function call.

Typically, parameters are defined for the intrinsic parameters of a PDF function. For example, the
normal PDF has two intrinsic parameters mand s. The first parameter specified in the parameter
list will be treated asm The second will be treated ass. How can you know the proper order for
parameters? Generally location parameters appear first (and are usualy denoted a in this
manual), scale parameters are second and shape parameters are third. You can get a quick

synopsis of each type of PDF by using the -h option from the command line, eg.: me -h
SHI FTWEI BULL
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Parameters are also used to model effects of covariates on other parameters. Here is an example

in which two parameters, used in place of some fixed values of mand s for anormal distribution,
are defined with two covariate parameters, each:

PDF NORMAL(t open tcl ose)
PARAM mean LOW= 100 H GH = 400 START = 270 TEST = 0 FORM = LOGLIN
COVAR sex PARAM b_sex_nu LOW= -2 HGH =2 START = 0 END
COVAR wei ght PARAM b_wei ght _nu LOW= -2 HGH =2 START = 0 END

END
PARAM st dev LONW= 0.1 HGH = 100 START = 20 FORM = LOGLI N
COVAR sex PARAM b_sex_si g LON= -2 HGH =2 START = 0 END
COVAR wei ght PARAM b_weight_sig LOW= -2 HIGH =2 START = 0 END
END
END

In this example, the first parameter of the normal distribution (m) has two covariates and their
corresponding parameters modeled on it. The exact specification of how covariates and their
parameters are modeled depend on the FORMof the intrinsic parameter. In the example, the FORM
= LOGLI N specifies that alog-linear specification isto be used. The log-linear specification is m
= mexp(xb), where i is the estimated intrinsic parameter (mean in this case). Thus, for the ith
observation, the m parameter of the normal distribution will be constructed as
m=nean” exp(sex; b_sex + weight; b_weight). The second parameter, st dev, has the same
two covariates modeled on it, but the parameter names are (and must be) different from the
parameters modeled on mean.

For some forms, the parameter itself is transformed. For example, when a parameter is a
probability (asit isfor the M X function in above) the parameter can be defined as:

|PARAM p LOW=-999 HGH =999 START = 0 FORM = LOd STI C END

The logistic transformation permits the parameter p to take on any value from negative infinity to infinity, but the resulting
value passed used by the likelihood will be constrained to the range (O, 1). In other words, mle will estimate a parameter over
the range —999 to 999, but before that parameter is used in computation, it will undergo alogistic transformationas p = 1/[1 +
exp(p’)], so that the value of p will be a probability. mle currently provides a limited number of specifications for how
parameters and covariates are modeled (see the Reference Manual). Even so, this mechanism for modeling covariates on any
parameter is extremely general and provides the basis for building unique and highly mechanistic (Box et al. 1978) or
etiologic (Wood 1994) models.

The PDF functions

One of the most frequently used functions in the MODEL statement is the PDF function. The
purpose of the PDF function is to specify the component of a pre-defined probability density or
distribution functions. Although the name is PDF, the PDF function can return the probability
density function, areas under the PDF curve including the cumulative and survival density
functions, and the hazard function. In addition, the PDF function can return areas or densities that
are left and right truncated. The structure of the PDF function call is:

END

PDF <PDF name> ( <tine variablel> <tinme variable2> ... )
<intrinsic parameter 1>,
<intrinsic paranmeter 2>,

<optional HAZARD>

The name following PDF is the name of the built-in distribution. mle predefines over 60 density functions, including most

well-known ones like the normal, lognormal, weibull, gamma, beta, and exponential distributions. A complete summary of
built-in distribution is given in alater chapter.
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Time variable list is alist of the time arguments passed to the PDF. Most univariate PDFs can
take from one to four ‘time’ arguments.” In fact, these four times describe a single observation in
such a way as to incorporate a number of defects in the observation process, including right
censoring, left truncation, right truncation, cross-sectional observations. A description of how the
four arguments combine to specify a probability are given in the section that follows. Note that
the time arguments can be any expression, so that time shifts and transformations can be
incorporated in this list.

Intrinsic parameter list provides specifications for the PDF sintrinsic parameters. The order that
the intrinsic parameters are specified is important; it corresponds to how the PDF is defined
within mle.. The PDFs chapter lists the order for intrinsic parameters; aternatively, the command
linem e -h can be used to determine the proper argument order. Note that any expression can be
used for an intrinsic parameter. That is, you do not need to use a PARAMfunction for the intrinsic
parameters, athough this is the most common use. Here is an example in which the location
parameter is fixed to a constant for a shifted lognormal distribution:

PDF SHI FTLOGNORMAL ( tooth_eruption_age )
9, {shift the tine back to conception}
PARAM | ocation LOW= 1 H GH = 4 START = 2.5 END,
PARAM scal e LOWV = 0.0001 HIGH = 3 START = 0.9 END
END

PDF Time Arguments

Most PDFs can have as few as one and as many as four time arguments specified. They are: t,,
the last observation time before an event; t., the first observed time after the event; t,, the left
truncation time for the observation or the PDF; and t,, the right truncation time for the
observation or the PDF. Understanding how these four times act on the PDF statement is critical
to creating the desired and proper likelihood.

" These are called time variables in the context of survival analysis; however, they may represent other measurements (length, dose, height,
etc.).
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is used as an example.
Example When  Class Resulting Likelihood
LNNORMAL (te) larg. Exactfalureatt, L=f(t)
LNNORMAL(ty, t) t=te Exact failure at t,~te L="f(t,)="f(t)
LNNORMAL(t,, t) te=00 Right censored or cross-sectional ¥
Lty non-responder at t,, L =f (2dz=S(t,)
tU
LNNORMAL(t,, t) t,=0 Cross-sectional responder at t. te
L=of (2dz=F(t,)
0
LNNORMAL(t,, te) ty ! te Interval censored over the interval te
(t,, to). Includes, asalimiting L=0f (2dz=S(t,) - S(t,)
case cross-sectional responder and "
right-censored. ’
LNNORVAL ( t, te, ta) tu=te Left-truncated exact failure L= ft,) _ f()
=< =
. S(t
Of (2)dz (t.)
ta
LNNORNAL ( ty, te, ta) t,! te Left-truncated, interval censored S(tu) - S(te) S(tu) - S(te)
failure L=— = S(t)
of (2)dz a
ta
LNNORMAL (t, te, ta, ty) | tu=te  Left- and right-truncated, exact L f(t,) f(t,)
failure = =
b St,)- S
S W SG)
ta
LNNORMAL ( t, te, ta, t,) | tu<te Left- and right-truncated, interval S(tu) - S(te) S(tu) - S(te)
censored failure L=— =
taE£1, \f( )d S(ta)_ S(tw)
Z)dz
tw? te to
LNNORVAL ( t,, te, ta t,=t=t, Hazard f(t
S(t.)
LNNORMAL ( ty, te, ta, tn) | ti=te=ta  Right-truncated hazard | == f (tu) =ht )
St,)- S(t,)

PDFs contribute to likelihoods in a number of ways. In survival analysis, for example, the
likelihood for an exact failure time is given by the value of the PDF at the exact point of failure.
For aright censored observation, the likelihood is given by summing up (integrating) al possible
PDF values from the last observation time until the maximum possibletime. The likelihood for a
cross-sectional “responder” is the integral from zero to the time of first observation. Table 5 lists
the likelihoods that result from the four time variables for different conditions. For example,
when t,=t. or when only one time variable is specified, mle returns the density at t,. Thisisthe
desired likelihood for an exact failure. Likelihoods for right and interval censored observations,
with and without left and right truncation are given in Table 5.
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The Hazard Parameter

For most parametric distributions (like the normal or lognormal distributions) the hazard function
does not take on a simple or closed form. For this reason, most studies have modeled the
covariates as acting on the failure time for these distributions. Nevertheless, there is no inherent
reason why hazards models cannot be constructed using distributions without a closed form for
the hazards functions. Most of the PDFs included in mle provide a general mechanism for
covariates to be modeled as affecting the hazard of failure, rather than (or in addition to) affecting
intrinsic parameters. Hereis an example:

END

PDF NORMAL(t open tcl ose)
PARAM nean LON = 100 HI CGH
PARAM stdev LOWN= 0.1 HI CH
HAZARD COVAR sex PARAM b_sex LOW= -2 HH
COVAR wei ght PARAM b_weight LOW= -2 HCGH

= 400 START = 270 TEST = 0 FORM = LOGLI N END,
= 100 START = 20 END,

2 START
2 START

0 END
0 END

The covariates sex and wei ght are modeled to effect on the hazard of failure. Parametersb_sex
and b_wei ght provide estimates of the effect.

The HAZARD statement always provides a proportional hazards specification modeled directly on the hazard of the PDF.
Usually, the specification is loglinear, so that the hazard for the ith observation including the covariate effects defined as
hi(tixb) = h(t;)exp(x;b), where h(t) is the basaline hazard for the specified PDF, and x;b is a vector of covariates x; and
parameters b, so that xib = X1b1 + Xzbo+ Xsbs . . .. Then, the survival function becomes S(t[xb) = t)***®, and the
probability density function becomes f;(t;jxib) = f(t;))S(t)***exp(xb).

This particular hazards model specification is commonly used. By exponentiating the xb array,
the covariate effects will never cause the hazard to go negative (hazards are never negative).

A multiplicative form for the proportional hazards specification can also be specified by setting
the constant EXP_HAZARD = FALSE (it is TRUE by default). Then, the model is hi(ti|xb) = h(t)xb,
Stilxib) = ()™, and f(tijxb) = f(t)(t)®xb. Y ou must insure that x;b never goes negative.

The LEVEL function

The LEVEL function provides a mechanism by which multilevel or hierarchical models can be
constructed. The syntax of the LEVEL functionis

END

LEVEL <bool ean expressi on> THEN <opti onal _f ornm>
<expr essi on>

The effect of the LEVEL function is to test the <boolean expression> for each observaton and,
while the condition is true, form the sum of loglikelihoods out of the observations. The
<optional_form> provides alternative ways of tallying the likelihoods, and is specified as it is for
the DATA function, save for one difference; The default form is .FORM = PRODUCT.

The best way to understand the effect of the LEVEL command is by an example. Consider the
likelihood

N W és U
L=0 c‘p(z)QO f(t,la, z)gdz.
i=1 a éj=1 u
This is a standard model for which a distribution of clustering (or heterogeneity), g(2), is
estimated along with the model's other parameters (q). There are two levels that make up this
model. Let us cal the outer level, denoted by the outer product, the subject level—that is, we
have N individual subjects and this outer product is taken over al subjects. For each of N
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subjects, there are multiple repeated observatons taken. For the ith subject, we have n; repeated
observations. The inner level formed by the innermost product is the likelihood formed by n
repeated observations of the ith subject.

The rationale for this type of model is that the repeated observations for individuals violate the
condition that the likelihoods for each observation are independent. To fix this problem, we can
compute an expected likelihood for each individual’s observations. The integral computes the
expected likelihood for each subject. Hereis a concrete example

Say we have data in which levels are denoted by the number 1 or 2 asin

1 Tom Snmith

2 23.4 26.8. . .

2 19.2 22,9 . . .

2 26.8 -1 .

1 Steven Jones

2 19.5 23.7 . . .

2 26.8 -1 . .

1 Martin Johnson

2 0 44.1 . . .

2 19.9 22.7 . . .

2 19.9 -1
where the observations beginning with a 2 correspond to the individual at the preceding 1, so that
Tom Smith has three observations beginning 23.4, 19.2, and 26.8. If we were to treat all
observations, within and among individuals, as independent, we could simply drop all of the level
1 lines, and form a likelihood as the product of al observations. But, if we want to treat
observations within individuals as correlated (non-independent), the we can integrate over a
distribution of common effects as shown in the likelihood above. Usually, we will estimate one
or more parameters for the distribution g(z), in addition to g.
If we assume that g(2) and f(t) are normal distributions, the likelihood in mle would be specified as

M.E

DATAFI LE(" exanpl e. dat ")
OUTFI LE( " exanpl e. out ")

DATA
lev FIELD 1
topen FIELD 2
tclose FIELD 3
END

MODEL
DATA
LEVEL lev = 2 THEN

I NTEGRATE z (-12, 12)

PDF NORMAL (z)
0, PARAM sigmaz LON= 0.0001 H GH = 3 START = 0.2 END

END { pdf }

*

PDF NORMAL(topen tcl ose)
PARAM mu LOW = 10 HIGH = 100 START = 30 END
PARAM sigma LOW = 0.0001 HIGH = 10 START = 1 END
HAZARD COVAR z 1
END {pdf}
END {i nt egr at e}
END {I evel }
END { dat a}
RUN
FULL
END {nodel }
END {nml e progrant
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The LEVEL statement advances through all of the individual level observations and computes the
product of the likelihoods for each individual. The DATA statement only "sees' observations that
begin with a 1, because the LEVEL statement "consumes® al of the observations that begin with a
2. The LEVEL statement returns a likelihood, which is the product of likelihoods taken within
each subject; the DATA statement takes those likelihoods, one per subject, takes the natural log of
each, and sums them over all subject.

The LEVELDELTA function

The LEVELDELTA function is very similar to the LEVEL function. LEVELDELTA provides a
mechanism by which multilevel or hierarchical models can be constructed. The syntax of the
LEVELDELTA function is

END

LEVELDELTA <expressi on> THEN <opti onal _for nm»
<expr essi on>

The effect of the LEVELDELTA function is to evaluate <expression> for each observation and,
while the expression does not change, form a product of likelihoods out of the observations. The
<optional_form> is specified as it is for the DATA function, but with one difference: the default
formis.FORM = PRODUCT.

The only real difference between the LEVELDELTA and the LEVEL function is how each function
decides when to "exit" the current level. The LEVELDELTA function simply looks for a change in
the value of <expression> whereas LEVEL evaluates a boolean function <bexpr> for each
observation and terminates when the expression evaluates to FALSE. In the example given under
the LEVEL function, the only change necessary to use the LEVELDELTA function is replace the
LEVEL line with

LEVELDELTA | ev THEN

Here is an example program uses the LEVELDELTA function. The program estimates the change in
oxygen consumption (DV0,) in individuals undergoing repeated exercise tests, using a variety of
predictor variables like the increase in heart rate over the resting state. Since there are repeated
measures on individuals, a distribution of individua effects is estimated along with other
parameters. Thelikelihood is

N ¥ i}
L=0 §9.(210.5,)O f, (v |m+x,B+2,5)dz
izl _y k=1

Where g,(2) is the distribution of individual effects, with a mean of zero and a variance of sz
f,(v) isthe distribution of DVO, values with parametersb, mand s.
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ME
{ -- does a linear regression w repeated neasures nodel}
DATAFI LE(" exanpl e. dat ")
OUTFI LE( DEFAULTOUTNANE)
DATA
subj ect FIELD 1 {subj ect 1D}
sex FI ELD 2 {individual’s sex 0=fenmle, 1=nule}
age FI ELD 3 {individual’s age}
wei ght FI ELD 4 {individual’s weight}
hei ght FIELD 5 {individual’s height}
arntirc FI ELD 6 {m d-upper arm circunference}
ski nfol d FI ELD 7 {individual’s skinfold neasurenent}
del t ahr FI ELD 8 {heart rate adjusted for baseline rate}
del tav02 FI ELD 9 {volume of 02 used during exercise adjusted for baseline}
END {dat a}
MODEL
PREASSI GN
BEG N
sigz = PARAM signaz LOW = 0.001 HI GH = 50 START = 1 END
upperlim= 6*sigz
lowim= -upperlim
END,
DATA
| NTEGRATE z (lowim upperlimn
PDF NORMAL(z) O, sigz END *
LEVELDELTA subj ect THEN
PDF NORMAL( del t av02)
PARAM bO LOW = -200 HI GH = 50 START=0 FORM=ADD
COVAR sex PARAM bsex LONE- 10 HI GH=50 START=0 END
COVAR age PARAM bage LONE- 10 HI GH=50 START=0 END
COVAR wei ght PARAM bwei ght LONE- 10 HI GH=10 START=0 END
COVAR hei ght PARAM bhei ght LONE- 10 HI GH=10 START=0 END
COVAR arntirc PARAM barntirc LOM-10 H G410 START=0 END
COVAR ski nfold PARAM bskinfold LOM-10 H GH=10 START=0 END
COVAR del tahr PARAM bdel tahr LOM-10 H GH=10 START=0 END
COVAR z 1
END { par am b0}
PARAM si gma LOW = 0. 00001 HI GH = 50 START=5 END
END {pdf nornal}
END {I evel del t a}
END {i nt egr at e}
END {dat a}
END {preassign}
RUN
W TH si gnaz bO sigma (bsex bage bwei ght bhei ght barntirc bskinfold bdel tahr)
END {rmodel }
END {nie}

Setting the maximization method

mle has four methods for maximizing the likelihood function. Each of the methods has strengths
and weaknesses for different types of functions. Understanding some of the details of each
method is useful for deciding which to use for any given application. The following sections
describe each of the maximizers and points out strengths and weaknesses of each. The behavior
of some methods can be modified considerably by the user.

The maximization method is selected by setting the variable METHOD. For example, METHOD =
ANNEALI NG will use the simulated annealing method. The default method is DIl RECT.

The overal goal of function maximization is to find the set of parameters that maximize a

function. A ssmple analogy is to imagine that you are looking at a topographic map that codes

atitude by color. You want to find the longitude and latitude coordinates (the "parameters’) that

will put you at the highest point on the map. By looking over the map, you may be able to
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quickly ascertain a mountain peak or some other maximum. In order to do this, however, you
effectively scanned hundreds of thousands of points on the map until finding those places where
the colors suggest the highest atitude. With a little more work, the highest peak is easily
resolved. Visual evaluation of maximum elevation is easy and takes amost no time because the
map shows the elevations evaluated at hundreds of thousands of points on the map, and our eyes
can quickly scan those points. That is, each "function" evaluation was inexpensive—we merely
had to look at a point to know its value. Now imagine that the map surface is covered by a piece
of paper. You can only expose atiny hole in the map in order to read the color at that point (that
is, to evaluate the function at that point). Furthermore, each hole takes along time to cut, perhaps
minutes or hours. Then the question becomes this: how do we find the maximum elevation of the
map in the shortest possible time? The map analogy will be used to understand how different
computer algorithms finds the maximum of alikelihood surface.

Many different function maximization methods have been developed at least since Isaac Newton
developed methods out of the calculus. Nevertheless, no single method has emerged as superior
for all types of problems. In general, function maximization is easiest to do when information is
available for the derivative of the function. A traditional way of finding maximum likelihood
parameters for simple functionsis to symbolically find the derivatives of the function with respect
to each free parameter. Each partial derivative is set to zero. This set of equations is collectively
called the likelihood equations. Since the derivatives are defined as the dope of the function, it
follows that any place where al the partia derivatives go to zero must be a minimum or a
maximum of the function. If practical, the likelihood equations are "solved”; that is, the sets of
parameter values are analyticaly found that simultaneously yields zero for each of the partia
derivatives. The maximum likelihood estimates for a parameter is found from a particular series
of observations by ssmply applying that equation on the set of observations. Unfortunatdy, this
method is difficult and non-general and, therefore, not practical for general-purpose maximization
asfound in mle. Advances in computer-assisted symbolic mathematics (packages like Maple and
Mathematica) may eventually prove this method feasible for many users, but the need for
specialized mathematical knowledge and skills still limits this method. A genera method must
work for most types of likelihood functions, whether or not analytical derivatives are easy (or
even possible) to find.

Another class of fast maximizers estimates derivatives numerically. These methods are not
robust for complex surfaces with many local maxima. From some starting point, they tend to
rush up to the top of the nearest local maximum. A given function may have one or many points
where the derivatives goes to zero, so this method may not find the global maximum. Numerical
derivatives have limitations resulting, in part, from the inaccuracy of real number representation
in computers, so that a number of derivative-free methods have been developed. One clever
method solves a two dimensional maximization problem by trying to enclose the maximum
within atriangle. The triangle grows and shrinks based only on information from the three points
of the triangle at a given dep. A rather unsophisticated method alternates between maximizing
the function first by longitude, using as many evaluations as needed to find the maximum
longitude for a given latitude, and then does the same for latitude. By repeating this many times,
a maximum (usually the global maximum) is found. Needless to say, this method can be very
dow. Finaly, a newer method has been developed that mimics natures own maximization
method. The method can be slow, but seems to be as robust at finding the global maximum as
any iterative method.

Conjugate gradient method

The conjugate gradient method searches through parameter space for combinations of parameters
where the dope of the likelihood function goes to zero. Now, the computer numerically

computes a slope (or gradient) using the equation my = [f(x + Dx;) — f(x;]/Dx;, for parameters x and
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small values Dx. This procedure uses the slopes (m) to figure out the next set of x under the idea
that the slope will decrease as the maximum is approached (unless the surface is flat).

The conjugate-gradient method used in mle was developed by Powell (1964), Brent (1973), and
further developed by Press et al. (1989). For problems of more then two free parameters, the
conjugate gradient method is usually much faster than the direct method. Caution must be
exercised when using this method. At times a local maximum is latched onto by the solver and
the rest of the parameter space is excluded. Furthermore, some conditions can cause the
maximizer to leap to another part of the surface, where alocal minimum might be reached. For
example, when maximizing a likelihood function that includes numerical integration, the
tolerance in the integrator must be severa orders of magnitude smaller than that of the solver, or
else the error in integration can lead the solver astray.

Two forms of the conjugate gradient method are available, METHOD=CGRAD ENT1 and
METHOD=CGRADI ENT2.

Simplex
The simplex method is a derivative-free maximization method described by Nelder and Mead
(1965) and popularized by Press et a. (1989). The method is set with METHOD=SI MPLEX.

Direct Method

A simple method for finding a maximum is to consider only one dimension at atime. So, for our
map, we would find the highest latitude for a given longitude by examining points along a line of
longitude. We could use the method of bisection or even better ways to find the maximum along
that line of longitude in the fewest number of evaluations (i.e. fewest holes). Once we have
settled on a latitude, we can find the longitude of highest elevation along that latitude. We next
go back and find a new latitude for the new longitude, etc. This is known as the direct method
(Nelson 1983), and works well for some functions over a small number of dimensions. In fact,
the method is usually more robust at finding a global maximum than the simplex or congugate
gradient methods. Furthermore, it is easy to constrain the algorithm so that new parameter values
never overstep the user-defined (or mathematically defined) limits—that is, it respects the
boundaries of our map. Unfortunately, the number of function evaluations goes up as an
exponent of the number of dimensions in the problem. When the number of parameters gets
large, the solution is very slow in coming. Furthermore, some functions that have the maximum
along a long narrow ridge at a 45° angle to the lines of longitude and latitude require a large
number of tiny movements before reaching the maximum.

The direct method and is set by METHOD=DI RECT. It usesthe HI GH = value and LOw = values to
constrain all parameters (as discussed below). The START = vaues define the initial starting
parameters.

The direct method uses Brent's (1973; see also Press et a. 1989) parabolic interpolation to find
the maximum along a single direction (i.e. for a single parameter holding all other parameters
constant). The maximizer uses the H GH = value and Low = value to define the extreme bounds
of the problem. The START = value is the first "guess' at the maximum. A parabola is then fit
through the set of three points, and the maximum is analytically computed. This procedure is
repeated with the three points enclosing the maximum until the maximum in that dimension is
found to some prespecified tolerance. There are three ways you can modify the Brent maximizer.
First, the maximum number of iterations in a single dimension can be set with BRENT_I TS =
value, which is sufficient for amost every function. The next modification isto change the value
of BRENT_MAG C to some other number. This number defines the interpolation point between two
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points of a parabola—the so-called golden mean of ancient Greece. With such a heritage, there is
little reason to change it. Finally, the value BRENT_zERO s an arbitrary tiny number used in place
of zero for the difference of two equal function evaluations.

Simulated Annealing M ethod

The simulated annealing method is an exciting and relatively new idea in maximization. It was
first proposed by Kirkpatrick et a. (1983) for combinatorial problems. The agorithm was further
developed for functions of continuous variables by Corana et al. (1987) and refined by Goffe et
al. (1994); both papers lucidity describe how the method works.

As a metal is heated to its melting point, it loses its crystalline organization. Then as it again
coals, the crystalline pattern reemerges. When cooled slowly, a process called annealing, small
crystals of metal rearrange themselves and join other crystals with maximum orderliness (or
minimum energy). This occurs as random movements of atoms and groups of atoms eventually
fall into an alignments that minimize gaps. Once these structured alignments arise, they form a
larger crystal and are subsequently less likely to fall out of aignment. As the temperature drops
and the atoms move around less, large overall changes in structure become less probable. When
absolute zero is reached, the structure becomes fixed (at room temperature, solid metals continue
to anneal very lowly). Rapid cooling of the metal, called quenching in metallurgy because the
metal is thrust into cool water or pickle, does not provide sufficient time for crystals to move
about and organize. Thus, numerous vacancies and dislocations exist among many small crystals,
and orderliness is minimal. Maximizing the crystalline order (or minimizing vacancies and
didocations) is done by cooling the metal very slowly and providing ample opportunity for the
random crystal movements to fortuitously align themselves into more ordered structures.

The simulated annealing method attempts to mimic the physical process of annealing. An initia
"temperature” is set, and a cooling rate is specified. New parameters are randomly chosen over a
large range of the parameter space. As the temperature cools, smaller and smaller ranges of the
parameter space are explored. Additionally, the maximizer will not always travel up hill. At any
given temperature, a certain fraction of downhill moves will be taken so that local maxima will
not trap the maximizer.

The advantage of simulated annealing over other methods is that it is very good at finding the
global maximum, even in the presence of highly multimodal likelihood surfaces. The user can
fine tune the behavior of the algorithm so that functions with complex topography can be
searched more thoroughly for the maximum. Another advantage of simulated annealing is that it
does not require computation of derivatives. In fact, smulated annealing can find the maximum
of discontinuous functions and those otherwise without first derivatives. Finally, the smulated
annealing algorithm is extremely simple and intuitive. The disadvantages of simulated annealing
are that it usually takes from one to several orders of magnitude more function evauations than
do other methods and the user must have an understanding of the algorithm to set up initia
parameters that lend themselves to efficient estimation. Sometimes it is worth experimenting to
find the best combinations of input parameters to the simulated annealing algorithm so as to
minimize the total number of function evaluations.

Simulated annealing begins at some user-defined temperature (T) and a user-defined rate of
cooling (r). At the end of one cycle of annealing, the temperature isreduced as T=T r, and a
new cycle of annealing is performed. Typically the temperature will be 1 for simple function to
100,000 for difficult functions, and it is cooled every cycle by r = 0.85. When the algorithm
begins, the starting point is evaluated and becomes the best value, so far. Each iteration will then
search the likelihood surface in a partially random way and always keep track of the best point so
far. A single cycle of annealing (i.e. one iteration) consists of the following. First, a cycle of
random movements is started. N, random steps are taken over one direction at atime. The
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maximum width of the random step for parameter i is controlled by the step length variable v..
For our map example, this would correspond to evaluating N.ng randomly picked points along a
line of longitude or latitude. Initially we would use the entire height and with of the map for the
maximum step length. As each point is evaluated, we keep track of the overall best maximum.
Any time we find a point higher than our current maximum, we move to that point and consider it
our new starting point. But, if alower point isfound we might accept that point according to the
Metropolis criterion (Metropolis et al. 1953) by which the point is accepted with probability
exp(-DI/T), where DI is the difference between the current starting point and the downhill point
we have just evaluated. In other words, we draw a uniform random number on [0, 1), and accept
the move if that number is less than a negative exponential survival function of DI, with
parameter 1/T. This criterion means that at high temperatures we will frequently accept downhill
moves with large changes in the loglikelihood, but as temperature drops, downhill moves will
only occur at small changes in the loglikelihood. After completing the Nia,g movements and
evauations, we now adjust the maximum steplength vector v. The reduction or increase in
steplength is done according to the proportion of accepted and rejected movements by an
algorithm described in detail below. In short, the maximum step length is reduced or increased so
that we can expect to accept about one half of all moves in the next cycle of random steps.
Following this adjustment, a new cycle of random steps is initiated until a total of N of these
adjustments have been completed. Thus, after Nrand™ Nag function evaluations, a single iteration
completes, and a new iteration is begun until convergence, the maximum number of iterationsis
reached, or the maximum number of function evaluations is reached.

The simulated annealing method is set by METHOD=ANNEALI NG. The method does use the HI GH =
value and Low = values to constrain all parameters (as discussed below). The START = values
define theinitial starting parameters. A number of other variables should be sa with this method.
Since the simulated annealing method uses random numbers, the user must set a random seed, by
calling the procedure SeeD() with a positive integer. The starting temperature is set with
SA_TEMPERATURE. The default value is 1000.0, which is too high for all but extremely wild
functions. It is difficult to know what a good starting temperature is for a function, but values
under 100 empirically seem to work for al but the most topographically complicated likelihood
functions. When a likelihood is to be solved multiple times on similar data sets, like when
running on bootstrapped data sets, it is worth exploring a couple of different temperatures and
monitoring the progress of the annealing by using the verbose (-v) option. In fact, watching the
entire annealing process is useful for developing and understanding of the algorithm. The
variable sA_codLl NG controls the cooling rate, and is 0.85 by default. Too high avalue will slow
down cooling and may lead to unnecessary evaluations, whereas too low a value may resulting in
(smulated) quenching. The number of steps of random parameter perturbation is set using
SA_STEPS.  The number of step length adjustments taken every iteration is controlled by
SA_ADJ_CYCLES. Finally, the size of each step adjustment can be controlled by
SA_STEPLENGTH_ADJ, but the default value of 2.0 usually works well.

The simulated annealing algorithm uses a different criterion for convergence than do the other
solvers. An array of the best likelihoods of size sA EPS NUMBER (default is 4) is created and
updated every iteration. Convergence is considered achieved when the likelihood for the current
iteration differsfrom al sA EPS NUMBER likelihoods by the value of EPSI LON.

Several other variables can be used for fine tuning of the simulated annealing algorithm, but there
is rarely a need to mess with them. sA STEPLENGTH is the initial step length for all parameters.
Empirically, the starting step length value has little effect on the outcome of the maximizer.
SA ALT _ADJUSTMENT uses an dternative formula for adjusting the step length.
SA_ADJ_LONERBOUND defines a"null” area for which step length is not adjusted. If the proportion
of accepted moves is greater than SA_ADJ_LOAERBOUND and is lessthan 1 — SA ADJ_ L OAERBOUND,
the current steplength will continue to be used. See Corana et al. (1987) for more details.
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Stopping Criteria

There are three ways to terminate finding the solution of a model. The first way is to minimize
the change in the log-likelihood to below some specified minimum value. You can specify this
by setting, for example, EPSI LON=1E-8. When the absolute difference between the log-
likelihoods of the previous iteration and the current iteration falls below this value, the problem
will be considered to have converged normally.

The second way of controlling the stopping criteria is by specifying the maximum number of
iterations permissible. For example, setting MAXI TER=1000, would stop searching for the
maximum after 1,000 iterations, regardless of the change in the likelihood. Note that a single
iteration is that over all dimensions.

The third stopping criterion is by specifying the maximum number of function evaluations

permissible. Y ou can specify, for example, MAXEVALS=10000, which would stop searching for the
maximum likelihood after 10,000 evaluations of the likelihood.

L ooping Through M ethods

mle provides a mechanism to specify that different methods be used to solve the same likelihood.
For example, you can set

METHOD1=Dl RECT
MAXI TER1=10
METHOD2=CGRADI ENT1
MAXI TER2=500

to begin the problem with the direct method and then switch to a conjugate gradient solver for the
next 500 iterations. The variables METHOD, MAXEVALS, MAXI TER, and EPSI LON can have a digit
appended in this way. When the variable METHOD LOOP is set to true, mle will loop back to the
first method and continue the solver sequence again until one of the methods converges normally.

The Interactive Debugger

mle incorporates an interactive debugger that provides some degree of control while models are
being solved. Entriesin the symbol table can be viewed and changed, so that convergence can be
forced early or postponed, output variables can be changed, and the values of various debugging
options can be set and reset.

The debugger is called by typing <CTRL> C on most systems. The <BREAK> key also works
on some systems. After mle gets to some reasonable stopping point—usually the end of an
iteration—control will be passed to the user. The debugger responds with

Exit: immediately exits the program.

Resume: resumes running mle from where it left off.

One step: continue from where it left off for one more iteration and then reenters the interactive debugger.

Pick a symbol: selects a symbol to display. The value of the symbol is displayed between debugger commands, for this and
all subsequent calls to the debugger.

Change the value of a symbol: If no symbol is selected, the user will be prompted for a symbol to change and then avalue
to changeit to. If asymboal is selected (with Pick), then that symbol will be changed.
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Search for symbols. Prompts the user for search text, and then searches the symbol table for symbol names that match any
part of the search text. The name, types, and value of matching symbols are displayed.
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Chapter 5
Plots and graphs

The pLOT command is used to create plots and chartsin mle. This chapter discusses the command,
and gives some examples of creating graphs.

mle does not directly generate graphs. Instead, it writes graphing programs in the Gnuplot plotting
language. The graphs can be printed using one of the many device drivers included in Gnuplot.
Additionally, graphs can be imported into a number of text processing languages like TEC or
MSWord, or manipulated in graphics editing programs.

Hereisalist of the plotting capabilities offered by mle:

Two-dimensional data plots of data points, parametric functions, bar charts, histograms,
graphs with error barsfor x, y or both.

Three-dimensional plots including surfaces and contour plots.

Multiple curves or surfaces can be drawn on asingle plot.

A smple mechanism to specify agrid of multiple plots on a single page.
Data points and fitted curves

Up to two x and two y axes on a single (two-dimensional) graph.

Cartesian or polar coordinates in two dimensions. Rectangular, spherical, or cylindrical
coordinates in three dimensions.

Simple generation of estimated distributions with error bars.

One- and two-dimensional likelihood profiles

Creating Plots

There are four steps used for creating graphsin mle.

Define the plot file using the PLOTFI LE( <name>) procedure in a program.
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Define one or more plots using the PLOT . . . END statement in a program. Usually the
statements within PLOT . . . END will include one or more CURVE . . . END statements
that draw the curve on the current plot.

Run the mle program. The plot file and its data files will be created as a Gnuplot program.
At this point you have the option to edit the plot as a Gnuplot program.

Run the Gnuplot program on the plot file to create, display, or print the graph. In some
cases, this forth step can be done from within the mle program using the FI NI SHPLOT
procedure.

Defining the Plot File

Thefirst step in creating a graphic isto define aplot file using the PLOTFI LE(  <name> ) procedure.
mle writes a Gnuplot program to the plot file (Gnuplot is discussed in a later section). The name of
the plot file also determines the name of datafiles created for use by the plot file.

Suppose we wish to create a plot caled sincos. plt. The statement PLOTFI LE( " si ncos. pl t")
will create aplot file by that name. Information will be written to thisfile that definesthe plot. The
information comes from six places:

The PLOTFI LE() procedure writes an initialization string to the plot file. The string is stored
in the variable aNupPLOTI NI T. For example, in DOS-based operating systems, thisvariableis
initially set to "set termnal wndows; reset; set data style lines; set
aut oscal e; set nokey". These Gnuplot statements specify that the termina is Windows,
plot parameters will be reset, lines will be plotted by default, Gnuplot will figure out a good
scale to use, and a graph key will not be generated. Y ou can change this initialization string
by assigning a new string to the PLOTI NI T variable. Alternatively, you can keep this string
asisand add new program lines using the WRI TEPLOTLN() statement (discussed next).

The Wrl TEPLOTLN() and WRI TEPLOT() procedures provide a simple way of writing Gnuplot
statements directly to the plot file. These statements must be used after the PLOTFI LE()
statement. For example, if you want to add a title to the plot, the statement
WRI TEPLOTLN("set title 'Sin and Cos functions'"). You can insert any Gnuplot
statement into the plot file this way. The difference between WRI TEPLOTLN() and
WRI TEPLOT() isthat the former adds a newline after writing, whereas the latter does not.

The MULTI PLOT(<x>, <y>) . . . END Statement can be used to create x by y gridsof X'y
plots on asingle page. The statement writes commands to the plot file, and an initialization
string taken from the variable MULTI PLOTI NI T.

The pLOT . . . END statement initiates a single plot, graph, or chart. It will write an
initialization string to the plot file taken from the variable PLOTI NI T.

The CURVE . . . END statement writes a single curve to the current plot. This is the
statement that writes the Gnuplot pl ot and spl ot statements to the plot file. Each CURVE
statement also creates a data set used by the plot file.

The name of a plot file should usualy end in the file extension . pl t ", because this extension is
used by mle and Gnuplot.

86



mle 2.1 manua

mle can sdlect a plot file name based on the name of the program file by using the
DEFAULTPLOTNAME function. The statement PLOTFI LE( DEFAULTPLOTNAVE) will create a plot name
that matches the name of the program file, but with the ". pIt" extension replacing the ". mi e"
extension.

The plot file will accumulate graphics instructions from the mle MULTI PLOT, WRI TEPLOTLN, PLOT,
and CURVE commands until a new plot file is opened or the mle program terminates. The plot fileis
then processed through Gnuplot to display or print the plots.

The Plot Statement

The PLOT. . . END statement initiates a single graph or chart. The statement does not do the plotting
itself, instead each CURVE. . . END statement executed within the PLOT. . . END statement will add a
single curve to the plot.

The format of the statement is

PLOT [(<string_expr> . .)]
<st at enent s>
END

When a PLOT statement is executed, a few statements may be written to the plot file. Then, the
<satements> are executed. All CURVE statements executed before the END is reached will result in
one curve being added to the current plot.

The optional series of string expressions (enclosed within parentheses) can immediately following
the PLOT statement. These strings will be written to the plot file. The purpose of these stringsis to
provide additiona information to the Gnuplot program, such astitles, ranges, and borders. They are
simply written verbatim to the plot file. In fact, plots can be written in the Gnuplot language with
these strings. Hereis an example:

ME

PLOTFI LE("gpl oteg. plt")

PLOT ( "plot [0:2*pi][-5:5] sin(x), cos(x), tan(x)" ) END
END

Theresulting Gnuplot fileis:

set term nal w ndows; reset; set data style lines; set autoscale; set nokey

plot [0:2*pi][-5:5] sin(x), cos(x), tan(x)

And, hereisthe resulting plot.

The pPLOT dtatement writes the PLOTI NI T string to the plot file. You can assign a string to the
PLOTI NI T variable, and it will be written for each PLOT.
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The Curve Statement

The CURVE. . . END statement does the bulk of the work in creating plots. Each CURVE statement
generaly creates a single curve or surface. For simplicity, the curve statement will be discussed
separately for two-dimensional and three-dimensional plots.

Two-dimensional Plots

The idea of the curve statement is to generate a series of points for a function. For smple curves
two points must be defined: an x value and its corresponding y value. There are two forms for the
CURVE statement (for producing two-dimensiona plots). One form generates a series of REAL X
values for use in computing y values. The second form generates an | NTEGER series of points. The
REAL version looks like this:

CURVE
[ KEY <keystring> | WTH <wi thstring> | AXES <axesstring> . . . ]
<x_var> ( <x_mn> <x_max> [ <x_points>1] )

<x_expr> <y_expr> [ <expr>. . .] [ <strings>. . .]
END
The KEY, W TH, and AXES will be discussed later. Thisform of the CURVE statement crestes a series
of x points. It begins with the point <x_min> and ends with the point <x_max>; <x_points> points
will be generated in total. Each point will be assigned to <x_var> in turn. The value of <x var>
will be used at each point to compute <x_expr> and <y_expr> (and perhaps other expressions as
well). If the expression for <x_points> is missing, the value stored in PLOTPO NTS will be used
instead (which isinitialy 100).
Here is an example that draws two curves on a plot:
MLE
PLOTFI LE( DEFAULTPLOTNANE)
PLOT
CURVE z ( 0, 15, 100 ) z, PDF NORMAL(z) 5, 2 END END
CURVE z ( 0, 15, 100 ) z, PDF WEIBULL(z) 5.5, 2 END END
END {plot}
END
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The second form for the two-dimensional curve statement generates a series of | NTEGER x values for
usein computing y values. It lookslikethis:

CURVE
[ KEY <keystring> | WTH <withstring> | AXES <axesstring> . . . ]
<x_var> = <x_m n> TO <x_nmax>
<x_expr> <y_expr> [ <expr>. . .] [ <strings>. . .]
END

This form of the CURVE statement creates a series of | NTEGER X points. It begins with <x_var> set
to <x_min> and ends with the point <x_max>. The value of <x_var> will be incremented by 1 for
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each point and will be used to compute <x_expr> and <y_expr> (and perhaps other expressions as
well). Hereisan example that draws two curves on aplot:

MLE
PLOTFI LE( DEFAULTPLOTNANE)
PLOT ("set data style boxes", "set xrange [-0.5:12.5])
CURVEi =0 TO10 i, PDF BINOMAL(i) 0.5 10 END END
CURVEi =1 TO12 i, PDF GEOMETRIC(i) 0.2 END END
END {plot}
END
0.25 —
02t — 1 [
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Each CURVE. . . END statement defines asingle graph asa series of x and y points. The x and y values
(and perhaps some values used for error bars and other things) are written to adatafile. These data
files (one per CURVE. . . END statement) are read by Gnuplot when creating the graphs.
KEY
There are three optional keywords that can be used in the CURVE. . . END statement. The first iSKEY,
followed by a string expression. This sets up atitle for the plot key.
AXES
The AXES keyword defines the axis to which a curve will be plotted. A single string expression
follows Axes. Valid valuesfor thisstring are "x1y1", "x2y1", "x1y2", and "x2y2".
WITH
The w TH keyword defines the style of curve to be plotted, along with any options for that style. A
single string expression follows W TH.  The string begins with one of the Gnuplot plot styles, and is
followed by options for that style. mle checks the first word of this string and makes sure there are
enough PLOT expressions for the desired graph type. The information is also used to put together
the Gnuplot pl ot or spl ot command. Valid valuesfor the first word of this string are:
WITH style string Number of expressions
"boxerrorbars" 4 t0 6 CURVE expressions (2d only)
"boxes" 2 CURVE expressions (2d only)
"boxxyerrorbars’ 4to 7 CURVE expressions (2d only)
"candlesticks" 7 CURVE expressions (2d only)
"dots" 2 (2d) or 3 (3d) CURVE expressions
"errorbars’ 3to 4 CURVE expressions (2d only)
"financebars’ 7 CURVE expressions (2d only)
"fsteps” 2 CURVE expressions (2d only)
"histeps” 2 CURVE expressions (2d only)
"impulses’ 2 (2d) or 3 (3d) CURVE expressions
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"lines’ 2 (2d) or 3 (3d) CURVE expressions
"linespoints’ 2 (2d) or 3 (3d) CURVE expressions
"points’ 2 (2d) or 3 (3d) CURVE expressions
"steps’ 2 CURVE expressions (2d only)
"vector" 4 (2d) or 5 (3d) CURVE expressions
"xerrorbars' 3to 4 CURVE expressions (2d only)
"xyerrorbars’ 4 t0 6 CURVE expressions (2d only)
"yerrorbars' 3to 4 CURVE expressions (2d only)
Options can follow each plot style in the wTH string.  The options are |i netype <number >,
l'i nesi ze <nunber>, | inewith <number>, pointtype <nunber> and poi ntsize <number> (the
options can be abbreviated I t, I's, I w, pt, ps respectively). The Gnuplot manua discusses these
optionsin more detail.
Hereis example of asimple plot that makes use of some of the CURVE options:
MLE
PLOTFI LE( DEFAULTPLOTNAVME)
PLOT("set key bottomleft; set y2tics")
CURVE  KEY "sin(x)" AXES "xlyl" WTH "lines |linetype 3"
x (0, 2*Pl, 100)
X, SIN(x)
END
CURVE  KEY "cos(x)" AXES "xlyl" WTH "lines |inetype 3"
x (0, 2*Pl, 100)
X, COS(x)
END
CURVE KEY "tan(x)" AXES "x1ly2" WTH "lines |inetype 2"
x (0, 2*Pl, 100)
X, TAN(x)
END
END {plot}
END {nie}
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ERRORBARS

Additional expressions within CURVE. . . END define things like error bars. Gnuplot provides two
standards for error bars. If only one additional (error bar) expression exist, that value istaken as a
delta value to add and subtract from the y value. If two error bar expressions exist, the values are
taken as the minimum and maximum (respectively) values for the error bars.

Hereis an example of plotting error bars for a binomia experiment involving 40 observations:
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ME
{ -- Plots the probabilities of observing x boys in a famlies of exactly 5 children.}
n=2>5 {bernoull'i trials -- for famlies of size 5}
p = 0.502 {probability of a male child per trial}
{ -- Also plots the standard errors for each outcome assumi ng that}

fam= 40 {a sanple of famfanilies are observed}

PLOTFI LE( DEFAULTPLOTNANE)
PLOT("set yrange [0:]; set xrange [-0.25:" + REAL2STR(n + 0.25, 6, 2) + "]")
CURVE W TH "errorbars"

Xx =0 TOn
X {x-axi s val ue}
PDF BI NOM AL(x) p, n END {y-axi s val ue}
SQRT(p*(1 - p)/fam {errorbar delta}
END {curve}
END {plot}
END {nle}

The Gnuplot file and graph resulting from this program looks like this

set term nal w ndows; reset; set data style lines; set autoscale; set nokey

set yrange [0:]; set xrange [-0.25:5.2500]
plot "eg5.001" using 1:2:3 notitle with errorbars \
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Other strings
A series of one or more string expressions can follow the numeric expressions in the CURVE. . . END.
These strings will be appended to the Gnuplot plot statement so that plot options or other functions
can be plotted. The statements will be written to the plot file. The typical purpose is to re-plot
curvesin adifferent style.
Suppose we want to plot the normal distribution with n+0 and s=5 over the range -10 to 10, and
also show an 21-point histogram superimposed on the continuous curve. The mle code to do thisis:
MLE
PLOTFI LE( DEFAULTPLOTNAME) { open a plot file}
PLOT("set ylabel 'normal pdf f(t)'; set xlabel "t' ")
CURVE W TH "boxes"
x (-10 10 21)
X { the x val ue}
PDF NORMAL(x) 0, 5 END { the function to plot}
", "' with lines"
END {do}
END { plot}
END {nle}

The plot file, written in the Gnuplot graphics language looks like this:
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set term nal w ndows; reset; set data style lines; set autoscale; set nokey

set ylabel 'nornal pdf f(t)'; set xlabel 't'
plot "eg6.001" using 1:2 notitle with boxes \
"' 'with lines

The first line was written when the PLOTFI LE() statement was executed. The next line is blank,
because the PLOTI NI T variable, written to the file when PLOT was executed, is empty. The next line
came directly from the string argument list for the PLOT statement. The line beginning with pl ot

was generated by the CURVE statement. Notice that the Gnuplot continuation character \ comes at
the end of the line. This means that the next line (taken from optional string expression in the
CURVE statement) is a continuation of the plot statement. That line, beginning with a comma, tells
Gnuplot to re-plot the same data file using lines.

The name eg6. 001 is the data file containing the plot points. These file is written by mle, and read
by Gnuplot. Hereistheresult of running Gnuplot on this plot file:
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Three-dimensional Plots

Three-dimensiona plots follow the same syntax as do two-dimensiona plots, except that both an
<x_var> and a <y_var> must be defined in the CURVE statement along with their ranges. Hereis
the formal definition for one form:

CURVE
[ KEY <keystring> | WTH <withstring> | AXES <axesstring> . . . ]
<x_var> ( <x_mn> <x_max> [ <x_points>] )
BY <y_var> (<y_min> <y max> [ <y_points>1] )
<X_expr>, <y_expr>, <z_expr> [ <expr> ... ]

[<string>. . .]
END
Note that there is now a variable for both x and y. The specification for each variable is separated
by the keyword BY. |If the value of <x_points> or <y points>is nmissing, it will be taken fromthe

variabl e PLOTPO NTS (which is initially 100).

Alternatively, the | NTEGER from of the CURVE statement can be used:

CURVE
[ KEY <keystring> | WTH <withstring> | AXES <axesstring> . . . ]
<x_var> = <x_m n> TO <x_nmax>
BY <y_var> = <y_m n> TO <y_nax>
<X_expr>, <y_expr>, <z_expr> [ <expr> ... ]
[<string>. . .]
END

Additionally, the REAL and I NTEGER forms can be combined:
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CURVE
[ KEY <keystring> | WTH <wi thstring> | AXES <axesstring> . . . ]
<x_var> = <x_m n> TO <x_nmax>
BY <y_var> (<y_min> <y max> [ <y_points>1] )

<X_expr>, <y_expr>, <z_expr> [ <expr> ... ]
[<string>. . .]
END
or
CURVE
[ KEY <keystring> | WTH <wi thstring> | AXES <axesstring> . . . ]

<x_var> ( <x_mn> <x_max> [ <x_points>] )
BY <y_var> = <y_nmin> TO <y_max>

<X_expr>, <y_expr>, <z_expr> [ <expr> ... ]
[<string>. . .]

END
Gnuplot does not support error bars or boxes for three-dimensional plots. Thus, there are three
required numeric expression (<x_expr>, <y_expr>, <z _expr>) following the <y _var> definition
(athough additional numeric expressions can be written to the data file for other uses). These three
required expressions gives the x, y, and z values to be plotted for each combination of x_var and
y var.
Here is an example of a simple three-dimensional plot. Suppose we want to plot the function
SIN(x)~2 + COos(y)~2 over therange 0 to 2p with 30 pointsin each dimension. The mle code to do
thisis:

MLE
PLOTFI LE( DEFAULTPLOTNANE) { open plot file}
PLOT("set contour base; set hi dden3d" { plot a surface plot and a contour plot}
"set view 50") { change the perspective a bit}
CURVE x (0, 2*PlI, 30) BY y (0, 2*PI, 30) { define the ranges }
X, ¥y, SINx)"2 + COS(y)"2 { the function to plot}
END {curve}
END {plot}
END {nle}

Theresulting Gnuplot fileis:

set term nal w ndows; reset; set data style lines; set autoscale; set nokey

set contour base; set hidden3d
set view 50
splot "eg7.001" using 1:2:3 notitle \

Thefile eg7. 001 contains the points generated by mle. Here isthe resulting plot.
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Three-dimensiona plots can include multiple curves. For example, to the previous curve, we can

add to the graph, a plane through z = 1, and another plane through z = y/4.

M.E
PLOTFI LE( DEFAULTPLOTNAME)
PLOT("set nocontour"
"set hidden3d"
"set view 50")
CURVE x (0, 2*PlI, 30) BYy (O
X, ¥y, SINx)"2 + COS(y)"2
END {curve}
CURVE x (0, 2*PI,
X, Y, 1
END {curve}
CURVE x (0, 2*PI,
X, Yy, yl4
END {curve}
END {plot}
END {nle}

2*Pl, 30)
10) BY y (0, 2*Pl, 10)

10) BY y (0, 2*Pl, 10)

open plot file}

no cont our s}

hi de Iines}

change the perspective a bit}
curve 1}

o Natn Rt et Rt

{curve 2}

{curve 3}

Theresulting Gnuplot fileis:

set term nal wi ndows; reset; set data
set nocont our
set hi dden3d
set view 50
spl ot "eg8.001"
, "eg8.002"
, "eg8.003"

using 1:2:3 notitle \
using 1:2:3 notitle \
using 1:2:3 notitle \

Notice that there were three plot data files created: one for each surface. The resulting graph looks

like this
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Multiple plots

Multiple plots can be placed on a single page with the MULTI PLOT. . . END Statement. The form of
the statement is:

MULTI PLOT( <xpl ot s> <ypl ots> )
<st at enent s>

END
The two arguments determine the number of plots that are placed across the page (<xplots>) and
vertically down the page (<yplots>). In this way, <xplots> by <yplots> pages of plots are
generated. Once apageisfilled, anew page is automatically generated.

The <statements> are any valid mle statements, including PLOT. . . END statements (typically two or
more PLOT statements are executed). The PLOT. . . END statements may be executed within a user-
defined procedure call.
ThePLOTFI LE() procedure must be called beforethe MULTI PLOT statement.
Hereisan example. The following program shows a series of Weibull distributions.
MLE

PLOTFI LE( DEFAULTPLOTNANE)

nx = 3

ny = 2

MULTI PLOT( nx, ny)
totp = nx*ny
FORmu = 1 to totp DO
pPLOT
FOR sig = 1 TO 3 DO
CURVE t (0, 10, 50) t, PDF WEIBULL(t) nmu, sig END END
END {for sig}
END {plot}
END {for nmu}
END {nultiplot}
END {nle}
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The MULTI PLOT statement makes use of anul ti pl ot routine available in Gnuplot. The Gnuplot
statement does not work correctly for al termina types. In particular, the x axis labels an plot titles
do not always print correctly for the right-most plots. Also, plots with x axis labels and plot titles
are sometimes scaled to an overly small size.

mle attempts to scale the multi-plots so that none of the figures overlap, and so that the aspect ratio is
unchanged. Y ou can affect the scaling size from within mle by changing the variables MPLOTYSCALE
and MPLOTXSCALE (both begin as 1.0). These variables control the relative degree of shrinkage or
expansion beyond that required to fit aplot in its rectangle.

Working with Gnuplot

What is Gnuplot?
Gnuplot is a function and data plotting program that is designed to work on a large range of
computer systems. The program has many graphing capabilities, including the ability to plot
directly from files. mle makes use of arelatively small subset of the Gnuplot capabilitiesto generate
graphs. Infact, mle smply writes a Gnuplot program and creates data sets, Gnuplot does the rest.

The authors of Gnuplot provide for free distribution of the software, including the source code.
Over the years, many individuals have contributed to writing the program, but the main authors are
Thomas Williams, Colin Kelley, Russdll Lang, Dave Kotz, John Campbell, Gershon Elber, and
Alexander Woo.

How to Obtain Gnuplot

|n1e requires Gnuplot version 3.7 (or later). |

Gnuplot and its documentation can be downloaded from many ftp and web sites. Gnuplot can be
downloaded and compiled on your computer system. For some platforms (particularly DOS and
Windows) executable packages are commonly available. Here are some ways of obtaining Gnuplot

The officia ftp distribution site for the Gnuplot source is ftp.dartmouth.edu. The file is called
/pub/gnuplot/gnuplot.3.7.tar.Z.

Most comp.sources.misc archive sites distribute Gnuplot.

Executable versions of Gnuplot for MS-DOS and M S-Windows are available from oak.oakland.edu
[141.210.10.117] as pub/msdog/plot/gpt37*.zip; garbo.uwasafi (Europe) [128.214.87.1] as
/pc/plot/gpt37*.zip and archie.au (Australia) [139.130.4.6] as micros/pc/oak/plot/gpt37*.zip. The
filesare: gpt37doc.zip, gpt37exe.zip, gpt37src.zip and gpt37win.zip.

0S/2 2.x binaries are at ftp-0s2.nmsu.edu [128.123.35.151], in /0s2/2.x/unix/gnu/gplt37.zip.
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There are many other web-sources are available. Give the name "Gnuplot” to any major
search engineto find a location near you.

Most sites that distribute software under the Free Software Foundation GNU Public License
aso distribute Gnuplot.?

Many Linux distributions contain Gnuplot as a package.

Basics of Gnuplot

Full documentation for Gnuplot is available for free with the program. Here are afew notes on the
language.

Gnuplot can be used interactively or in a batch mode. For example, you can read in afile
created by mle into the Windows version of Gnuplot, and then modify the plot interactively.

The Gnuplot language usually takes one statement per line. Multiple statements on one line
by are formed by separating the commands by a semicolon(;). Also, a single statement can
be spread across multiple lines by using the backslash (\) character as the last character on a
line. The pound sign (#) is used as a comment delimiter.

The Gnuplot language is case sensitive. Lower case is used for functions and key words.
Also, algebraic operators follow the syntax of ¢. So, ! = in Gnuplot is equivalent to <> in mle,
and %in Gnuplot is equivalent to nod inmle. Exponentiation in Gnuplot uses the operator * *.

Many options in Gnuplot are set with the set command. Here are some examples: set
terminal hpljii; set key on; set title "fun with graphics"; set |ogscale
xy; set size 0.5 0.5; set xlabel "time (hours)-4 "; set ylabel "density".
There are many set options available in Gnuplot. These are usually inserted into the plot file
using mle'sWRI TEPLOTLN() statement or in theinitia string list in the PLOT statement.

Setting the Output Device

Gnuplot is relatively device independent. That is, it can work across a number of computer
platforms, and write to different types of graphics devices. In order to plot or display agraph on a
particular device, you must specify a "termina” type. Gnuplot can then generate graphics for that
specific device.

As an example, in previous graphs in this chapter, the device was set to Windows (the graphs were
copied and pasted into this document). The terminal Gnuplot statement

set term nal w ndows

isinal of these programs. Y ou can set the terminal to another device. One type of device defined
by Gnuplot is adumb terminal, specified by set terminal dunmb. You can the graphics deviceto
a dumb terminal in two ways. First, you can editing the Gnuplot program (i.e. the program that
ends in .plt) and add this statement before the pl ot command (and after any other set terminal
statement). Alternatively, you can insert the command WRI TEPLOTLN("set terninal dunb") in
themle program after the PLOTFI LE() statement.

The following example shows the result of plotting the previous sine and cosine example with the
terminal set to dumb.

8 Even s0, Gnuplot is not distributed under the same license. In fact, it is a coincidence that GNU appearsin Gnuplot and is the name
adopted by the Free Software Foundation. See the Gnuplot manual for details.

97



mle 2.1 manua

1 - FoREREER AL Fommenns Femmene P - - - +
+ o x *xx + + + Hith +
o HH rr * H#i ++
| * % * % ## |
++ x4 * # ++
| * % # * # |
—_ #H *x #H ++
| * % # * # |
++* # * # ++
|** # * # |
kL, # .............. e # .............. * .. ++
| #it * #it *
| # * # * % |
++ #it * #it * ++
| # * # * % |
++ #it * #it * ++
| #it * * |
++ # * # *k ++
| # * % * % |
++ #it it *x * ++
+ + + #H#t# + #itH  + K** *kk + +
B, B, B, HHAHHHRH- - - - - oo RXKRKKK_ B, ++
0 1 2 3 4 5 6 7

Some terminal types alow device-specific options to be included after the name of the terminal.
For example, set terninal dunb 80 60 would set the Size of the previous plot to 80 characters
across by 60 characters high. Information on specific device options is available in the Gnuplot
manua. Hereisasynopsisof some commonly used terminal devices:

set terminal dunb <xsize> <ysize> for "dumb" terminas and printers. (see the
previous example).

set terninal epson for printing bit mapped graphics to an Epson printer

set termnal gpic for generating TEC output for use with the gpic/groff package from the
Free Software Foundation.

set ternminal hpljii <resolution> for printing to an Hewlett Packard LaserJet Il
printer. The <resol ution>is75, 100, 150, Or 300.

set terminal hpdj <resol ution> for printing to an Hewlett Packard Deskjet printer. The
<resol uti on>is75, 100, 150, or 300.

set terminal latex <font> <size> for generating TEC output for use with LaTeX and
EMTeX.

set terminal pcl5 <nmode> <font> <size> for printing to an Hewlett Packard HGPL-2
printer or plotter.

set termnal postscript for printing to a postscript printer or device. There are a
number of mode, color, and font options for this device.

set terninal tabl e for printing atable of values asan ASCI| text file instead of a graph.

set ternminal w ndows <col or>"<fontname>" <si ze> for displaying in windows
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The FINISHPLOT procedure

The procedure FI NI SHPLOT provides a way to execute Gnuplot from within the mle program itself.
The procedure takes a single boolean argument. Hereiswhat the procedure does:

If the argument is TRUE, a “pause -1“ statement will be written to the plotfile. This will
cause the graph to be displayed until you either press a key or click on a dialog box. If the
argument is FALSE, the pause statement is not written to the plotfile.

The plotfileis closed. No more curves can be written to thisfile.

The Gnuplot program is executed with plotfile asits argument. Thiswill cause the plot to be
written to whatever terminal is defined. For example, if the command set terninal
wi ndows (Windows) or set term nal x11 (Unix) is specified in the plotfile, the graph will
be displayed on the screen. Other drivers will cause the plot to be written to the file defined
by a Gnuplot set out put command.

Additional details on how the Gnuplot program is executed, see the description of the FINISHPLOT
procedure in the procedure summary chapter.

More Examples

Additional examples of graphical programming in mle are given here.

Graphing PDFs, SDF, CDF, and HFs

Here is an example of plotting all four basic probability functions for the Weibull distribution with
three different sets of parameters. This example shows multiple plotsin one program, and how key
titles can be added to the plot. Also note that the keys are moved around for different sets of plots.

ME
PLOTFI LE( DEFAULTPLOTNANE)
WRI TEPLOTLN( ' set xl abel "t"; set autoscale; set key')

mnz = 0.01
maxz = 10
np = 100

titles : STRRNG1 TO 4] =
["Probability Density",
"Survival ",
"Cunul ative Density"
"Hazard"]
ylab : STRING1 TO 4] = ["f(t)", "S(t)", "F(t)", "h(t)"]

MULTI PLOT(2, 2)

FORty =1 TO 4 DO {l oop through PDF, SDF, CDF, HF}
PLOT('set title "Weibull ' + titles[ty] + ' Function"'
"set ylabel "' + ylab[ty] +'"")
FORv =1 TO 3 DO {use three different variances}

CURVE z (m nz, maxz, np)
KEY 'WeibulI[6, ' + INT2STR(z) + ']’
z, PDF WEIBULL(z,

IFty =2 THEN O ELSEIF ty = 3 THEN oo ELSE z END,
IFty = 3 THEN z ELSE 0 END)
6, Vv {these are the wei bull paraneters}
END { pdf}
END {curve}
END {for v}
END {plot}

END {for ty}
END {nultiplot}
END {nie}
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Here isthe result of this program:

Wbl Cus Dty Farcicn

Contour plots

Contours can be drawn beneath the surface of athree-dimensional plot. Hereisan example:

M.E
PLOTFI LE( DEFAULTPLOTNAME)

WRI TEPLOTLN(' set zrange[0: 1]; set contour base; set hidden3d; set view 70")
PLOT

DOxy (-3 3 25) (-3 3 25)
X, Yy, EXP(-(x"2 + 1.8*x*y + y”~2)) {a type of bivariate normal}
END {do}
END {plot}
END

A contour plot alone is generated from the previous example by turning off the surface and
changing the perspective:

ME
PLOTFI LE( DEFAULTPLOTNANE)
PLOT(' set zrange[O0:1]; set contour base; set nosurface'
"set yrange [] reverse; set view 180, 0')
CURVE x (-3 3 25) BYy (-3 3 25)
X, Yy, EXP(-(x"2 + 1.8*x*y + y~2)) {a type of bivariate nornal}
END {curve}
END {plot}
END
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A Hdlix

A hdix is defined parametrically with smple functions. The following code generates a helix

ME
PLOTFI LE( DEFAULTPLOTNANE)
WRI TEPLOTLN(' set zrange[-1:]; set view 60, 30, 0.75, 2; set hidden3d')
PLOT
CURVE x (0 2 15) BY y (-Pl 4*Pl 40)
x*COS(y), x*SINy), y/3
END {curve}
END {plot}
END

TN ARNS ]

78
2157 ot
050057755715

Geometric Figures

Mathematically defined geometric figures can be easily drawn. This example shows a number of
useful tricks in Gnuplot, including turning off the axis borders, and graphing multiple plots.

ME
PLOTFI LE( DEFAULTPLOTNANE)
WRI TEPLOTLN(' set zrange[0:]; set hidden3d; set view 70")
WRI TEPLOTLN(' set noborder; set noxtics; set noytics; set noztics')
PLOT
CURVE x (0 2*PI 20) BY y (0 4 20) {pl ot a cone}
SIN(x)*y, CO8(x)*y, (-y +5)
END {curve}
CURVE x (0 2*PI 20) BY y (0 2*PlI 20) {Now plot a torus around the cone}
COS(x)*(3 + COS(y)), SIN(x)*(3 + COS(y)), SINy) + 2.5
END {curve}
CURVE x (0 2*PI 20) BY y (-PI/2 PI/2 20) {And place a sphere on top}
COS(x)*COS(y), SIN(x)*COS(y), SINy) + 6
END {curve}
END {plot}
END {nie}
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Animation Example

Multiple PLOT. . . END statements can be used to create animation in mle. Alternatively, the time
dimension can be introduced with the use of a looping statement outside of the PLOT. .. END
statement. Gnuplot has a pause command that helps control the length of time each plot is
displayed. Hereisan example:

ME
{ -- An animation exanple }
PLOTFI LE( DEFAULTPLOTNANE) { open plot file}

WRI TEPLOTLN("set contour both; set hidden3d")
FORf =4 TO9 DO
PLOT(" pause 2") {wait two seconds before showi ng the next plot}
CURVE x (-10, 10, 30) BY y (-10, 10, 30)
X, y, BESSELI (0, SQRT(x"2 + y~*2) - f)
END {curve}
END {plot}
END {for}
END {nie}

This example produces this sequence of plots:
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Creating Plots from the Model Statement

The MoDEL statement can create two types of commonly used plots that are related to model
estimation. The first plot includes three graphs of distributions: the survival density function, the
probability density function and the hazard function. Each of these is graphed with error bars. The

second type of plot is alikelihood surface graph in either one or two variables.

Before attempting to plot either one of these special plots, a plotfile must be defined with the
PLOTFI LE() procedure. This opens the plot file and defines the name of the plot data file.

Additionally, the pLOT. . . END statement must surround the MODEL statement.

Estimated Distributions

The survival function, probability density function and hazard function can be plotted from a MoDEL
statement by setting the variable PLOT_DI STS to TRUE. (The mechanism is similar to that used for
printing the values using the PRI NT_Di ST variable). In addition to PLOT_DI STS=TRUE, you must set
three other values. DI ST_T_START defines the lowest value over which the distribution is plotted,
D ST_T_END is the highest value over which the distribution is plotted. DI ST_T_N is the number of

points to plot.

An example of plotting these distributions is given after the description of likelihood surfaces.

Likelihood Surfaces

A likelihood surface can be plotted over one parameter or two parameters of a model. All other

parameters are taken at their estimated value.

Surface plots are made by adding SURFACE( <xpar an®) Of SURFACE( <xpar ame, <ypar anmp) to the

end of the RUN or REDUCE list part of the MODEL statement. Hereisthe format:

PLOT {surrounds the nodel statement for plotting surfaces}
MODEL
<nodel statenent>
RUN
FULL SURFACE( <xpar anp) {plots a likelihood profile over one paraneter}
FULL SURFACE( <xpar an®, <yparamp) {plots a likelihood profile over two paraneters}
REDUCE ... SURFACE(<xparan®p)
REDUCE ... SURFACE(<xparan®, <yparanp)
END {nodel }
END {plot}

For each parameter being plotted, the minimum plotted value is taken from the PARAM function as

the Low = value, and the maximum is taken from H GH = value.
An Example

Hereis an example of statistical estimation and plotting of distributions and a likelihood surface.
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ME
TI TLE = "Japanese tooth eruption:
DATAFI LE("j apan. dat")
OUTFI LE( DEFAULTOUTNANE)
PLOTFI LE( DEFAULTPLOTNANE)

DATA
lilo FIELD 5 LINE 1
lilc FIELD 6 LINE 1
sex FIELD 3 LINE 2
END

PLOT_DI STS = TRUE
DI ST_T_START = 5.0
DIST_T END = 15.0
DIST.T N = 25

{to 10 nont hs}
{in 25 points}

| ower first

{Plot the distribution from 5}

incisor."

{earliest eruption age for |ower central
{l atest eruption age}
{Child s sex}

i ncisor}

PLOT {surrounds the npdel statenent}
MODEL
DATA
PDF NORMAL(1i 1o, Ii1lc)
PARAM nean LON=6 HGH =10 START =38 END
PARAM st dev LOW= 1.2 HCGCH-=3 START = 1.7 END
END {pdf nornal}
END {dat a}
RUN
FULL SURFACE(nean, stdev) {plots the surface for mean and stdev}
END {nodel }
END {plot}
END {nie}
The following four plots result:
Survival Function Probability Density Function
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Chapter 6
Statistical examples

This chapter provides a series of examples in creating likelihood models and
estimating parameters of the models. The examples are categorized by the type of
likelihood problem being done. Some of the examples include data files.

Survival analysis—Exact measurements

@

This first example not only provides an illustration of a smple mle program, but
also shows the notation that will be used throughout this chapter. The problem at
hand is finding one or more parameters g of some distribution f(t|q), given a series
of observations, t=ty, t,, . . ., ty. The values of t are known exactly. For an
individual observation, t;, the individud likelihood is L; = f(tiq), and the overall
likelihood for the N observations is

N
L(q[t)= _(_)f(ti |g)dt .

Data for this example (Table 6) are a series of 15 observations of times to
breakdown for an insulating fluid at 32 kV. The times are arranged as one
observation per line in a file named exl.dat. The underlying distribution is
believed to follow a negative exponential probability density function, with asingle
parameter lambda. The following mle program analyses these data. Comments are
enclosed in curly brackets.

Hereisthe code for this problem:
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ME
TITLE = "32 kV Insulating Fluid Exanpl e from Nel son (1982: 105)"
DATAFI LE("ex1. dat") {I'nput data file nane}

OUTFI LE("ex1. out") {Nane to which results are witten}
DATA {data are read fromthe data file here}
failtinme FIELD 1
END
MODEL {this specifies the likelihood nodel}
DATA {this corresponds to the product in the likelihood equation}

PDF EXPONENTI AL(failtine)
PARAM | ambda LOA£0.00001 HI GH=1 START=0.05 END
END {pdf}
END { dat a}
RUN
FULL
END {rodel }
END { program

Hereisthe abridged output

New nmodel : 32 kV Insulating Fluid Exanpl e

LogLi ke= -70.76273 Iterations= 2 Func eval s= 26 Del (LL)= 0.0000000000
Converged normal |y

Results with estimated standard errors. (7 evals)
Solution with 1 free paraneter
Name Form Estimate Std Error t agai nst
| ambda LOGLIN  0.024294254090 0.004468859626 5.43634307759 0.0

The first part of the output shows the loglikelihood, and information about
iterations, function evauations, and convergence. This is followed a report of
parameter estimates and their standard errors.

Table 6 Times to breakdown for an insulating fluid at 32 kV, from Nelson W (1982: 105).

0.27 0.4 0.69
0.79 2.75 391
9.88 13.95 15.93
27.8 53.24 82.85
89.29 100.58 2151

Survival analysis—Exact Failure and Right Censored

ob

©)

servations

The standard problem in survival analysis is to find parameters of a parametric
model when some observations are right censored. Typically we have N exact
observations, and N* right-censored observations, the likelihood is

N N
L(q|t)= O f(tilq)(_) S(ti]a).

where S(t|q) is the survival distribution, which is the area under f(t|q) to the right
of t. The area under a right censored observation is specified in the mle PDF
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function by setting the second time variable to infinity (or something less than
the first time variable). So, the function PDF NORMAL( 14, -1) 10, 6 ENDwould
return the area from 14 to infinity of under a normal pdf with parameters m= 10,
and s = 6, or about 0.2525. This would correspond to the likelihood of an
individual surviving past 14 units of times under the specified model.

For this example, we use the data in Table 6 and suppose that there were three
additional observations that had not failed by time 220—the end of the experiment.
The data will be coded so that the three right censored times are given as negative
times, -220. The DATA statement now creates two variables, the first is the absolute
value of time to fallure, and the second is the unmodified time. Thus, failed
observations have two identical falure times, for example [9.88, 9.88], which
defines an exact failure. When the two identical observations are used in the PDF
function, the probability density function at that point is returned. The right-
censored observations have a positive and a negative failure times [220, -220].
When the second failure time is less than the first, the PDF function gives the area
under the pdf from 220 to infinity, which is the survival function.

ME
TITLE = "32 kV Insulating Fluid Exanple"
DATAFI LE("ex2. dat") {I'nput data file nane}
OUTFI LE("ex2. out") {Nane to which results are witten}

DATA
t open FIELD 1 = ABS(topen)
tclose FIELD 1

END

MODEL
DATA
PDF EXPONENTI AL(t open, tcl ose)
PARAM | ambda LOA0.00001 HI GH=1 START=0.05 END
END {of the PDF}
END
RUN
FULL
END {of the MODEL}

END {of the ME progrant

The abridged output is

18 lines read fromfile ex2. dat
18 Cbservations kept and O observati ons dropped.

New nmodel : 32 kV Insulating Fluid Exanpl e

LogLi ke= -81.66833 Iterations= 2 Func eval s= 28 Del (LL)= 0.0000000000
Converged normal |y

Results with estimated standard errors. (8 evals)
Solution with 1 free paraneter
Name Form Estimate Std Error t agai nst
| ambda LOGLIN 0.011742333138 0.002142967492 5.47947329296 0.0
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Survival analysis—Interval censored Observations

4

Interval censored observations, are those collected between two points of time.
These observations frequently arise from prospective studies in which periodic
observations are collected. The exact times to the event are not known. What is
known is t,, the last time before the event occurred, and t., the time of the first
observation after the event occurred. The likelihood for interval censored eventsis
the area under the pdf between t, and t,

N N
L(alt,.t) = O @f (zIa)dz= O gS(t, [9)- S(t; [y

i:ltUi

In mle, the area under the pdf (that is, the integral over the interval (i, to] is
specified for most distributions as the first two times, with the second time greater
than the first. For example, PDF NORMAL(11, 15) 10, 6 END returns 0.231,
which is the area between 11 and 15 under a normal distribution with =10, and
s=6. Hereisanmle program that finds parameters of alognormal distribution from
interval censored data.

M.E

TITLE = " Exanpl e"
DATAFI LE(" ex3. dat ")
OUTFI LE( " ex3. out ")

DATA
t open FI ELD 1
tclose FIELD 2
END

MODEL
DATA
PDF LOGNORMAL(t open, tclose)
PARAM a LOW-0.00001 H GH=9
PARAM b LOW-0. 00001 H GH=2
END {of the PDF}
END
RUN
FULL
END {of the MODEL}

START=1 END
START=0.4 END

END

Current status analyses

Current status analysis consists of observations that are collected cross-sectionaly.
The methods most commonly associated with current status analysis are probit and
logit analysis. mle makes it easy to do current status analysis with any of the built-
in distribution functions.

Under a cross-sectional study design, each observation consists of (1) time of a
single observation since the study began (t), (2) an indicator variable to determine
whether or not the individual experienced the event. The result of the indicator

110




Statistical examples

variable is that the individual is a responder (r) or non-responders (n). The
likelihood from N observations made up of N, responders and N, non-respondersis

A AL
©®) L(q|t)= O S(t; Iq)(__) F(ti|a)

This likelihood can be interpreted as follows. For the likelihood for the non-
respondersis the area under the pdf from the time of observation to infinity. Thus,
a responder contributes a likelihood that is exactly like a right-censored
observation. The likelihood for aresponder is the area under the pdf from -¥ (or O
for pdfs defined to have positive arguments) to the time of observation, which is
the probability of the event occurring at some time unknown time before the time
of observation. In mle, the area under the likelihood for a responder is specified as
PDF LOGNCRMAL(-1, 5) 2, 0.5 ENDreturn 0.217, which isthe area between O (or
anything less than 0) and 5 under alognormal distribution with m=2, and s=0.5.

Consider a data set that contains a time of observation and an indicator variable
that is O if the observation was a non-responder and 1 for aresponder. One way of
coding this model is to place an I F... THEN. . . ELSE. . . END statement to switch
between responder and nonresponder likelihoods as appropriate for each
observation:

MLE
TI TLE = " Exanpl e"
DATAFI LE(" ex4. dat ")
OUTFI LE( " ex4. out ")

DATA
t FIELD 1 {tine of observation}
resp FIELD 2 {1 if responder, O if nonresponder}
END
MODEL
DATA
IF resp = 1 THEN {it is a responder}

PDF LOGNORMAL(O, t)
PARAM a LOW-0.00001 H GH=9 START=1 END
PARAM b LOW-0. 00001 H GH=2 START=0.4 END
END {of the PDF}
ELSE {non-responder}
PDF LOGNORMAL(t, 00) a, b END
END {of if then else}
END { dat a}
RUN
FULL
END {of the MODEL}

END

Alternatively, The following mle data statement will transform the observation time
into a set of two times. For aresponder, t open will be set to zero and t ¢l ose will
take the value of the observed time. For a non-responder, t open will take the value
of the observed time and t cl ose will be set to zero. Note that when the second
time is set to zero, it will be less than t open, so mle returns the area from t open to
infinity.
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MLE
TITLE = " Exanpl e"
DATAFI LE(" ex4. dat ")
OUTFI LE( " ex4. out ")

DATA
tinme FIELD 1 {read in observation tine}
resp FI ELD 2 {1 if responder, 0 if nonresponder}
t open = |Fresp == 1 THEN O ELSE tine END
tcl ose = |IFresp ==1THEN time ELSE -1 END
END
MODEL
DATA

PDF LOGNORMAL(t open, tclose)
PARAM a LOW0.00001 H GH=9 START=1 END
PARAM b LOW-0.00001 HI GH=2 START=0.4 END
END {of the PDF}
END
RUN
FULL
END {of the MODEL}

END

Survival analysis—L eft-truncated observations

Left truncation arises in survival analyss when some early portion of an
individual's period of risk is not observed. For example, in a prospective study of
mortality, we might want to follow all living people in some area, instead of just
following individuals from birth. This type of data collection can lead to unbiased
results, provided observations are left-truncated at the age at which people are
enrolled in the study. Theideaisthat, had the someone died prior to being enrolled
in the study, that would not have been enrolled; therefore, their risk of mortality is
know to be zero.

For this example, we will use the Siler competing hazards mortality model for a
fictitious prospective study of mortality. We will two types of observations: those
who died and those who are right censored. For each observation we know three
times: the time an individual was enrolled for prospective observation (t,), the last
time an individual was observed as dive (t,), and the first time the individual was
known to be dead (t,). Thefirst time, t,, defines the left truncation point, t, and t.
define an interval within which death took place. For right censored observations,
teis set to infinity (or anumber greater than the human lifespan). Thelikelihood is

S - S
(©) L(q,tu,te,ta):é (t, ISQé lq()tqlq)_

From this likelihood it can be seen that an individua's probability of death is the
area under pdf between t, and t. and divided by the area from t, to infinity, which
renormalizes the pdf for the period of actual observation. An individud likelihood
is constructed in mle as PDF SI LER(14, 15, 6) 0.05, 0.3, 0.0, 0.001, 0.05

END, which represents a person who died between ages 14 and 15, and were
enrolled in the study at age 6.
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MLE
TITLE = " Exanpl e"
DATAFI LE(" ex5. dat ")
OUTFI LE( " ex5. out ")

DATA
tal pha FIELD 1 {Left truncation tine}
t open FIELD 2 {tine last known alive}
tcl ose FIELD 2 {tine first known dead, or oo if censored}
END
MODEL
DATA
PDF SILER(topen, tclose, tal pha)
PARAM al LOW-0.00001 HI GH=0.5 START=0.01 END
PARAM bl LOWO0.01 H GH=2  START=0.1 END
PARAM a2 LOW-0 H GH=1  START=0. 001 END
PARAM a3 LOW-0. 0000 H GH=1  START=0. 001 END
PARAM b3 LOW0.00001 H GH=1  START=0.001 END

END {of the PDF}
END
RUN
FULL
END {of the MODEL}

END

Survival analysis—Right-truncated observations

©

Right truncation arises in survival analysis when the later risk is determined by the
study design. For example, we might have data on child mortality for analysis.
Each child was followed from birth to age five, and the only children available in
the data set were those who died from birth to five. Thistype of data collection can
lead to unbiased results, provided child's observations are right-truncated at age
five.

For this example, we will use the Gompertz competing hazards mortality model for
a fictitious prospective study of mortality. We will have observations selected for
mortality by age five and no right-censoring. A single age at death is known. The
likelihood for exact times to death with right truncation is

8 f(t
L(q,t,tw) = O &
i=1 1- S(tw. |q)
From this likelihood it can be seen that an individua's probability of death is the
pdf at the age of death, divided by the areafrom 0 to t,,, which renormalizes the pdf
for the period of actual observation. Anindividua likelihood is constructed in mle

as PDF GOMPERTZ(2.1, 2.1, 6) 0.05, 0.3 END, whichisadeath a the age of
2.1
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MLE
TI TLE = " Exanpl e"
DATAFI LE(" ex6. dat ")
OUTFI LE( " ex6. out ")

DATA
tdeath FIELD 1 {Left truncation tine}
END

tal pha = 5.0 {set a constant for right truncation}

MODEL
DATA
PDF GOWPERTZ(tdeath, tdeath, tal pha)
PARAM al LOW-0.00001 HI GH=0.5 START=0.01 END
PARAM bl LOW-2 H GH=-0  START=0.1 END
END {of the PDF}
END
RUN
FULL
END {of the MODEL}

END

Survival analysis—L eft-and right-truncated

observations

®)

This example extends the previous one by including both left and right truncation,
as well asinterval censored observations. We will use a child mortality example
again, but now each children is recruited at some age from O to 5 years. Their risk
will be left-truncated at the age of entry. Again, only children who die before age 5
would be included in the analysis, so that all exposures are right-truncated. Finally,
children are periodicaly visited, so al observations are interval censored. Again,
we will use the Gompertz competing hazards mortality model for this fictitious
prospective study of child mortality. The likelihood is

_ A S(t, |9)- S, 19)
L(q,tu,te’ta’tw)‘g S(t,, 19)- S, 1a)

From this likelihood it can be seen that an individua's probability of death is the
area under pdf between t, and t. and divided by the area from t, to t,, which
renormalizes the pdf for the period of actual observation. An individua likelihood
iscongtructed in mle asPDF GOVPERTZ(t open, tcl ose, tal pha, tomega) 0. 05,
0.3 END. For example PDF GOMPERTZ(2.1, 2.4, 1.0, 5.0) 0.05, 0.3 END
returns the probability that a child, enrolled in the study at age one and selected for
having died by age five, died between the ages of 2.1 and 2.4.
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MLE
TITLE = " Exanpl e"
DATAFI LE(" ex7. dat ")
OUTFI LE( " ex7. out ")

DATA

tal pha FIELD 1 {Left truncation tine}

t open FIELD 2 {tine last known alive}

tcl ose FIELD 2 {tine first known dead, or oo if censored}
END

tomega = 5.0

MODEL
DATA
PDF GOWPERTZ(topen, tclose, tal pha, tonega)
PARAM al LOW0.00001 HI GH=0.5 START=0.01 END
PARAM bl LOWO0.01 H GH=2  START=0.1 END
END {of the PDF}
END
RUN
FULL
END {of the MODEL}

END

Survival analysis—Accelerated failure time model

Frequently, one is interested in modeling the effects of covariates on the time to
failure. A common mode of this type is call the accelerated failure time model
(AFT), in which covariates shift the time to failure to the right or the left. mle hasa
general mechanism for modeling the effects of covariates on any parameter that is
defined, so that accelerated failure time models can be easily constructed.

In this example, the mean of a normal distribution has two covariates that shift the
failure time.

MLE
TI TLE = " Exanpl e"
DATAFI LE( " ex8. dat ")
OUTFI LE( " ex8. out ")

DATA
t open FIELD 1 {Last observation tinme prior to the event}
tcl ose FIELD 2 {First observation time after the event}
wei ght FIELD 3 {the first covariate}
age FIELD 4 {the second covari at e}

END

MODEL
DATA

PDF NORMAL(t open, tcl ose)
PARAM nmu LOW0. 00001 HI GH=100 START=25 FORM:=LOGLI N
COVAR wei ght PARAM b_wei ght LOWE-20 HI GH=20 START=0 END
COVAR age PARAM b_age LONE-20 HI GH=20 START=0 END
END {par am mu}
PARAM s LOW0.01 HI GH=50 START=3 END
END {of the PDF}
END
RUN
FULL
END {of the MODEL}

END
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From this specification of covariates, the mintrinsic parameter of the normal
distribution will be computed for the ith observation as m = mu” exp(wei ght; ~
b_wei ght + age; ~ b_age).

Survival analysis—Hazards model

An dternative to the accelerated failure time modd is the hazards model. Under
the hazards modd, the effects of covariatesisto raise or lower the hazard by some
amount®. In generd, if h(t) is the hazard function, covariates for the ith individual,
xb, are modeled on the hazard as hi(t) = h(t)exp(xb).

Mogt of the probability density functionsin mle provide a mechanism for modeling
the effects of covariates on the hazard. Y ou can find out for any particular pdf by

typing, for example, m e -h 1 ognormal . A message will tell you whether or not
covariates can be modeled on the hazard.

In this example, the same normal distribution used in the previous example has had
the two covariates moved from affecting mto affecting the hazard.

MLE
TITLE = " Exanpl e"
DATAFI LE(" ex8. dat ")
OUTFI LE( " ex8. out ")

DATA
t open FIELD 1 {Last observation tinme prior to the event}
tcl ose FIELD 2 {First observation time after the event}
wei ght FIELD 3 {the first covariate}
age FIELD 4 {the second covari at e}

END

MODEL
DATA

PDF NORMAL(t open, tcl ose)
PARAM nmu LOWS0. 00001 H GH=100 START=25 END
PARAM s LOAEO. 01 H GH=50  START=3 END
HAZARD COVAR wei ght PARAM b_wei ght LOA:-20 H GH=20 START=0 END
COVAR age PARAM b_age LONE-20 HI GH=20 START=0 END

END {hazar d}
END {of the PDF}
END
RUN
FULL

END {of the MODEL}

END

Survival analysis—I mmune subgroup

When observing times to events, there may be an unidentifiable subgroup for
whom risk of experiencing the event is zero. These make up a so-called immune
fraction, a sterile subgroup, or a contaminating fraction. It is possible to model

° Except for the exponential and the Weibull distributions, accelerated failure time models are not proportional
hazards models.
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some fraction of individuals who are not at risk, so to dtatisticaly identify the
subgroup.

If complete records are available for all individuals, one could smply remove the
dterile individuals from the analysis of the non-sterile fraction. When complete
records are not available (i.e. we cannot tell a sterile individua from a right-

censored individual) maximum likelihoods methods are easily adapted to include
estimation of an unknown fraction of individuals who are not susceptible to failure.

The effect of the sterile subgroup on the survival distribution can be seen in Figure
5. Call sthe non-susceptible fraction. Then the proportion of individuals who are
susceptible at the start of risk isp(0)=1—s. Inspection of Figure 5 suggests that the
fraction of surviving individuals at timet must be made up of two fractions. Oneis
S(t) weighted by the fraction not sterile, (1 —s). The second fraction is constant at
s

S(t)=(1- 9)S, (t) +s.

The overall hazard at time t is smply the hazard of the non-susceptible subgroup
weighted by the proportion of that group at time t. The proportion of susceptible
individuals at time t will decrease as fecund individuals fail, and must depend on
survivorship of the non-sterile group to time t and the initia fraction of sterile
individuals, s. Thisfractionattimetis

_ @95
mo_s+a-9gay
Thehazard at timetis

1-9)S, (1) i (® _ (A-9f (1)

h(t) = p(t)hf (t) = S+(1' S)Sf (t) Sf (t) B S+(1- S)Sf (t)

and the probability density function isfound as

1 1

s

0 0
Time Time

Figure 5. The effect of contamination by a sterile subgroup on the survivorship distribution. The subgroup makes up
fraction s of the initial population at risk. The left panel shows survivorship for the uncontaminated group and the
right panel shows the same distribution contaminated by the sterile subgroup.
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f(1) =h(®S(t) = @- 9S, (Oh, (1) =1~ 9f, ().

These forms for the PDF, SDF, and hazard function provide for reasonably
dtraight-forward maximum likelihood estimation of the parameters of the
distribution for the susceptible observations as well as s. The general form of the
likelihood when sterility isincluded, becomes

\d{tq vtq} \l'd{tui vtq}

N N
© L@slt,t) =0 §1- 9§, [ ™ g5, 10)- St I~ +sokt, 1,15

wherethe d{ x,y} isthe Kronecker's delta function, which equals one when x=y, and
zerowhen xty.

The following example estimates one such model. The likelihood begins with the
M X() function, which produces an average of the second and third arguments,
weighted by first argument (which is a probability). The first PDF is PDF
STERI LE() END, which returns one if tcl ose is infinity or less than topen.
Covariates are modeled on both the non-susceptible fraction as well as the hazard
of the susceptible fraction.

MLE
TI TLE = " Exanpl e"
DATAFI LE(" ex. dat ")
OUTFI LE(" ex. out ")

DATA
t open FIELD 1 {Last observation tinme prior to the event}
tcl ose FIELD 2 {First observation time after the event}
wei ght FIELD 3 {the first covariate}
age FIELD 4 {the second covari at e}
END
MODEL
DATA
M X( PARAM s LOAE- 100 H GH=100 START=0 FORM-=LOGLI N {define the immune
fraction}

COVAR wei ght PARAM b_s_wei ght LOW-20 H GH=20 START=0 END
COVAR sex PARAM b_s_sex LON-20 HI GH=20 START=0 END
END {param s}

PDF STERI LE(t open, tclose) END, {returns 1 for right censored
observati ons}

PDF LNNORMAL(t open, tclose)
PARAM a LOW-0.00001 H GH=100 START=25 END
PARAM b LOW-0. 01 H GH=50 START=3 END
HAZARD COVAR wei ght PARAM b_wei ght LOA:-20 H GH=20 START=0 END
COVAR sex PARAM b_sex LONE-20 HI GH=20 START=0 END
END {hazard}
END {of the PDF}
) {mx function}
END
RUN
FULL
END {of the MODEL}

END
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Linear regression in the likelihood framewor k

This example shows how linear regression is treated within the framework of
likelihood models. The linear regression model with n covariates specifies that the
value of the ith observation is a combination of a y intercept term (a) an additive
covariate-parameter term (x,b; + X2b, + ... + xby) plusan error (g). Furthermore,
distribution among al error terms (€) is normally distributed with a mean of zero
and a standard deviation of s. The formal specificationis:

Yi=a+ Xy + Xighp + ... + Xinbn + €
e~N(, s)

Under the likelihood model, the equivalent specification can be given in a very
different format.

Y~ f(m.s)

m =a+xb, +x,b, +..+x.Db,
The difference in the two specifications exemplifies the two different philosophies
in the methods. Under regression, difference between each observation and the
line defined by parameters and covariates is treated as "error". Under the

likelihood model, the observations are normally distributed, with a mean that is
determined by a series of covariates.

The data for this example arefictitious. The third column contains the values of v,
column 1 is xi; and Xi».

TARANNO R AN
w
H
)
[

PORPPFPOOOR

23.
1.9 36 54
29.9 51 99

The following shows the output from aregression anaysis
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VARI ABLE MEAN STD. DEVI ATI ON COEF. VARI AT.

I ndept Variable: Y 76. 17647059 16. 63293154 0.21834736
Depent Variable: 1 11. 07058824 9. 74453467 0. 88021833
Depent Variable: 2 41. 17647059 13. 43612339 0. 32630585

VAR COEFFI CI ENT STD ERROR T STATISTIC
Al pha 66. 46540496
B(1) 1. 29019050 0. 34276468 3.76407073
B(2) -0.11103677 0. 24858973 -0. 44666675

SUM OF MEAN F

SOURCE SQUARES DF SQUARE RATI O
REGRESS. 2325.1795 2 1162. 5897 7.7458

RESI DUAL 2101. 2911 14 150. 0922
TOTAL 4426. 4706 16 276. 6544

R SQUARE = 0. 5253

STANDARD ERROR COF ESTI MATE = 12. 251213

The following shows the mle code for the equivalent likelihood model. Notice that
this program is similar to the accelerated failure time model, except that the form
for modeling covariates on the mean is additive (FORM = ADD).

ME
TITLE = "Test regression"”
DATAFI LE( " eg. dat ")
OUTFI LE("eg. out™)

DATA
y FIELD 3
x1 FIELD 1
x2 FIELD 2

END

MODEL
DATA
PDF NORMAL(y)
PARAM nu Low=7
COVAR x1 PARAM bl
COVAR x2 PARAM b2
END {param
PARAM sig LOWO. 1
END  {pdf}
END {data}
RUN
FULL
END

H GH = 500 START = 50 FORM = ADD
LONE-10 H GH=10 START=0 END
LONE-10 H GH=10 START=0 END

HI GH=200 START=10 END

END

The following output fragment shows the result from this model.

LogLi ke= -65.06725 Iterations= 334 Func eval s= 25383 Del (LL)= 9. 745E-0011

Converged normal |y

Results with estimated standard errors. (27 evals)
Solution with 4 free paraneters
Name Form Estimat e Std Error t agai nst
mu ADD 66. 46589883575  9.596050356992 6.92638078825 0.0
bl 1.290194199465 0. 453901547297 2.84245384742 0.0
b2 -0.11104975496  0.202022074279 -0.5496911927 0.0
sig 11.11779472801  2.630810510011 4.22599601366 0.0

The results are nearly identical to the regression results presented earlier.

parameters of the likelihood model are given with a standard error.
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For a series of data that are complete, as given in this example, there is little
advantage to using maximum likelihood for parameter estimation. Maximum
likelihood methods are most useful under some simple modificatons of the data or
model used above. Suppose, that in addition to the above observations we had
several observations that were less than the minimum or greater than the maximum
value of y that could be measured by our instrumentation. The maximum
likelihood model could accomodate such observations with ease.  Another
modification might be to change the underlying distribution to something other
than a normal. For example, e could take on an extreme value distribution or a
Laplace digtribution. Again, the likelihood framework easily accomodates such
modifications.

Case study —M ortality models

Estimation of age-at-death distributions from skeletal indicators is an important
task for ecologists and anthropologists alike. This case study discusses some
likelihood models to estimate such distributions. The simplest case arises when
exact skeletal ages at death are known for a representative sample of N skeletons
covering the entire life span. Call f(alg) the probability density function that
represents the age-at-death distribution with parameters g. For example, it might
be the sl LER model, if individuas span the entire lifespan, or it might be the
MAKEHAM (Gompertz-Makeham) model if the entire sample consists of adults.
Under either model, the likelihood given a series of skeletal agesis

Table 7. Agesat death for 608 Dall mountain sheep. Source: Deevey (1947).

Minimum age
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N
L=0 f(t|q)
i=1
if exact ages are known, or
N
L=O[S(t, |a)- S(t.|9)]
i=1

if ages are known over intervals.

The data of Murie (1944) as reported in Deevey (1947) will serve as our example.
The raw data consist of 608 Dal mountain sheep skulls collected in the Mt.
McKinley Park (Table 7). The ages at death were determined from the annual
growth rings on the horns. Causes of death were not determined, but predation by
wolves was quite common.

The datawere fit by maximum likelihood to the mixed-makeham model. The most
parsimonious model had all parameters except the a, parameter. The following
parameter estimates (and standard error) were found: p = 0.221 (0.018), a; = 1.297
(0.211), az = 0.00146 (0.00032), b = 0.618 (0.023). The log-likelihood was -
1461.350.
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The interpretation of the mixed-makeham mode is that there are two subgroups: a
high-risk (infant-mortality) subgroup and low-risk (normal) subgroup. The results
suggest that 22% of the desths were to individuas in the first subgroup. The
expected age at death can be found by taking

E(a) = 3S(a| g)da

where ¢ denotes that we are using the parameter estimates. Additionally, the
expectation can be taken for each of the subgroups by fixing p=0or p=1. The
expectation comesto 7.11 years for the full sample, which isvery closeto the 7.09
years found by Deevey (1947) using the life table method.. For the first subgroup,
the expectation of lifeis 0.77 years, and for the low risk subgroup the expectation
of lifeis 8.90 years.

A plot of the survival distribution for the most parsimonious mode! is shown in the
following figure.
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The following code show the final analysis and other statistics computed for this
model.

ME
{Anal ysis of the data from Miurie (1944) as reported in Deevey
(1947). The raw data consist of 608 Dall nountain
sheep skulls collected in the M. MKinley Park. Ages at death
were determ ned fromthe annual growth rings on the horns.}

INPUT_SKIP = 2

TITLE = "Murie skull data -- Siler nodel"
EPSI LON = 0. 0000001

DATAFI LE("nuri e. dat")

OUTFI LE( DEFAULTOUTNANE)

PLOTFI LE( DEFAULTPLOTNAME)

MAXI TER = 500

DATA
frequency FI ELD 3
last _alive FIELD 1
first_dead FIELD 2

END
MODEL
DATA
PDF M XMAKEHAM | ast _al i ve, first_dead)
PARAM p LOW=0 HGH=1 START = 0.25 END
PARAM al LOW=0 HGH=2 START = 0.5 END
0
PARAM a3 LOW=0 HGH =4  START = 0.001 END
PARAM b LOW=0 HGH =3 START = 0.5 END
END
END
RUN THEN
e2 = | NTEGRATE z (0, 120)
z * PDF M XMAKEHAM z) p, al, 0, a3, b END
END
e2a = | NTEGRATE z (0, 120)
z * PDF MAKEHAM z) al, a3, b END
END
e2b = | NTEGRATE z (0, 120)
z * PDF MAKEHAM z) 0, a3, b END
END
PRI NTLN(" Expectation of life: M xedMakeham nodel =", e2)
PRI NTLN( " Expectation of life: Subgroup 1 =", e2a)
PRI NTLN( " Expectation of life: Subgroup 2 =", e2bh)
pl otoptions = "set ylabel 'Probability of success'; "

+ "set xlabel 'Treatnment |ength (days)';
lo =0 hi =12 pts =50
PLOT (pl otoptions)
CURVE
x (lo, hi, pts) x, PDF MXMAKEHAM Xx) p al 0 a3 b END
END {curve}
CURVE WTH "lines |inetype 2"
x (lo, hi, pts) x, PDF MXMAKEHAM Xx) p al 0 a3 b END
+ 1. 96* SETRANSFORM PDF M XMAKEHAM x) p al 0 a3 b END)
END {curve upper Cl}
CURVE WTH "lines |inetype 2"
x (lo, hi, pts) x, PDF MXMAKEHAM Xx) p al 0 a3 b END
- 1. 96* SETRANSFORM PDF M XMAKEHAM x) p al 0 a3 b END)
END {curve | ower Cl}
END {pl ot}
END {run}
FULL
END

END
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L ogistic regression

Tanner (1996) gives an example of logistic regression using data from Mendenhall
et al. (1989). Twenty four patients were given radiotherapy for some number of
days to treat a tongue carcinoma. Three years later, the treatment is classified as
success, by the absence of the tumor after three years, or failure if the disease
recurs. The observations are given in the file RADI OT. DAT, and the mle program file
ISRADI OT. M.E.

M.E

INPUT_SKIP = 8 {ski p coment s}

TI TLE = "Radi ot herapy success"

DATAFI LE("radi ot . dat ") {I'nput data file nane}
OUTFI LE( DEFAULTOUTNANE)

METHOD = CGRADI ENT1

EPSI LON = 1E-10

DATA
days FIELD 1 {Days of treatnent}
success FIELD 2 {Success of treatnent at 3 years}
END
ALT_LCd STI C = TRUE { use exp(xb)/[1 + exp(xb)]
i nstead of 1/[1 + exp(xb)]}
MODEL
DATA

PDF BERNOULLI TRI AL( success)

PARAM b_0 LOW = -500 HI GH = 500 FORM = LOGd STIC
COVAR days PARAM b_days LOW= -10 HIGH = 10 START = 0 END
END {parant

END { pdf}
END {dat a}

RUN
FULL

END {nodel }

END {of the ME progrant

(13)

In this modd, the variable days is the covariate of interest and the outcome is the

variable success. The logistic regresson model specifies the probability of
success as

__exp(b, +b,x)
1+exp(b, +b,x)

where x; is the number of days of treatment and the b coefficients are parameters to
be estimated. Note that the variable ALT_LOGISTIC is set to TRUE for this
particular form of the logistic model. The likelihood under the logistic modd is
probability p; for each patient for whom therapy is successful, and 1 — p; for each
patient for whom therapy is unsuccessful. Hence, each observation is treated as a
Bernoulli trial for success with parameter p modeled as (13). Thelikelihood is
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.C\ c

i=1

N é exp(b,+b x.
L — O Bét, p( 0 lxll)
o 8 L+exp(by+bx)g
The resulting parameter estimates suggest the log odds of recurrence by year 3 with

zero days of treatment are 3.819. Paradoxically, the log odds of success decrease
with each extra day of treatment by about 8.6 percent!

Convergence at EPSILON = 1.000E-0010
LogLi kel i hood: -13.89411 AIC. 31.788220 Del (LL): 1.367E-0014
Iterations: 8 Function evaluations: 824 Converged normally

Results with estimated standard errors. (10 evals)
Solution with 2 free paraneters

Name Form Estimate Std Error t agai nst
b_0 LOQ STIC 3.819417361125  1.739572481596 2.19560691005 0.0
b_days -0.08648243176  0.041100225123 -2.1041838944 0.0

The resulting logistic curve can be plotted with a 95% confidence interva by
replacing the RUN...FULL part of the model statement with the following code:

RUN
FULL THEN {Code for plotting the logistic curve with Cls}
PLOT ("set ylabel 'Probability of success'; " +
"set xlabel 'Treatment length (days)'; " +
"set yrange[O0:1];")
CURVE
X =20 to 60 x, LOASTIC(p + x * b_days)
END {curve}
CURVE WTH "lines |inetype 2"
X = 20 to 60 X, LOGASTIC(p + x * b_days) +
1. 96* SETRANSFORM LOG STI C(p + x * b_days))
END {curve upper Cl}
CURVE WTH "lines |inetype 2"
X = 20 to 60 X, LOGASTIC(p + x * b_days) -
1. 96* SETRANSFORM LOG STI C(p + x * b_days))
END {curve | ower Cl}
END {pl ot}
END {full then}
1
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Treatment length (days)
| END {nodel}
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Case study: Extended Poisson for modeling species
abundance

(14)

This example shows the use of a user-defined function for programming a pdf that
is not built into mle. In fact, the Thomas distribution is available in mle, but we will
ignore the built-in implementation for this example. This example also shows
some graphics programming in mle.

Thomas (1949) discusses the problem of clustering among a given species of plants
in ecological surveys. Ecologists were using the Poisson distribution to describe
the number of plants found in randomly selected square quadrats. The Thomas
distribution (Thomas 1949; Christensen 1984) models the count of k plants in a
guadrat as resulting from one or more clusters of plants, and is given by

) k aj (ib K- ]

f(ka,b)=e2q =e w UB)

= J1 (k- j)!
Data are counts of Armeria maritima plants surveyed in 100 quadrats on Blakeney
Marsh: 57 quadrats with O plants; 6 with 1 plant; 12 with 2; 5 quadrats each with 3,

4, and 5 plants;, 7 quadrats with 6 plants; and 1 quadrat each with 7, 9 and 10
plants.

The following mle program fits these data to the Thomas distribution as well as the
Poisson digtribution and graphs the distributions of observed versus expected
number of plants.
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ME
{Distribution of Ameria maritima in Bl akeney Marsh using the Thomas distribution
or Doubl e Poisson distribution. Data are given by M Thonmas (1949) A generalization
of Poisson's Binomial Limt for use in Ecology, Bionetrika 36:18-25.}

FUNCTI ON t homas(k: | NTEGER, a: REAL, b: REAL): REAL
{ -- returns the pdf for the thomas dist count k and paranmeters a and b}

RETURN = EXP(-a)*SUMVATION j (0, k)
(@] )/ FACT(j))*EXP(-j *b)*
(((3*b)~(k - j))IFACT(k - j))
END {summati on}
END {function thonas}

DATAFI LE("arneri a. dat")
OUTFI LE( DEFAULTOUTNANE)
PLOTFI LE( DEFAULTPLOTNANE)
INPUT_SKIP = 3

DATA
nurmb_pl ants FIELD 1
nunmb_quadrants FlI ELD 2
FREQUENCY = nunb_quadrants
END

TITLE = ' Thomas distribution'
MODEL
PREASSI GN
BEG N
a
b
END
DATA t homas( ROUND( nunb_pl ants), a, b) END
END {preassign}
RUN
FULL
END

PARAM aa LOWEO. 0001 HI GH=20 START=2.0 END
PARAM bb LOW0. 0001 HI GH=40 START=0.5 END

{Plot obs & exp # of quadrants with k plants under the Thomas distribution}

PLOT ("set title 'Thomas distribution'","set xrange [-0.5:10.5]; set key top right")
CURVE KEY "Expected" W TH "boxes"
i =0TO10 i, 100*thomas(i, aa.1l.1, bb.1.1)
END
CURVE KEY "CObserved" WTH "i mpul ses”
d_idx =1 TO 11 nunb_pl ants, nunmb_quadrants

END
END {plot}
TI TLE = ' Poi sson distribution'
MODEL

DATA

PDF PO SSON( nunb_pl ant s)
PARAM m LOW = 0.001 HI GH = 100 START = 1.5 END
END
END
RUN
FULL
END

{Plot the obs & exp # of quadrants with k plants under the Poisson distribution}

WRI TEPLOTLN( " pause -1")
PLOT ("set title 'Poisson distribution ",
"set xrange [-0.5:10.5]; set key top right")
CURVE KEY "Expected" W TH "boxes"
i =0 TO10 i, 100*PDF PO SSON(i) m2.1 END
END
CURVE KEY "Cbserved" WTH "i mpul ses”
d_idx =1 TO 11 nunmb_pl ants, nunmb_quadrants
END

127




Statistical examples

END {plot}

END

The resulting parameter output are given in annotated form below. The difference
in AIC between the two moded suggests that the Thomas distribution fits the data
much better than the Poisson. The plots in Figure 6 show how much better the

Thomas distribution fits compared to the Poisson.

11 lines read fromfile arneria. dat

11 Cbservations kept and O observati ons dropped

NAVE  nunb_pl ant nunb_quadr FREQUENCY
MEAN  5.00000000 9.09090909 9.09090909
VAR 11. 0000000 264.690909 264.690909
STDEV 3.31662479 16.2693242 16.2693242
M N 0. 00000000 0. 00000000 0.00000000
MAX 10. 0000000 57.0000000 57.0000000

Model 1 Run 1 : Thonmas distribution

LogLi kel i hood: -158.0639 Al C: 320.12784 Del (LL)
Iterations: 6 Function evaluations: 158 Converged normally

Results with estimated standard errors. (6 evals)

Solution with 2 free paraneters

0. 0000016017

Name Form Estimat e Std Error t agai nst
aa 0. 581452489433 0. 088149263241 6. 59622631041 0.0
bb 1.717416986359 0. 258883747023 6. 63393127652 0.0
Model 2 Run 1 : Poisson distribution
LogLi kel i hood: -225.3173 AIC. 452.63465 Del (LL): 0.0000000000
Iterations: 2 Function evaluations: 26 Converged nornally
Results with estimated standard errors. (3 evals)
Solution with 1 free paraneter
Name Form Estimat e Std Error t agai nst
m 1.579996571411 0. 069292424625 22. 8018658598 0.0
Figure 6. Plots of observed and expected numbers of plant counts under two different distributions.
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50t Thomas distribution 50l Poisson distribution
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Chapter 7
Programming tutorial

The mle programming language is a genera purpose agebraic programming
language. This chapter provides a tutorial and examples of some of the language
tools that can be used for many types of programming.

Introduction to programming in mle

People get passionate about programming languages the way they get passionate
about religion.”® There are thousands of programming languages that have been
written.  Why should you use mle? Why indeed. With so many good genera
purpose programming languages available in the world, | will not try to make
strong arguments that mle is the best general purpose programming language, and
I will not even claim that it is the single best language for any specific purpose.
Rather, | will argue that there some pretty good reasons to use mle. But, if you
are already a crack Ada, Basic, COBOL, Fortran, Python, SAS, SNOBOL, Java,
perl, or COBOL programmer, by all means use that language you know best.

If you are an experienced programmer in any conventional programming
language, the learning mle will be simple—the syntax is straightforward, and
punctuation is minimal. If you are learning a programming language for the first
time, mle is a good language beginner’ s language.

If not, here are some reasons to learn and use mle.

It will make it easier to develop and estimate statistical modelsin mle. This
is perhaps the biggest reason to learn mle instead of another language.
Learning general-purpose computer programming in mle will simultaneously
provide tools for scientific computing, model development and statistical
estimation.

10 Okay, thisis an exaggeration. After all, hundreds, if not thousands, of wars have been fought over religion.
Fortunately, programming language bigotry does not quite rise to that level of fanaticism!
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It isfree for non-commercial use.

Itisasimple language. Itisamost as simple as early versions of Basic, but
with some nice programming features like those found in Pascal. So many
newer languages are badly bogged down with widget libraries, object
oriented constructs, and other complexities; it makes it difficult to do smple
data manipulation or calculation.

It recognizes many different number formats. This can be helpful when you
need to read in, say, Roman numerals, time formats, dates, etc.

It comes with many useful numerical and mathematical functions.

It comes with many useful statistical functions and predefined probability
density functions.

It can work with complex numbers.
It has built-in help.

Learning how to program in mle will make it easy to move to another
programming language.

There is no single language that is good at handling all programming problems.
All languages have strengths and weaknesses for particular programming tasks.
mle is good for doing straightforward manipulation of data and scientific
computation, and developing simple simulations. The extensive library of pre-
defined functions is what makes mle useful for these tasks. The language is not
suited for building complex interfaces (using the mouse, graphics, menus, etc.),
and is not good for low-level development (like for writing an operating system).
Additionally, mle is an interpreted language. Hence, if speed is an important
criterion, then conventionally-compiled languages like C or Pascal should be
used instead of mle.

Elements of mle programming

Thefirst program

The outline of an mle program looks like this:

M_.E
<statement 1>
<statement 2>
<statement 3>

END {n e}
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Between the keywords MLE and END comes a series of statements. When the
program is run, each statement is executed in turn. Let's put a statement in.
Type the following text into an editor, save it, and run it.

ME
WRI TELN(' Hel | o Uni verse!"')
END

This program consists of asingle Wl TELN() procedure. WRI TELN() takes alist of
zero or more arguments, writes them to the screen (or to a file in some
circumstances), and puts the cursor at the start of the next line on the screen. The
single argument is the string ' Hel I o Uni verse! ' . The term string refers to a
sequence of text characters. The single quote marks on each side serve to define
the extent of the string. As it happens, you can aso use double quote marks, so
that "Hel | o Uni verse! " does the same thing. You cannot mix the two types of
marks for a string.

If al went well when you ran the program, the message Hel | o Uni ver se! Was sent
to the screen, and you have successfully written your first mle program. If not,
you have probably gotten an error message. For example, if you left off the
second quote mark, the message is returned:

Unclosed ' at end of a line or file
Error found while parsing "("
line 2 colum 10 in file egl.ne

mle, like all programming languages, requires you to follow some very strict
rules. Here are afew to get you started.

Arguments to simple functions and procedures are enclosed in a set of
parentheses (not square brackets or curly braces).

Keywords and variables cannot have spaces and most punctuation within
them. mle is afree-fromat language. Indentation, spacing and formatting are
ignored, with some exceptions. The previous program could be written on a
singleline as:

MLE  WRITELN ( "Hello Universe!" ) END

A space or valid punctuation mark must separate keywords. The program
M.EWRI TELN("Hel | 0 Uni verse!")END is not valid because MLE and
WRI TELN are run together. The program ME WRI TELN("Hel |l o
Uni verse! ") END is a valid program. Notice that the ) END does not require
an additional space, because ‘)’ is punctuation.

Identifiers, assignment statement, and functions

Let's expand on the first program a bit. The second program introduces
assignment statements, identifiers, function calls, and comments.
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ME
{ -- Wites a greeting card to the universe.
Witten 29 Mar 2003
}
popul ation = 6.3 {update from http://wwv.ibiblio.org/lunarbin/worl dpop}
greeting = 'Hello Universel'
{ -- nowcreate a signature that includes everyone}
signature = ' -- from' + REAL2STR(population, 3, 1) + '+ billion of us on earth.'
{ -- wite the nessage here}

VRl TELN( gr eet i ng)
WRI TELN( si gnat ur e)
END

The first thing to notice about this program is that it contains comments. The
comments are contained within curly brackets, {}. Comments are ignored and
are there to help programmers makes sense of the program months or years later.
As a programmer, you should develop the discipline to document your program
with comments. Try to develop a consistent and descriptive style for formatting
your programs, including informative comments sprinkled throughout.

In this program, we have created some variables. Variables are named “objects’
that take on a value. In a spreadsheet program, there are “cells’ available that
can take on values. Variables are like the cells in a spreadsheet program, except
that they are not laid out in avisua grid.

The first variable created above is called popul ati on. The value 6.3 is assigned
to this variable. Since 6.3 is a real number rather than an integer or a gring of
characters, the variable will be created to be areal number and initially assigned
the value 6.3.

The variable gr eet i ng is assigned to a string of characters: ‘Hel | o Uni verse! ’.
Consequently, the greeting is created as a STRING variable. The single-
guotation marks are not actually part of the string. Rather, they serve to delimit
where the string starts and where it ends. The quote marks can be single quote
marks (') or double quote marks ("), but they must match. ' Hel I 0" isnot a
valid way to specify a string. However, you can specify the string Peopl e’ s
wor | d as" Peopl e’ s worl d".

What goes into a variable name? There are several rules that must be followed.

First, a variable name must begin with aletter. The letter can be upper-case
or lower-case, it does not matter—mle treats uppercase and lowercase as
identical for identifier names and keywords.

After at least one letter, other letters, numbers, a period or an underscore
may be used.

You should avoid using predefined keywords, function names, and
procedure names. Sometimes you will get an error (i.e. using a keyword)
and other times, you will smply add confusion and disable the original
purpose of the keyword (e.g. using a predefined function).

134




Types

Programming tutorial

An additional point of good programming practice is to create variable
names that are meaningful. Choose subj ect _bi rt hdat e over something
less descriptive like sbd. Doing so will pay off in the extra time many times
over. The payoff comes when you look at your program weeks, months or
years later, and are able to quickly understand what the program does. On
the other hand, some abbreviation is warranted, particularly if you do so
consistently for al variables. If you always use subj in place of subj ect,
the variable name subj _bi rt hdat e might work just as well.

The variable si gnat ur e is also assigned a string value. In this case, the string
value is computed as the concatenation of three separate elements: first a string
constant, secondly a string value returned by the REAL2STR() function, and third
a string constant.

Assignment statements serve two purposes. First, they create new variables. The
variables popul ati on, greeting, and si gnature did not exist until they were
defined in the assignment statement. When each variable is first used in an
assignment statement, its type is determined by the type returned from the
expression on the right-hand side of the assignment statement. The other purpose
of assignment statementsisto assign values to variables, asis done here. Oncea
variable is created, it can be assigned other values of the same type (or values
that can be converted into the same type, an integer into areal, for example).

Variables (and expressions, for that matter) in mle can take on one of the
following types: REAL, | NTEGER, COVPLEX, BOOLEAN, STRI NG, CHAR (character),
and FI LE. A detailed discussion of these typesis given in the reference manual.
A summery is given here.

A variabl€'s type refers to the domain of values that the variable can take on. For
example, | NTEGER variables can take on a limited range of integer values,
BOOLEAN variables can only take on the values TRUE and FALSE. Variables can be
defined for each of the seven types and expressions always take on one of these
types. Hereisan explanation of each:

Real variables represent the continuous real number line. For example, 3.5,
1E-23, 7.0, and -19.999 are all real numbers.

Integer variables take on whole number values over a machine-dependent
range of numbers. For most versions of mle this range is [-2,147,483,648 to
2,147,483,647].

Complex variables include a real number part and an imaginary part.
Complex numbers are specified by expressionssuch as 1. 2 + 0. 4i, or 0+
1i .

Boolean variables take on one of two states: TRUE or FALSE. No other value
is allowed or recognized. Boolean expressions are frequently used to test
conditionsinthe | F. .. THEN. . . ELSE. . . END function or statement.
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String variables hold a sequence of character constants. A string written as
a constant is a sequence of characters, enclosed within quotes (). The
single quote character () can be used as well for strings greater than one
character. String variables are typically used to assign file names, titles, etc.

Character variables take on the value of a single character. When written as
a constant in a program, character constants consist of a single character
enclosed within single quotes ('). Character constants are not typically used
within a user's program, but are available if needed. Usualy, character
constants and variables can be used anywhere string variables are alowed.

Filevariables are used to reference files. Most of the time, file variables are
transparent, and you need not explicitly define or manipulate file variables.
This is because mle defines and does the bookkeeping for the data file, the
output file, the plot file, and the screen (or standard output) file. File
variables can be created should you wish to create and manipulate other
files.

Here are some examples, largely sdf explanatory, of typical assignment

statements:
large_data = N_OBS > 5000 {large_data is declared as type BOOLEAN}
subtitle = "Analysis of " + INFILE {subtitle is declared as type STRI NG
ni ne =3* 3.0 {nine is type REAL}
five =2+ 3 {five is type | NTEGER}
one = SIN(23)"2 + COS(23)"2 {one is type real}
oneal so = SIN(23+0i )72 + COS(23)"2 {oneal so is type COWLEX}
Y ou can explicitly define a variabl€e's type when the variable isfirst referenced in
an assignment statement. Here are some examples:
c:STRING = 'x' {c woul d ot herwi se be CHAR}
nine:REAL = 3 * 3 {nine woul d otherw se be | NTEGER}
t: BOOLEAN = TRUE {t is explicitly declared BOOLEAN, it is the default}
ang: REAL = SI N(2*pi) {ang is explicitly declared REAL, it is the default}

ang2: COWPLEX = GAMVA(1.5) {force ang2 to COVPLEX}
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Table 8. Algebraic, boolean, and logical operators.

Operator

+

AN

*

/

DV
MOD
AND
SHL
SHR

Function Example Equivalent function
uniary negation - X NEGATE( x)

uniary positive +X

power function X"y POAER(X, Y)
multiply function x*y MULTI PLY(X, Y)
divide function xly DI VI DE(x, )
integer divide function x DIVyy IDVx, v)
integer modulo function X MDDy  MDF(x, y)
boolean and logical and function X AND 'y  ANDF(X, )
logical shift left function x SHL y  SHIFTLEFT(x, y)
logical shift right function X SHRy  SH FTRIGHT(x, y)
addition X +y ADD(X, Y)
subtraction X -y SUBTRACT(x, Y)
boolean and logical or function X Ry ORF(X, Y)
boolean and logical xor function X XORy  XORF(X, )
boolean “is equal” function X ==y I SEQ(X, )
boolean “not equal” function X <>y I SNE(X, )
boolean “less than” function X <y I'SLT(x, y)
boolean “ greater than” function X >y I SGT(x, )
boolean “lessthan or equal to” function ~ X <=y I SLE(x, )
boolean “ greater than or equal to” X >=y I SCGE(x, )

function

Satements with numeric, boolean, and logical expressions

Algebraic expressions are expressions are created using a series of specid
operators and callsto functions. Operatorsinclude algebraic symbolslike +, —, *,
/,~, and aseries of algebraic keywords for integer operations, DI vV, MOD, SHL, SHR
(See Table8). Theright hand side of an assignment statement is an expression.
Examples of valid assignment statements with expressions on the right-hand side

are:

- T 33 33

2*3

(HOURS/ 60) ~2
12.5*first - 10*second
SI N(2*Pl)

mask SHL 4

23 DIV 4

Boolean expressions evaluate to either TRUE or FALSE. The operators for creating
boolean expressions are >, <, >=, <=, ==, <>, and boolean keywords, AND, CR, XOR,
and Not and some simple functions. These operators are used in the same way as
they are in many other programming languages.

a <> 42"2
(a <> 12) AND (a >= 0)
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The difference between boolean and logical expressions is that boolean
expressions work with the values TRUE and FALSE only, whereas logical
expressions work with bits on integers. For example, NOT TRUE is equal to
FALSE; but NOT 767 isequal to - 768. How does thiswork? The number 767 is
represented by the computer as the binary sequence
00000000000000000000001011111111. The logical NOT operator flips al 1sto
Os and Os to 1s, 0 that the number becomes
11111111111111111111110100000000. The first (left most) bit denotes a
negative value, so the value is —768. The logical AND, OR, and XOR functions act
bit by bit, aswell. Thusthe binary values2x101101 AND 2X111000 (whichisthe
same as 45 AND 56) evaluates to 40 (or 2x101000).™ The SHL and SHR operators
shift bits to the left and right. So, 2x000111 SHL 3 (i.e. 7 SHL 3) evauatesto
56 (or 2X111000) . See Table 9 defines the logical operators.

Table 9. Definition of logical operators.

OR

|Operator " Descri t pi on " Exanpl e | Resul t

[ noT |[F1ips all os to 1s and 1s to oOs "NOT 142 I[ - 143

AND Returns 1 if both bits are 1. 1 2x1010 AND 8 [2x1000]
AND1 > 1, 0O AND1 > 0, 0O ANDO > 2x1100

|O? | Returns 1 if either bit is a 1. 1 " 2x1010 OR 2xlllO| 14 [ 2x1110]
OR1>1 0OOR1~>1 10R0~>1,
OORO0O>0

D= |

Excl usive OR function. Returns a 1 " 2x1010 CRlellOl 6 [2x0110]
if one of the bits is 1 and the
other is 0. 1 XOR1 > 0, 0 XOR 1 >
1, 1 XOR0 > 1, 0 XOR0 > O

You might be wondering how mle decides whether an operator is boolean or
logical. The answer is simple: if both operands are boolean types, the operator
will be boolean. If both operands are integers, the operator will be logical. If
one operator is boolean and oneislogical, an error results. For the expression (x
>= 4) OR (y <= 2),each of the expressionsin parenthesis will evaluate to TRUE
or FALSE, 0 that the OrR will be a boolean operator.

Operator precedence

Mathematicians have developed a series of conventions on operator precedence.
When you see the expression 4x2 + 2x + 3, you know, by convention, that the
exponentiation occurs first, the multiplications take place second, and the
addition is third. The built in operators in mle follow a more or less standard
precedence. That is, an expression like 4+2*3 will evaluate 2*3 first and then

™ The 2X... notation is how numbers are specified in other bases (base 2 or binary in thiscase). For base 2 numbers,
only the digits 0 and 1 are permitted on the right-hand side of the X. Octa (base 8) numbers can be specified as
8X..., where digits from 0 to 7 are permitted on the right hand side of X.
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add 4. The precedence of operators are defined in Table 10. Higher precedence

Table 10. Operator precedence.

Operator(s) Precedence Category

- + not high Uniary operators

n Exponent operator

* [ div nmod and shl shr Multiplying operators
+ - or xor Adding operators

= (or =) <> < > <= >= low Relational operators

operators will aways be evaluated before lower precedence operators

More on strings

String constants are values that are enclosed within quotes. Here are afew rules
for string constants:

when you specify a string constant, you can use either the " or the
characters.

If you open a string constant with ", you must close it with ". If you open
the string with ' you must close with ' .

Hence, the statements:

foo ="M nane is "
bar = 'Kilroy'
WRI TELN(f oo bar)

are legal and produce the output: My name is Kilroy. The statements

foo
bar

"My name is '
"Kil roy"

are invalid because the quote types do not match. Some languages do not allow
this flexibility. In BASIC, for example, all string constants must be enclosed in
the " character. In Pascal, al string constants must be enclosed in the
character. mle allows either.

Commasin lists of arguments
Commas are always optional in mle. Hence, both

WRI TELN( f oo, bar)
WRI TELN(f oo bar)

are valid. and they work exactly the same. There are several good reasons to use
commas, however. First, they make it easier to read. Secondly, they are helpful
when working with negative numbers. Consider the following:
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VR TELN(3, -1) |

This statement produces the output: 3- 1 (There is no space between the 3 and the
- 1 because it is not asked for). Now, what if you leave the comma out?

VWRITELN( 3 -1) |

This program produces the output: 2. This is because 3 -1 was taken as a
mathematical expression! The expression evaluated to the number 2. So the
comma was useful in this context. You could, however, still avoid using the
comma. Here are some ways of getting the same result:

WRI TELN( 3 (-1) ) {put the -1 inside parentheses}
WRI TELN( 3 NEGATE(1) ) {creates -1 with the negate function}

Now, once you understand all that, you can make sense of statements like:

WRI TELN("My nane is ", first, ' ' mddle "' ', last)

The "call" to procedure WRI TELN has 6 arguments (some separated by commas,
others not). Can you identify each of the six arguments? They are:

"My nane is " # This is a string constant.

first # This is a variable (defined earlier in the program

v # This is a one character string constant

m ddl e # This is another variable

v # Anot her one character string constant

| ast # This is a third variable
Suppose earlier in the program there was the statements:

first = 'Thonas'

mddle = "A"'

last = ' Edi son'
Then the WRI TELN statement above will write 6 different things to the screen.
Hereisamurkier statement:

WRI TELN(" "™, " " ' ,n, ) |

If you look carefully, you can deduce that the output is the 5-character sequence:

The same as if you had typed WrRI TELN("* , '"). A programmer with a more
developed sense of aesthetics would do neither of the above two statements.
Rather, s’/he would recognize that it is very confusing and write the program this

way:

si ngl equote = """

space =" '

coma = ',

WRI TELN( si ngl equot e, space, comma, space, singlequote)

As an aside, you can use the + operator to concatenate strings. So another way of
writing the program is
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si ngl equote = """

space ="'

coma = ',

WRI TELN( si ngl equot e + space + comm + space + singl equote)

Better yet, it could be written

si ngl equote = """

space ="'

coma = ',

confusingstring = singlequote + space + conma + space + singlequote
WRI TELN( conf usi ngstri ng)

With so many ways of doing the same thing, you might well ask, "what is the
best way?' The answer is that the best way is to write it in the way that is
clearest to you, so that you can read the program a year later and be able to make
sense of what you were doing.

Reading from the keyboard

Reading from the keyboard is sometimes very useful. Here is a program that
prompts a user for information from the keyboard. It asks for sample sizes,
means and standard deviations from two studies, computes a pooled standard
deviation, and computes a paired t-test.

M.E
{ -- This program conputes a paired t test}
{ -- Define the variables to read}
nl : | NTEGER
n2 : | NTEGER
ul : REAL
u2 : REAL
sl : REAL
s2 : REAL
{ -- Read in the sanple sizes, neans, and standard devi ati ons}

WRI TELN("Paired t test")
WRI TE(" Sanpl e size 1: ")
READLN( n1)
WRI TE(" Sanpl e size 2: ")
READLN( n2)

VR TE("Mean 1: ")
READLN( ul)
VR TE(" Mean 2: ")
READLN( u2)

WRI TE("Stdev 1: ")
READLN( s1)
WRI TE(" Stdev 2: ")
READLN( s2)

{ -- Conmpute the values of interest}

df1 =n1 - 1

df2 =n2 - 1

dfp = df1 + df2

s_pool ed = SQR((df 1*s1”r2 + df 2*s272)/df p)
t (ul - u2)/(s_pool ed*SQR(1/nl + 1/n2))

p = STUDENTT(t, dfp)

{ -- Nowwite the results to the screen}

WRI TELN("Pooled: t =", t, " df =", dfp, " One-tailed p =", p)
END
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The prompts for information are written using the WRI TE procedure. This means
that the cursor does not go to the next line when waiting for input from the
keyboard. The READLN statements each read a value from the keyboard, and it
expects the line to be terminated by the <Enter> key. In fact, the READLN
statement (like WRI TELN) can read multiple arguments in one statement. Write a
program to see what the behavior is when multiple arguments are given to a
READLN statement.

Mathematical computation

mle contains many common and some uncommon functions for doing
mathematical computation.

Summation
Summation over a series of number is a commonly needed function in scientific
programming. For example, the value n”* can be computed from the series
n
a (2i-1). Hereis a program that reads an integer from the keyboard and
i=1
computes the seriesin this way.
MLE

{ -- conmputes the square of an integer using a series }

n : | NTEGER

WRI TE(" I nteger to square: ")

READLN( n)

n2 = SUMWATION i (1, ABS(n)) 2*i - 1 END
WRI TELN(n, '~2 is ', n2)

END
The sumvaTI ON function takes four arguments. The first argument is an integer
variable that is the variable of summation. In this program, i is used as the
variable of summation. It is not previoudy defined, so it will be implicitly
defined by the sumvAaTI ON function. The next two arguments are in parentheses.
They define the upper and lower limits of the summation. The fourth argument
is the expression of summation. Notice that i appears within the function. Its
value will be updated with each iteration of the function.

Products
Like summation, taking a product over a series of number is a commonly needed
function in scientific programming. For example, the factorial function n! =1~

L
2° ... (n=1)" ncanbecomputed as () i. Hereisa program that reads an
i=1
integer from the keyboard and computes the seriesin this way.
MLE
{ -- conmputes factorial function }
n : I NTEGER
WRI TE("Fi nd factorial of what integer: ")
READLN( n)
factn = PRODUCT i (1, n) i END
WRI TELN(n, '! is ', factn)
END
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Like the sumvaTI ON function, PRODUCT function takes four arguments.

Integration
. oo, :
Suppose you want to compute the integral J_sm(x +2x)dx. Here is an
p
example of how that can be coded: nyval ue = I NTEGRATE x (-SQRT(PI),
SQRT(PI)) SIN(x*2 + 2*x) END. (The expression assigns the result, about -
1.525, to nyval ue). Here is a description of the meaning of each part of the
expression:
MLE
myval ue = | NTEGRATE x ( {x is the variable of integration}
- SQRT(PI), {This is the lower lint of integration}
SQRT(PI') {This is the upper linmt of integration}
) {C ose of the argunment I|ist}
SIN(x*2 + 2*x) {The function to be integrated}
END {Integrate}
writel n(nyval ue)
END {End of the integrate function}
Like the sumvaTI ON and PRODUCT functions, there are four arguments to the
I NTEGRATE function (actually there can be more, see the reference manual). The
firstisx, the variable of integration, within parenthesis come the lower and upper
limits of integration, followed by the integrand.
Probabilities
One of the strengths of mle is that it contains a large number of predefined
probability density functions and functions derived from the PDF. Any of the
predefined probability density functions can be used as part of an expression.
For example, the following program will give the area between user-specified
limits for anormal distribution with user-specified parameters.
MLE
a : REAL
b : REAL
mi o REAL
sig: REAL

WRI TELN(" Returns the area under a Normal distribution")
WRI TE(" Lower and upper limits of the area: ")
READLN(a, b)
WRI TE(" Mean and Standard deviation: ")
READLN( mu, si g)
WRI TELN( PDF NORMAL(a, b) nu, sig END)
END

Notice that the PDF function is called within the WRI TELN function. This is
perfectly valid. The arguments to WRI TELN can be any expression no matter how
complicated. Hereis an example of what happens when this program is run.

Returns the area under a Nornmal distribution
Lower and upper limts of the area: 3, 4
Mean and Standard deviation: 10, 3
0.0129347552
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Random numbers

Simulation programming often times requires drawing numbers from particular
probability densities. Random numbers can be generated for nearly all of the
densities supported by mle. The QUANTI LE function facilitates this. Essentially,
the QUANTI LE will accept a value drawn from a uniform distribution and return a
value that is randomly drawn from the base density.

A uniform variate from zero to oneis generated by the RAND function. Before the
RAND function can be called, the random number generator must be seeded. This
is done by a call to procedure SEED() with a positive integer argument. If you
prefer not to choose an initial seed value, the function CLOCKSEED will generate
one using the computer’s date and time.

Here is an example of a program that prints out a number randomly drawn from a
Weibull density with user-specified parameters.

END

M.E
a : REAL
b : REAL

SEED( CLOCKSEED)

WRI TELN(" Returns a val ue drawn from a WEI BULL distribution")
WRI TE("a and b paraneters of the WEIBULL distribution: ")
READLN( a,
WRI TELN( QUANTI LE WEI BULL( RAND) a, b END)

b)

Flow control

IF statement

Normally, statements are executed, one at a time, in the order in which they
appear. Frequently it is necessary to loop, branch, and otherwise modify the flow
of programs. This section introduces statements and techniques that allow you to
modify the flow of program statements. First the | F statement is introduced,
followed by several looping statements.

A loop is a programming concept that allows segments of code to be repeatedly
executed. This allows the computer to do what computers do best: perform
repetitive tasks. Almost all programs of any significance contains some type of
looping (or iteration). mle has the FOR statement, the REPEAT statement and the
VH LE statement for this purpose.

The | F statement provides the means to conditionally executing statements.
Here is a simple example
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M.E
age : REAL
WRI TE("How ol d are you? ")
READLN( age)
I F age < 0 THEN
WRI TELN(" That’'s not possible!")
ELSEI F age < 4 THEN
WRI TELN( " Per haps you were you giving your age in decades.")
ELSElI F age >= 115 THEN
WRI TELN( " Per haps you are giving your age in nonths.")
ELSE
WRI TELN("Li ve I ong and prosper.")
END {if}
END

The | F statement will execute only one of the WRI TELN statements, depending on
the range of values entered. The statement works this way. Firdt, it evaluates
the expression after the 1 F. If the expression is true the first WRI TELN will be
executed and then flow will jump to the end of the | F statement. That is, al the
other parts of the | F statement will be skipped. If the expression after | F is
FALSE, the first ELSEI F expression will be evaluated. Again, if it evaluates to
true the statement(s) that follows will be executed and control will jump to the
end of the | F statement. As a last resort, when all | F and ELSEI F expressions
evaluate to FALSE, the statement between ELSE and END will be executed.

Generically, thisis what the statement looks like.

| F <bexpr> THEN
<st at enent s>
ELSEl F <bexpr> THEN
<st at enent s>
ELSEl F <bexpr> THEN
<st at enent s>
ELSE
<st at enent s>
END

Notice that any number of statements can come within each section of the | F
statement. The ELSEI F and ELSE clauses are always optional. When there is no
ELSE clause, the | F statement doesn’'t necessarily end up executing any of the
statements. That is, if al 1 F and ELSE expressions evaluate to FALSE, the | F
statement will skip to the end of the statement. Here is another example of using
the | F statement:

| F SYSTEM = "MS-DOS" THEN
PRI NTLN("Run from an Ms-DOS systent)
SEP = "\'
DATAFI LE("C:" + SEP + DIR + SEP + NAME)
ELSE
PRI NTLN("Run on a uni x systenl')
SEP = "/
DATAFI LE(DI R + SEP + NANE)
END
FOR statement

The FOR statement provides a means of looping through statements for some
fixed number of iterations. mle contains several different types of FOR statements.
Three of them are introduced here. The rest are introduced in the section on
arrays.
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Here is an example program that creates atable of sine and cosine values:

ME
FOR x = 0 TO 359 DO
r = DTOR(X)
WRI TELN(x " degrees (" r " radians): SIN()=" SIN(r) ", COS()=" COS(r))
END {for}
END {nie}

The variable x is called the index variable. Its value will change with each pass
through a loop. In this example, x is initially set to zero, and the statements
sandwiched between the DO and the END are executed. The value of x is
incremented by one and the statements are executed again, and so on until x is
359. After the last pass through the loop, execution continues after the END.

Generically, the simplest form of the FOR statement looks like this

FOR <v> = <expr> TO <expr> DO
<st at ement s>
END

The variable <v> must either not be previoudy defined or, if it already exidts, it
must be an I NTEGER or a REAL variable. Its value will change as the FOR
statement is executed. The first <expr> will be executed once at the beginning of
the loop, and will define the gtarting value of v. The second <expr> will also be
executed once and will define the last value of v.

Here is another example. This program reads an integer and prints it out backwards.

ME
{ -- read an integer and print it out backwards}
i | NTEGER
WRI TE(' Type an integer: ')
READLN(i )
FOR x = 1 TO LOG10(i) + 1 DO
tnp =i {tenporarily save i}
i =i DV10 {get rid of last digit}
WRI TE(tnp - i*10) {conpute and print the |least significant digit}
END {for}
VRl TELN {with no argument, witeln goes to the next |ine}
END {nl e}

FOR...STEP statement

There are severa variations on the FOR. The first, the STEP clause, alows the
index variable to be incremented by something other than one. Here is an
examplethat prints the sequence 9, 18, 27....

ME
FOR x = 9 TO 99 STEP 9 DO
WRI TELN( x)
END {for}
END {nl e}

The initial value of the index variable (here, x) is set to the first value (9 in this
case), and x is incremented by the STEP value each iteration s0 long as x isless
than or equal to the fina value (99 here). The STEP vaue can be negdtive,
providing a countdown statement.
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FOR...STEPS statement

Another variation on the FOR statement includes the STEPS clause. This allows
for a fixed number of steps between the first and last values of the loop. For
example here is a program that prints the cumulative area under a standard
normal PDF from -1to 1 in 10 steps:

ME
FOR x = -1 TO 1 STEPS 10 DO
WRI TELN(x, ' ', NORMALCDF(x))
END {for}
END {nl e}

Here is the resulting output:

-1. 000000000 0.1586552595
-0.777777778 0.2183499460
- 0. 555555556 0.2892573259
- 0. 333333333 0. 3694414036
-0.111111111 0. 4557640673
0.1111111111 0. 5442359327
0. 3333333333 0. 6305585964
0. 5555555556 0. 7107426741
0.7777777778 0.7816500540
1. 0000000000 0. 8413447405

The index variable of a FOR..STEPS statement is always type REAL.

REPEAT statement

The REPEAT statement provides a means of looping through statements until some
condition is met. The REPEAT statement differs from the FOR statement in that
there is no index variable and no start variable. Generically, the statement looks
like this:

REPEAT
<st at enent s>
UNTI L <bexpr>

The <statements> are executed and then the boolean expression<bexpr> is
evaluated. If the result is FALSE, the loop repeats and < statements> are executed
again. When <bexpr> evaluates to TRUE, the loop terminates. A REPEAT
statement always executes <statements> at least once.

The next example is a program that converts polar to rectangular coordinates.
The REPEAT statement is used to verify that the angle falls in the proper range.
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ME
{ -- Programto convert polar coordinates to rectangul ar coordi nates}
angle : REAL
radi us : REAL
twopi = 2*Pl

REPEAT
WRI TE(' Angl e in radians? ')
READLN( angl e)
good = (angle >= 0) AND (angle <= twopi)
| F not good THEN
WRI TELN(' Angl e must be >= 0 and <= "', twopi)
END
UNTI L good

WRI TE(' Radi us? ')
READLN( r adi us)

x = POLARTORECTX(angl e, radius)

y = POLARTORECTY(angl e, radi us)

WRI TELN( " Rect angul ar coordi nates are ", x, ", ", vy)
END {nl e}

WHI LE statement

The wHI LE statement provides a means of looping through statements while some
condition ismet. Theformat is

WHI LE <bexpr> DO
<st at enent s>
END

The boolean expression <bexpr> is executed first. If the value is TRUE, the
<statements> are executed once and <bexpr> is evaluated again. The sequence
continues until <bexpr> evaluates to FALSE. That is, when <bexpr> is FALSE,
the loop terminates.

The chief difference between a WHI LE loop and a REPEAT loop is that the REPEAT
loop is always executed at least once. The WHI LE loop may be skipped the first
time. Hereisan example of asmall program using awhile loop:

{Conpute factorial}

n : | NTEGER

WRI TE("Enter an integer: ")

READLN( n)

tmp : REAL =

WH LE n >
tnp =
n=n

END

WRI TELN( t np)

The Break Statement

The BREAK statement is a special statement that works with FOR, WHI LE, and
REPEAT statements. When a BREAK statement is encountered, the loop is
immediately exited. The behavior of a BREAK statement outside of a loop causes
the current "scope’ to be exited. This means that within the main program
(outside of a user-defined procedure or function) a BREAK acts like a HALT and
causes the program to terminate. Within a user-defined procedure or function, the
procedure or function is exited back to the place from where it was called.
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Here is an example of how the BREAK statement can be used to shorten the section
of code given in an earlier example.

REPEAT

WRI TE(' Angl e in radians? ')

READLN( angl e)

IF (angle >= 0) AND (angle <= twopi) THEN

BREAK {exit the REPEAT | oop}

END

WRI TELN(' Angl e must be >= 0 and <= "', twopi)
UNTIL 1=0 {that is, loop forever}

The Continue Satement

Like the BREAK statement, the CONTI NUE statement works within loops (WHI LE,
REPEAT, and FOR). When a CONTI NUE statement is encountered, all further
statements are skipped until the end of the current loop. The CONTI NUE statement
is a convenient way to skip over sections of code and force another iteration of

the loop.
Arrays
An “array” is a series of contiguous memory locations referenced by a single
variable name. Arrays have many important uses in computer programming.
They are almost always used with FOR loops or other looping structures. The
important idea behind arrays is that an integer value serves as an offset (or index)
to the array elements.
For example, consider an array called nyarray that is defined to be 20 REAL
elements long. Each element of the array can be indexed by placing an integer
expression within square brackets; e.g., nyarray[ 3] = 3*2. Suppose we wish to
create a table of squared values, and later in the program print the values out.
The following code will accomplish this:
MLE
myarray: REAL[1 TO 20]
FORi = 1 TO 20 DO
myarray[i] = i"2
END {for}
{...}
FORi = 1 TO 20 DO
WRI TELN(i "~2 =" nyarray[i])
END {for}
END
In this last example, a one-dimensional array was defined as a REAL and indexed
over the range from 1 to 20. Arrays must aways be explicitly declared in mle.
They must be defined the first time the variable is mentioned in the program. A
lower and upper index must be specified as integer constants.
Multidimensional arrays of all types are supported by mle, aswell. The format is
var : typeg minl TO maxl, mn2 TO max2, . . . ]. Some examples of
declarations are:
s : STRING 1 TO 5] {Defines a one-di mensional array of strings}
r . REAL[1 TO 10, 1 TO 10] {Defines a 10 x 10 matrix}
b : BOOLEANJO TO 1, 0 TO 1, 0 TO 1] {Defines a 3 dinensional array}
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An entire array can be initialized to a single value in an assignment statement.
Examples are:

s : STRING1 TO

5] ="' {Defines s and initializes all values to '"'}

r : REAL[1 TO 10, 1 TO 10] = 0 {Defines a 10 x 10 natrix and initializes to 0}

Arrayed variables are accessed by using brackets for subscripting:

r : REAL[O TO 359]

FORi = 0 TO 359 DO
r[i] = DTOR(i)
witeln("sin(" i ") =" SIN(r[i]) )
END
Files
Text files are widely used in computer programming, for statistical analysis, and

for data files. mle provides tools for creating, reading, writing and appending to
text files.

There are four geps to working with files:

First step, a variable must be declared as type FI LE. The variable will be
used to refer to afile it acts as a, so-called, “file handle.”

Next, a file must be “opened.” You must cal one of the procedures:
OPENREAD( ) , OPENVRI TE() , OPENAPPEND() . Each of these procedures take
two arguments. The first is the file variable, and the second is a string
expression that is the name of the file.

Now the file can be read from or written to (depending on how it was
opened). The READ() and READLN() procedures can be used to read from a
file. The first argument to the procedures must be the file variable.
Likewise, WRI TE() and WRI TELN() procedures can be used to write (or
append) to files. Again, the file variable must be the first argument.

After operations on a file have been completed, the CLOSE() procedure
ensures the file is properly closed. The close procedure forces the operating
system to flush any buffers and update the directory information for afile.

Here is a simple program that reads in a file and reverses the characters in each

line

Notice the use of the EOF() function to check for the end of the file, and the

ExI sTS() function for checking to seeif afile exists.
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ME
{ -- reads text froma file and reverses the text}
filename : STRI NG
f . FILE
textline : STRI NG
READDELI M TERS = "' {read the whole line including spaces}
REPEAT

WRI TE(' Fil e nane: ')
READLN(fi | enane)
ok = EXI STS(fil enane)
I F NOT ok THEN
WRI TELN("Coul dn’t find ", filenane)
END {if}
UNTI L ok

OPENREAD( f, filenane)

WH LE NOT EOF(f) DO
READLN(f, textline)
FOR x = STRINGLEN(textline) TO 1 STEP -1 DO

WRI TE( SUBSTRI NG(text | i ne, x, 1))

END {for}
WRI TELN

END {whil e}

END {nie}

User-defined procedures

mle allows users to define their own procedures and functions. This section
discusses procedure writing and variable passing. The next section discusses the
related concept of user-defined functions.

User-defined procedures serve a number of purposes.

Procedures can be used to extend the languages. Essentially, you can write
your own “statements’ that take a list of zero or more arguments.

Procedures provide a way to collect commonly defined operations into a
single place. This addresses the frequent need to have the same set of
operations performed on different variables or in different parts of a
program.

Procedures provide a way to modularize programs. That is, programs can
be composed of a small set of general operations, each that is a separate
procedure. Each of those, in turn, can call a set of other procedures. This
programming style (called top-down programming) can lead to more robust
and readable code.

Procedures must be completely defined prior to their first reference in a program.
For example, suppose you want to write a procedure that returns the roots of a
quadratic equation. You would first define the procedure quadr at i ¢ (say) that
takes 5 arguments: three real coefficients as inputs, and two complex numbers
that are the roots as the outputs. Your program could then call that procedure
repeatedly in your program with different inputs.

Here is how the procedure could be written:
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ME
PROCEDURE quadratic( a: REAL, b: REAL, c: REAL,
VAR root 1: COWPLEX, VAR root 2: COWPLEX

tnmpc : COWPLEX
{ -- This procedure takes coefficients a, b, and ¢, and returns the roots
as conplex roots rootl and root2

tnpc = SQRT(b"2 — 4*a*c) {conpute an internmediate result}
rootl = (-b + tnpc)/(2*a)
root2 = (-b - tnpc)/(2*a)
END
END
Defining the procedure
The procedure definition begins with the word PROCEDURE and ends with a
corresponding END. The word following PROCEDURE is the name of the procedure,
in this case quadrati c. The nameis followed by alist, enclosed in parenthesis,
of formal arguments—five in this case. The argument name and type must be
specified for each of the argument. In this example, three arguments (a, b, and c)
are defined to be type REAL, and two are defined as type COVPLEX.
The argument names and, for that matter, all of the variables defined within the
procedure (like t npc) are "private” to the procedure. Names of preexisting
variables outside of the procedure are not affected by and do not affect
declarations of variables using the same name inside the procedure. Thus, the
following bit of code causes no problems. Outside of the procedure a, b, and ¢
refer to one set of variables, but the names have different meanings within the
procedure.
MLE
a: STRING
b : BOOLEAN
c : CHAR
tnmpc @ CHAR

PROCEDURE quadratic( a: REAL, b: REAL, c: REAL,
VAR root 1: COWPLEX, VAR root 2: COWPLEX

tnmpc : COWPLEX

END

Any reference to the variables a, b, and ¢ inside the procedure, refers to the local
variable within the procedure, not the global variables defined at the top.

The keyword VAR has a very important effect on the arguments root1 and root2.
These arguments, once they are modified in the body of the procedure, will pass
the modifications back to the original caling argument. Without the VAR
keyword, changing the value of an argument has no effect on the calling
arguments. In other words, VAR makes the argument variable—or changeable.

Calling the procedure
To call the procedure, the code might include something like this:
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M.E
a : REAL
a2 : REAL
a3 : REAL

rl : COWPLEX
r2 : COWPLEX
PROCEDURE quadratic( a: REAL, b:REAL, c: REAL
VAR root 1: COWPLEX, VAR root 2: COWPLEX
tnmpc : COWPLEX
END
{ -- The nain body of the programstarts here -- }
quadratic(2, 3, -4, rl, r2)

a=-4

a2=1.5
a3=-1
quadratic(a, a2, a3, rl, r2)
END
The statements within the procedure are executed, the values of rootl and root2
are updated, and control is passed back to the main program. In the man
program, the variables rl and r2 have been updated with the results from root1
and root2.
Nested procedures
New procedure and function definitions can be defined within existing
procedures. In the same way that variables defined inside a procedure are
“visible” from within a procedure, procedures defined within procedures are
only visible from within that procedure. Here is an example of nested
procedures:
MLE

PROCEDURE pri nt t hi ngs(sl: STRI NG s2: STRI NG)

PROCEDURE i ndent (VAR s: STRING n: | NTEGER)
{Indents a string by n spaces}

FORi =1 TOn DO
s ="'""'+s5s
END {for}

END {proc indent}

i ndent (s1, 6)
i ndent (s2, 12)
WRI TELN( s1)
WRI TELN( s2)
END {proc printthings}

END

EXIT statement

The EXI T dstatement causes the immediate exit of the current procedure or
function. If EXI T is called from the main program, it has the same effect as a
HALT statement—the program is exited.
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User-defined functions

mle allows users to define their own functions. User-defined functions serve a
number of very important purposes.

Functions are used to extend the types of expressions that can be created.

Functions provide a way to collect commonly computed operations into a
single place. This addresses the frequent need to have the result computed
on different variables or in different parts of a program.

Functions also help modularize programs into smaller, more maintainable
components.

Functions must be completely defined prior to their first reference in a program
(just like procedures). For example, suppose you want to write a function that
returns the average of two integers. You would first define a function that takes
two integer arguments. The return type of the function must also be defined.
The body of the function does the computation and then returns the results
through the predefined variable RETURN.

Hereis how the function could be written:

ME
FUNCTI ON average( v1:|NTEGER, v2:|NTEGER ): REAL
-- This function returns the average of two integers}
RETURN = (v1 + v2)/2
END

END

Defining the function

The function definition begins with the word FUNCTION and ends with a
corresponding END. The word following FUNCTI ON is the name of the function, in
this case aver age. The name is followed by a list, enclosed in parenthes's, of
formal arguments—two in this case. The argument name and type must be
specified for each of the argument. In this example, both are defined to be type
| NTEGER.

The argument names and, for that matter, any variables that might be defined
within the function are "private" to the function (the same is true for procedures).
Names of preexisting variables outside of the procedure are not affected by and
do not affect declarations of variables using the same name inside the function.

As with procedures, arguments can be preceded by the VAR keyword. This would
have the side-effect of alowing the function to modify the argument. Without VAR
keywords, changing the value of an argument within a function has no effect on the
caling arguments. On genera principles, it is considered bad programming
practice to alow functions to modify arguments.

Calling the function

To call the function, the main program might include something like this:

154



Programming tutorial

MLE
FUNCTI ON nyf unc( a: REAL, b: REAL): REAL

RETURN = ...
END

{ -- The nmain body of the programstarts here -- }
FOR x = 1 TO 20 DO
a = nyfunc(x, -x"2)

VIR TELN( a)
END
END
The statements within the procedure are executed, the values of rootl and root2
are updated, and control is passed back to the main program. In the man
program, the variables r1 and r2 have been updated with the results from rootl
and root2.
Nested procedures
New procedure definitions can be defined within existing procedures. In the
same way that variables defined inside a procedure are “visible” from within a
procedure, procedures defined within procedures are only visible from within
that procedure. Here is an example of nested procedures:
M.E

PROCEDURE pri nt t hi ngs(sl: STRI NG s2: STRI NG)

PROCEDURE i ndent (VAR s: STRING n: | NTEGER)
{Indents a string by n spaces}

FORi =1 TOn DO
s ="'""+s5s
END {for}

END {proc indent}

i ndent (s1, 6)
i ndent (s2, 12)
WRI TELN( s1)
WRI TELN( s2)
END {proc printthings}

Example programs

This section contains afew examples of programs written in mle.
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A simple smulation program

ME
{ This program sinul ates a sinple data set.
The output is an id and an age at which sone devel opnent al
landnark is attained, drawn froma nornal pdf.}

nki ds = 1000 {nunber of kids to sinmulate}

m = 6 {mean age of reaching the |andnark}
sig=1 {stddev in reaching the | andmark}
fout : FILE

SEED( CLOCKSEED)
OPENWRI TE(fout, "kids. dat")

FOR cid = 1 TO nkids DO
age = QUANTILE NORMAL(RAND) mu sig END
WRI TELN( FQUT, cid, ' ', age)
END
CLOSE(f out)
END

A less simple simulation program

Rather than just simulating a data set, this program creates multiple data sets and
also does analyses of each data set. This simulation program deals with aspects
of study design (study length, censoring, and duration between prospective
follow-ups) as well as the underlying parametric model. The last segment of the
program computes some summary statistics for the repeated estimates of the
model parameters.
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ME
{ -- This program does 4 things:

1. It creates data sets, each with a single
variabl e age, and observations of age. The
observations are drawn froma normal distribution.
2.

It fits a nodel (Nornmal) to each data set.

3. It

a.

simul ates aspects of the study observation:
children are initially recruited fromages m nrage
to maxrage nmonths of age--uniformy distributed.
Children are visited every obswi dth nonths for

st udyl engt h nont hs

censorprob % of children drop out between nincensor
and maxcensor nonths

It conputes the nmean and standard devi ation

of the repeated paraneter estimates

b.

C.

}

OUTFI LE( DEFAULTOUTNANE)

{ -- seed the random nunber generator}

s = CLOCKSEED

SEED( s)

PRI NTLN(' C ock seeded with ', s)

{ -- SEs nust be conputed with the alternative nethod

because we

i nfo_nethodl
i nf o_net hod2

are not using a DATA statenent}

FALSE
TRUE

mnrage = 0 {m ni mum age of recruitnent}
maxrage = 0 {mexi mum age of recruitnent}
censorprob = 0.20 {probability of dropping out}
obswidth = 4.0 {width of the observation interval}
studyl ength = 10 {max # of nopbnths to observe over}
m ncensor = 1 {m n number of nonths to censor at}
maxcensor = 9 {max number of nobnths to censor at}
sitnean = 6 {mean age at sitting}

sitsd =1 {sd of age at sitting}

{ -- array for "observations"}

ageo : REAL[1 TO 500] {last interval before sitting}
agec : REAL[1 TO 500] {first observation after sitting}
nunbobs = 500

{ -- save the estimates of mu and sig,
savenmu : REAL[1 TO 200]

savesi g: REAL[1 TO 200]

nunbsi s 200

{ -- Loop through data sets}
FOR sim= 1 TO nunbsi ns DO

one for each sinulation}

{ -- create a new data set}

FOR cid 1 TO nunbobs DO
s_age QUANTI LE NORMAL( RAND) sitnean sitsd END {get age at sitting}
r_age RRAND( mi nrage, maxrage) {age at recruitnent}

{ -- now determ ne how |l ong to observe children}
o_len = I F RAND < censor prob THEN
RRAND( mi ncensor, maxcensor)
ELSE
studyl engt h
END {if function}

{ -- Now figure out open and closing interval }

| F s_age < r_age THEN {cross-section responder}
ageo[cid] =0
agec[cid] = r_age
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ELSEIF s_age > (r_age + o_len) THEN {right censored}
ageol[ ci d] r_age + o_len
agec[ci d] -1
ELSE
FOR x = r_age TO o_l en STEP obsw dth DO
IF (s_age >= x) AND (s_age < (x + obswi dth)) THEN
ageol[ ci d]
agec[ci d]
BREAK
END {if}
END {for}
END { if }

= X
= X + obswidth

end {for cid}

{ -- now estimate parans fromthe current sinulated data}
MODEL
SUMVATION j (1, nunbobs)
LN( PDF NORMAL(ageo[j], agec[j])
PARAM nu LOW1 HI GH=10 START=3 END
PARAM si g LOM0. 01 HI GH=5 START=2 END

END
)
END {sunmati on}
RUN
FULL THEN
{ -- save paraneter estimtes}
savemu[sinm = mu
savesig[sinl = sig
END {t hen}
END {rmodel }

END {for sim
-- Now do two nodels: one to tally the mu's and one sig's }
PRI NTLN(' Fi ndi ng mean and stdev for nmu paraneters')
MODEL
SUMVATION j (1, nunbsins)
LN( PDF NORMAL(savenmu[j])
PARAM nu_nean LOM1 H GH=10 START=3 TEST=6.0 END
PARAM nmu_sd LOW0. 0001 H GH=5 START=2 END

END { pdf}
) {In}
END {sunmati on}
RUN
FULL
THEN { print out simulation stats}
PRI NTLN(' mu nean = ' , mu_nean,
', mu SD ="', nu_sd,
', true ="', sitnmean)
PRI NTLN(' Absol ute bias ="', sitmean - nu_nean,
", %bias ="', 100*mu_nean/sitnean)
PRI NTLN('t test: (paranm<>0) t ="', mu_nean/nu_sd)

PRI NTLN('t test: (param=' sitnmean, ') t ="'
(mu_nean- si t nean) / nu_sd)
END {t hen}
end {nodel}

{ -- Now, collect info for the estinates of sig}
PRI NTLN(' Fi ndi ng mean and stdev for sig paranmeters')
MODEL
SUMVATION j (1, nunbsins)
LN( PDF NORMAL(savesig[j])
PARAM si g_nmean LOM0. 00001 HI GH=6 START=3 TEST=1.0 END
PARAM si g_sd LOWN = 0.000001 H GH = 2 START = 0.5 END

END { pdf}
) {In}
END {sunmati on}
RUN
FULL
THEN { print out simulation stats}
PRI NTLN('sig nean = ' |, sig_nean,
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END

', sig SD =", sig_sd,
", true ="', sitsd)

PRI NTLN(' Absol ute bias ="', sitsd - sig_nean,
', %bias ="', 100*si g_nean/sitsd)

PRI NTLN('t test: (param<>0) t ="', sig_nean/sig_sd)
PRI NTLN('t test: (param', sitsd, ') t =",
(sig_nean - sitsd)/sig_sd)

END {t hen}
END {rmodel }

An even mor e complicated simulation program

This program simulates repeated datasets, each containing observations of a
bilateral morphological trait. The simulation includes the ability to add, for
example, adirectional size bias. “Noise” of development is superimposed on the
underlying trait, and different variances in the noise can be specified for each
side.
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ME
{ This program sinmul ates Fluctuating Asymetry data. It
creates 200 sinmulations with 150 subjects each }

SEED( CLOCKSEED) { pick a random seed }
outdir = "'sim' { directory where output goes }
outfilebase = "'sin { base nane for output file }
nsinms = 200 { Number of sinulations to do }
nsubj ects = 150 { Nunmber of subject in each simulation }
trait_a = 2.688 { Trait nean paraneter }
trait_b = 0.1979 { Trait dispersion paraneter }
da = 0.0 { this paramcontrols da (ASif prob_AS <> 0) }
sd_left =1 { asymmetrical dispersion param}
sd_right =1 { asymmetrical diserpsion param}
prob_AS = 0.0 { da = 0.0; antisymetry = 0.5}
fout: FILE { the output file }
FUNCTI ON drawtrait (dist: | NTEGER a: REAL b: REAL): REAL

{ -- draws a randomvalue fromthe trait distribution

di st selects the distribution to use }
IF dist =1 THEN
RETURN = QUANTI LE NORMAL(RAND) a b END
ELSEI F dist = 2 THEN

RETURN = QUANTI LE LOGNORMAL(RAND) a b END
ELSEI F DI ST = 3 THEN
RETURN = QUANTI LE EXPONENTI AL( RAND) a END
ELSE
WRI TELN(' Error:
HALT
END {if}
END {drawtrait}

dist is invalid')

FUNCTI ON DRAWNOI SE( mu: REAL si gma: REAL) : REAL
{ -- draws a random devel opnental noi se val ue }
RETURN = QUANTI LE NORMAL( RAND) nu si gma END
END {dr awnoi se}

PROCEDURE openoutfile(i:
di g: STRI NG
I F NOT DI REXI STS(outdir) THEN
MKDI R(out di r)

| NTEGER)

END {if}
IFi < 10 THEN

dig = '00' + INT2STR(i)
ELSEIF i < 100 THEN

dig = '0' + INT2STR(i)
ELSE

dig = I NT2STR(i)
END

OPENVWRI TE(fout, outdir + outfil ebase +

END {openoutfil e}

+ dig)

FOR's = 1 TO nsins DO
openoutfile(s)

{create nsins files}

FORj = 1 TO nsubjects DO
{ -- pick the individual's baseline trait}
size = drawtrait(2, trait_a, trait_b)
{ -- create right and left measures }

| F RAND > prob_AS THEN

right = size + drawnoi se( da, sd_right)

left = size + drawnoise(-da, sd_left)
ELSE

left = size + drawnoise( da, sd_right)

right = size + drawnoi se(-da, sd_left)
END {if}

-- wite this observation to the file}

{
WRI TELN(fout, j, ' ',
END {for j}

left, " '

, right)
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CLOSE( f out )
END {for s}
END {nle}
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