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Preface 

mle is the culmination of years of tinkering, punctuated by occasional bursts of concentrated activity that 
began in 1991.  At the time, I was a graduate student in biological anthropology and demography working 
on several projects that used parametric survival analysis.  Some of the parametric models I was working 
with—a bivariate normal, and a negative exponential distribution with lognormally distributed frailty and 
an immune fraction—were not available in software I had at hand.  Instead, I pieced together a series of 
numerical routines, some translated from FORTRAN to Pascal, into a special-purpose program for my 
needs.  Ken Weiss suggested that there was a need for a general-purpose program for specifying and 
solving likelihood models.  That suggestion and encouragement from Jim Wood and Robert Jones led me 
to develop mle. 

Since then, I have progressively added language features, functions, probability density functions, and 
numerical methods to the program.  For a spell, I was obsessed with collecting probability density functions 
the way some people collect shoes—many will never be used for serious work, but I can peer into the 
wardrobe and take great satisfaction in seeing them tidily arranged.  During another compulsive period, I 
decided that mle ought to recognize a plethora of number formats, including dates, times, angular formats, 
numbers in arbitrary bases, numbers with metric and computation suffixes, and Roman numerals.  
Eventually, the language was generalized to recognize and work with different variable types, including 
integer, real, complex, boolean, character, string and file types.  This led to a preoccupation with adding 
predefined mathematical, boolean, and string functions. 

Recent additions to mle have included full programming language capabilities.  The language was largely 
modeled after Pascal, with some major differences.  First, I jettisoned most punctuation—those pesky 
semicolons that separate statements, and the commas and semicolons that separate lists of arguments.  In 
mle, commas are always optional where they make sense.  Sometimes they are helpful for appearance or to 
separate an argument beginning with a negative sign [so that (a, -b) is treated as two arguments and not the 
algebraic expression (a – b)].   

In an important way, the mle programming language breaks sacred rules from the halls of Computer 
Science: variables can be automatically declared when first encountered in an assignment statement.  The 
pitfalls of permitting this, in my opinion, are offset by ease of use in a statistical programming language.  
Formal declarations are intimidating to the occasional programmer (although I insist on writing the mle 
interpreter in a language that strictly enforces variable declaration).  The suite of programming features was 
completed with the addition of user-defined procedures and functions. 

Currently, mle is embodied as about 25,000 lines of Pascal.  Earlier DOS versions of the mle interpreter were 
compiled in Borland Pascal version 7.  I still use the Borland environment for most development and 
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debugging.  The most recent release is compiled using the Free Pascal Compiler, FPC (Van Canneyt, 
2000), which benchmarks at three to six time faster than the Borland compiler, with slightly smaller code 
size.  FPC has also relaxed the small data set limitation as data variables and arrays can now be allocated 
larger than 64 Ki.  With FPC, I can now release versions for Linux (ELF binaries), Windows 
95/98/2000/NT, and, in the off chance that there is demand, OS/2, FreeBSD, Solaris/Intel, Commodore 
Amiga, and Atari ST.  The Unix version of mle has traditionally been Solaris for the Sun Sparc architecture.  
This version was created by translating Pascal into c using the p2c translator (Gillespie 1989), and then 
compiling the result with a c compiler.  An old version of mle (2.0.10) is still available for Solaris/Sparc, but 
I have made the agonizing decision to restrict future development to architectures supported by FPC. 

For the first-time user of mle, I would like to offer this encouragement.  Many of the uninitiated find the 
ideas behind maximum likelihood estimation completely foreign.  Yet, the principles, once grasped, are 
utterly straightforward and fundamental.  A Zen-like attitude really helps—empty your mind of traditional 
statistical teachings.  Learning the mle language for doing likelihood estimation essentially involves 
thinking about the likelihood of an observation, and specifying the likelihood for that observation in a way 
that is useful to the computer.  Once you begin thinking in this mindset, the rest is straightforward hard 
work. 

Many people have contributed their ideas, insights, criticisms, and bug reports.  Other's have given me time 
or space for development, datasets, interesting analytical challenges, or have given of his or her time in 
reading or testing.  I thank Ken Bennett, Adam Connor, Henry Harpending, Dennis Hogan, Robert E. 
Jones, George Kephart, Goeff Kushnick, Lyle Konigsberg, Arindam Mukherjee, Kathleen O'Connor, Paul 
Riggs, David Steven, Bethany Usher, Kenneth Weiss, and James Wood.  Their encouragement and interest 
are deeply appreciated. 

I suspect that few software manuals come complete with dedications.  But, it is with great pleasure I 
dedicate this manual to my undergraduate advisor, the late Dr. Robert E. Miller.  Dr. Miller was an 
anthropologist, a South Asianist, a futurists, and an ardent advocate of systems thinking.  He taught with an 
enthusiasm that was both infectious and inspiring.  I suspect that my career as an anthropologist has been 
motivated (subconsciously) by the words that ended a number of our philosophical debates, “Darryl, you 
simply can’t quantify love!”  If Dr. Miller’s conjecture is ever disproven, I am sure that likelihood will 
have played a pivotal role. 
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Chapter 1 

Introduction to mle 

mle is a simple programming language for building and estimating parameters of likelihood models.  
The language was originally intended for building and estimating the parameters of survival 
models, but it has evolved to be general enough to estimate parameters for many other types of 
likelihood models.  Indeed, the language attempts to be a general-purpose tool for likelihood 
estimation. 

This chapter provides an overview of mle.  The basic concepts of the programming language are 
introduced and some examples are given.  Additional examples of mle programs and program 
fragments are sprinkled throughout this chapter, the rest of this User’s manual and the Reference 
manual. 

The mechanics of running mle from DOS or Unix is given in Chapter 2.  Formal descriptions of the 
mle programming language are saved for later chapters.  Another later chapter is devoted to 
examples of different type of likelihood models. 

Preliminaries 

This manual gives only a superficial treatment of topics like probability theory, probability models, 
stochastic modeling, and maximum likelihood estimation.  In order to write mle programs, you will 
need a basic understanding of these topics.  Some helpful, generally applied, introductions to 
statistical modeling and maximum likelihood estimation  can be found in Burnham and Anderson 
(1998), Cullen and Frey (1999), Edwards (1972), Hilborn and Mangel (1997), Holman and Jones 
(1998), King (1998), Nelson (1982), Morgan (2000), Pickles (1985), Royall (1999) and Wood et al. 
(1992).  Guttorp (1995) and Morgan (2000) give accessible introduction to stochastic modeling. 

Programs written in mle are, in many respects, similar to those written in SAS, S+, SPSS, BMDP, or 
other statistical programming languages.  The language consists of keywords like MODEL, END, 
DATA, and so on.  Like all languages, mle has rules of syntax that must be strictly followed to 
produce a valid program.  The resulting mle program is translated into actions (like parameter 
estimation) by the mle interpreter.1 

The mle interpreter typically works with three files: the mle program file, the data file, and the output 
file.  The next three sections discuss these files in more detail. 

                                                        
1 Notice that mle has two distinct meanings in this document.  First, it is a programming language for building likelihoods described herein.  

Second, it is the name of the computer program that interprets the language and finds maximum likelihood estimates of model 
parameters. 
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The Program File 

The program file contains a program written in the mle programming language.  The first line of this 
file begins with the word MLE and the program ends with a matching END.  The program—consisting 
of a set of zero or more statements—falls between the MLE and the END. 

Most programs will have statements that name the data file and the output file, a DATA statement 
describing how to read (and possibly transform) observations from a data file, and specifications of 
one or more likelihood models along with parameters to find.  Parameter estimates are then found 
by an iterative search that maximizes the likelihood given a set of observations.  The resulting 
parameter estimates are then written to the output file. 

The mle program file is created as an ordinary text file using almost any editor.  You can create and 
edit the mle program using Notepad (in Windows), the EDIT command (in DOS), vi, pico, or Emacs 
(in Unix), or any other editor that will read and write a file as ASCII text.  Word processors, such as 
Microsoft MSWord, can be used as well, but you must remember to save your work using the "text 
(with line breaks)" option. 

The Data File 

The data file contains lines of observations.  The observations are read, and perhaps transformed, 
when the mle program is run.  The observations are then used with the likelihood function (specified 
in the mle program file) to find parameter estimates.  Data files are standard ASCII text files.  
Typically, one line in the file represents one observation (although a single observation can span 
more than one line).  Within each observation is a series of fields that are separated by spaces, tabs, 
commas, or some other user-specified delimiter.  Numeric fields can be read into mle variables. 

The Output File 

The output file is where results are usually written.  The name of the output file is specified in the 
mle program file.  The program file also specifies what kind of result will be written to the output 
file, and how much of the details will be included. 

You can also specify that mle write partial results and messages to the screen (or standard output as 
it is called).  This is helpful for monitoring progress while estimation is taking place. 

Skeleton of an mle Program 

An mle program begins with the word MLE and ends with a matching END.  A typical program 
includes four types of statements between the MLE and END. 

• A DATA statement describes the format of the input data file, and provides simple data 
transformations and mechanisms to drop observations.  

• A MODEL statement defines the likelihood function along with the parameters to be estimated.  
A second part of each MODEL statement contains the keyword RUN that specifies how the 
model is to be estimated. 

• Assignment statements define variables and change the values of the variables, including 
some that affect the behavior of the DATA and MODEL statements. 



mle 2.1 manual 

3 

• Procedure statements, like DATAFILE() and OUTFILE(), take a list of arguments and 
performs some predefined action.  DATAFILE(), for example, names and opens up the file 
read in by the DATA statement. 

The following code fragment shows the skeleton of a typical mle program.  The first two statements 
are procedure calls that define the data file and the output file.  The DATA statement comes next, 
followed by a MODEL statement.  Omitted sections of code are specified <like this>. 

MLE 
  DATAFILE("mydatafile.dat")  {for example} 
  OUTFILE("myoutfile.out") 
  TITLE = "..." 
  MAXITER = 100 
 
  DATA 
    <Data specification> 
  END 
 
  MODEL 
    <Expression> 
  RUN 
    <Run specification> 
  END 
   
END 

An Example 

Figure 1 is an example of an mle program that estimates the parameters of a likelihood.  The 
problem at hand is to estimate the distribution of gestational ages at birth given for the observations 
shown in Figure 2.  These observations are counts of gestational ages at birth that were (mostly) 
recorded two within one week.  We will use survival analysis to estimate the parameters (µ and σ) 
for the best-fitting normal distribution. 

This is an example of survival analysis with interval censored observations.  In this example, each 
line in the data file represents multiple observations.  The number of observations on each line is 
given as frequencies within each interval. 
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MLE 
  TITLE = "Distribution of gestational age" {Data are from Hammes 
                                             and Treloar(1970) Am J Pub 
                                             Health 60:1496-1505} 
  MAXITER = 50                              {Maximum number of iterations allowed} 
  EPSILON = 0.0000001                       {Criterion for convergence of the model} 
  DATAFILE("hammes.dat")                    {Opens the input data file} 
  OUTFILE("hammes.out")                     {Opens the output file} 
 
  DATA {This is the data statement} 
       {Data are interval censored and are  
        in units of days as per Table 2 of Hammes and Treloar} 
    topen     FIELD 1                       {time at opening the interval} 
    tclose    FIELD 2                       {time at closing the interval} 
    frequency FIELD 3                       {Frequency from Menstrual History Program} 
  END  {data} 
 
  MODEL 
    DATA                                    {function to loop through all observations} 
      PDF NORMAL(topen, tclose)             {Define the parametric distribution} 
        PARAM    mean      LOW = 100  HIGH = 400 START = 270 END 
        PARAM    stdev     LOW = 0.1  HIGH = 100 START = 20  END 
      END  {pdf} 
    END  {data} 
  RUN 
    FULL                                    {run the model with both parameters free}  
  END  {model} 
 
END  {mle} 

Figure 1.  Program to estimate parameters for the distribution of gestational ages at birth. 

Program Constants and Variables 

A number of variables and constants (e.g. MAXITER) are pre-defined in mle.  Frequently, you will 
want to change the value of these variables in order to fine tune the behavior of the program, change 
the type of output produced, etc.  MAXITER is a pre-defined variable that changes the maximum 
number of iterations permitted in estimating the model parameters.  In this example, the value of 
MAXITER is changed from the default value of 100 to a maximum of 50.   

The TITLE variable is also assigned to a string variable (i.e. a series of characters).  The TITLE 
variable is simply written to the output file.  The variable EPSILON is assigned a value as well.  This 
variable determines how precisely the parameters are to be found: normal convergence occurs when 
the change in the log-likelihood from one iteration to the next falls below this value. 

Comments 

Comments can be placed throughout the body of a program by enclosing the text in curly brackets { 
and }.  Likewise, the curly brackets can be used to effectively remove large sections of code.  A 
second way to comment out all or part of a single line is to put a pound sign (#) at the point where 
you want the comment to begin.  mle  ignores all text from the pound sign to the end of the line. 

Reading Data 

The data file called hammes.dat, is shown in Figure 2.  Data files are standard ASCII text files of 
numbers.  The numbers are organized into a series of fields.  Each field is usually delimited by 
white space (tabs or spaces as used in Figure 2) or commas.  You can specify your own list of field 
delimiters, for example, if your data are separated by colons or semicolons.  This is done by 
changing the value of the variable called DELIMITERS (see the DATA chapter for details). 

The data in Figure 2 are structured as three columns of numbers.  The first field is the last observed 
gestational age prior to birth.  The second field is the observed gestational age after a birth was 
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observed.  These two times form an interval within which the birth occurred (i.e. the birth occurred 
at some unknown time within this interval).  The third field is the number of births that were 
observed within the interval.   

0         141        0 
141       196        9 
197       217       11 
218       224        2 
225       231       12 
232       238       17 
239       245       22 
246       252       40 
253       259       69 
260       266      134 
267       273      324 
274       280      653 
281       287      724 
288       294      382 
295       301      125 
302       308       47 
309       315       26 
316       322       10 
323       329        1 
329       -1         6 

Figure 2.  Data file read by the program in Figure 1.  Column 1 is the minimum gestational age in a category, column 2 is the maximum 
gestational age in a category.  Together they define a birth weight interval.  The -1 in the last row denotes an open birth weight interval 
(i.e. a weight of 329+).  Column 3 is the frequency of births in each birth weight interval. 

The DATA statement given in Figure 1 specifies how the data file is to be read.  The three variables, 
topen, tclose, and frequency that come between DATA and its matching END are read in for each 
observation (i.e. each line in Figure 2).  In fact, each of these variables will be created as an array, 
each having twenty elements, each element corresponding to one line in the data file. 

The variable name frequency is special.  mle  treats variables with the name frequency (and freq 
as well) as a count of repeated observations.  The likelihood is "adjusted" for the number of 
observations so that the contribution will be the same as if multiple identical observations been read 
in from the file. 

Likelihood Model 

The next part of the program is the MODEL statement.  The MODEL statement consists of two parts: an 
expression that comes between the MODEL and RUN that defines the likelihood, and a list of one or 
more specifications between the RUN and END, each giving some details of how parameters are to be 
estimated. 

Model. . . Run Part of the Model Statement 
Within the MODEL...RUN part of the statement is a single function that defines the likelihood.  In this 
example, we specify the likelihood: 

(1) L S t S topen close
frequency

i

N

i i

i( , ) ( | , ) ( | , )µ σ µ σ µ σ= −
=

∏
1

 

where N is the number of age categories (i.e. the number of lines of observations), frequency is the 
frequency of observations per age category, S() is a survival density function for the normal 
distribution, topen and tclose are the two times read from the data file into the variables topen and 
tclose, and µ and σ are the parameters that will be found by maximizing the likelihood. 

The first part of the likelihood expression is a DATA...END function.  This function specifies that 
observations are to be "fed" to the likelihood one at a time, corresponding to the product (∏) shown 
in the likelihood above.  Do not confuse the DATA function (found within the MODEL statement) with 
the DATA statement (discussed above).  The DATA function loops through all observations that were 
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previously read in by the DATA statement.  Within the DATA...END function comes the rest of the 
likelihood, which is shown to the right of the ∏ in likelihood (1). 

Within the DATA...END function is the individual likelihood.  As parameter estimates are being 
found, the individual likelihood is evaluated for each observation, and the log of that likelihood is 
taken.  Each individual loglikelihood is multiplied by the frequency of the current observation and 
added to the total likelihood.   

In short, the DATA...END function takes a series of observations and an expression for an individual 
likelihood.  It computes and returns the total log-loglikelihood. 

The individual likelihood for this example (specified within the DATA function) consists of a PDF 
function.  A NORMAL distribution is specified with two arguments (topen, tclose).  These times 
denote the time interval within which births occur.  Because the arguments (which were read from 
column 1 and 2 of the data file) differ from each other, the PDF function returns the area under a 
normal PDF between topen, and tclose.  The area corresponds to the probability of observing a 
birth within that interval.  If, instead, we had specified one argument to the PDF function (or if 
topen was equal to tclose), the PDF function would have returned the probability density at that 
point, corresponding to exact ages at birth. 

Within the PDF NORMAL function call are two PARAM functions.  These functions define parameters 
that will be changed in order to maximize the likelihood.  Naturally, you can specify limits, starting 
values, etc. for these parameters. 

Run. . . End Part of the Model Statement 
Between the RUN and the END part of a MODEL statement comes a list specifying how to run the 
model.  The full model is run by specifying FULL; all parameters defined in the model will be 
estimated.  Various reduced forms of the model can be run by specifying a REDUCE command.  More 
details on this are given below and in a later chapter. 
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Distribution of gestational age 
Parameter file: hammes.mle 
Input data file name: hammes.dat 
Output file name: hammes.out 
    3 variables read. 
 
18 lines read from file hammes.dat 
18 Observations kept and 0 observations dropped for each variable. 
 
ROW         topen      tclose   frequency 
MEAN   258.722222  253.555556  144.111111 
VAR    5338.56536  6032.37908  51267.3987 
STDEV  73.0654868  77.6683918  226.423052 
MIN    0.00000000  -1.0000000  0.00000000 
MAX    329.000000  329.000000  724.000000 
Model 1 Run 1 : Distribution of gestational age 
 
METHOD = DIRECT 
Maximum Iterations MAXITER = 50 
Maximum function evaluations MAXEVALS = 100000 
Convergence at EPSILON = 0.0000001000 
LogLikelihood: -6459.238 AIC: 12922.476 Del(LL): 0.0000000000 
Iterations: 3 Function evaluations: 146 Converged normally 
 
PDF NORMAL with 2 free parameters 
      Name Form     Estimate         Std Error         t           against 
      mean          279.1204377949   0.370066272387    754.244465444   0.0 
     stdev          23.02007362180   0.365987430388    62.8985361530   0.0 
Variance/covariance matrix: 
0.13694904596  -0.0586570132 
-0.0586570132  0.13394679920 
 
Likelihood CI Results: 
  Log Likelihood = -5915.1352 after 4 iterations.  Delta(LL)=0.00000000 
PDF NORMAL with 2 free parameters 
         Name Form       Estimate          Lower CI          Upper CI 
         mean          279.7654969512   279.1863052702    280.3447034638 
        stdev          13.04605798312   12.64289497881    13.47052893809 

Figure 3.  Output generated by the program in Figure 1. 

The mle program is run by typing the line mle hammes.mle at the command line prompt (see 
Chapter 2 for details).  The results written  to the output file are shown in Figure 3.  The first section 
of the output provides summary statistics for each of the variables read from the data file.  The 
parameter estimates are given in two ways: once with estimated standard errors (including a t-test of 
the hypothesis that the estimate is zero) and once with likelihood confidence intervals. 

A Note About Parameters 

The ultimate goal of putting together a likelihood model is to estimate one or more parameters of 
the model.  In mle, the PARAM...END function defines parameters to be estimated.  This use of the 
word "parameter" can be confusing, so lets clear up the issue.  In any mathematical language, we 
can refer to a function's arguments as "parameters".  For example, in the statement a = sin(b), sin() 
is a function with one "parameter", b.  This manual will avoid the word "parameter" in this general 
sense.  Instead, the word argument will be used to refer to the arguments of a function in this 
general sense.  So, the sin() function has the argument b. 

As used in this manual, the word parameter in mle refers to an unknown quantity of a probability 
model whose value is to be estimated.2    Parameters, in this sense, are frequently arguments to 
functions, but not all arguments are parameters.   

                                                        
2 A more accurate definition of a parameter is an unknown quantity whose distribution of values is to be estimated.  The standard errors or 

confidence intervals provide information about the distribution of possible parameter values. 
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Parameters are sometimes the constants defined within a function.  For example, in the equation for 
the slope of a line, y = mx + b, we would call m and b the parameters of the equation, and x the 
argument.  This is clearer when we rewrite the equation for a slope as f(x | m, b) = mx + b, which is 
read, "f  of x given m and b. . . ."  This function has a single argument x, and the parameters are m 
and b.  Typically a series of x values are known, and the goal is to find the best values for 
parameters m and b.  By "best", of course, we mean the best in some statistical sense.  In mle, m and 
b would be called parameters if and only if they were quantities to be estimated. 

The one exception to this usage of parameter is for the built-in probability density functions in mle, 
where we refer to intrinsic parameters.  For example, the normal distribution, f(t|µ, σ), has two 
intrinsic parameters, µ and σ.  Typically we wish to estimate these intrinsic parameters.  If so, the 
intrinsic parameters µ and σ are also model parameters. 

As described later, most probability density functions take four argument for t.  Combinations of 
these arguments allow you to specify  

• The probability density function (1 argument, or 2 identical arguments). 

• The cumulative density function (2 arguments: the 1st argument ≤ minimum range of the 
PDF). 

• The survival density function (2 arguments: the 2nd argument is ≥ maximum range, or the 
2nd argument < the 1st argument). 

• An area under the probability density function (2 arguments within the range of the PDF). 

• The hazard function (3 identical arguments). 

• Any of the above with right and left truncation of the distribution.  (The 3rd and 4th 
arguments define the left and right truncation points). 

Thus, in the syntax of mle , there is a natural delineation between arguments and intrinsic 
parameters.  Consider the following function call: PDF NORMAL(0, 4, 0, 40) 10, 20 END.  This 
function call has the four "time" arguments 0, 4, 0, and 40.  Together they specify a normal 
distribution truncated over the range 0 and 40, with the area between 0 and 4 returned.  The two 
intrinsic parameters of the normal are passed as µ = 10 and σ = 20.  There are no model 
"parameters" in this example, simply because there are no PARAM functions specified. 

Writing mle Programs 

This section gives additional details needed to write mle programs.  The simplest way to create a 
new mle program is to modify a working program (like that given in Figure 1) to make it do the task 
at hand. 

Style Conventions 

mle is a free format language.  That is, a program can be written on a single line, or spaced across 
multiple lines.  Indenting, spacing within a line, and spacing across lines is never done for the 
computer.  Rather, the use of indentation is solely for the benefit of human readers.   



mle 2.1 manual 

9 

Good programming practices can greatly aid in reading, understanding and debugging a program.  
Good formatting consists of selecting and consistently using indentation to reflect logical levels and 
blocks within a program.  Comments are indispensable for making a program understandable. 

Throughout this manual, mle programs use indentation to show, for example, the matching MODEL 
and END.  This manual uses two spaces to indent each natural "level".  Keywords that are a part of 
mle are always upper-case letters and user-defined words are lower-case (this is not required since 
mle is not case sensitive).  Finally, each matching END is usually followed by a comment denoting 
what key-word the END matches.  This last convention is helpful in complex programs that involve 
many nested functions. 

Typographic Conventions 

Typographic conventions are used in this manual to distinguish between mle language components 
and English text.   

• Keywords in mle are shown in a fixed-pitch font as uppercase words: MODEL END, DATA END,  
and DEFAULTOUTNAME. 

• User-defined variables and identifiers are shown in a fixed-pitch font as lowercase words: y 
= slope + intercept*x. 

• Within programs, items placed in < and > and italicized are used to denote an omitted or 
unspecified parts of the code.  For example, <Statements> denotes a list of program 
statements that have been omitted.  Other commonly used phrases are <expr> to denote an 
expression, <v> to denote an identifier, <rexpr> to denote an expression of type REAL, 
<iexpr> to denote an INTEGER expression, <bexpr> to denote a BOOLEAN expression, 
<sexpr> to denote a string expression.  Here is an example: WHILE <bexpr> DO 
<statements> END. 

• When syntax diagrams are shown, items shown within [] are optional arguments.  Note that 
the brackets are italicized.  Un-italicized [] are part of the language (used for arrays).  For 
example, WRITELN[ ( [fexpr[,]] <expr> [[,] <expr> ...] ) ] shows that the 
WRITELN statements has an optional set of arguments enclosed within parenthesis.  The first 
argument can optionally be a file expression.  At least one expression must be enclosed 
within the parentheses.  Commas separating the expressions are optional. 

• Ellipses (...) are used in two ways.  First, they denote that a pattern can be repeated an 
unlimited number of times.  Hence, in the previous point, the ellipses indicate that an 
unlimited number of expressions can be placed within the WRITELN statement.  The second 
use denotes that parts of a statement or function are not shown.  For example, MODEL...END 
uses ellipses in this way. 

• A list of alternatives are separated by the vertical bar (|).  For example, the DATA function 
has a series of optional forms specified this way: 

DATA [ FORM = SUMLL | SUMMATION | SUM | PRODUCT | PROD ] 
  <expr> 
END 
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What is a Statement? 

Every program begins with the word MLE and ends with the matching word END. Any text after the 
final END is ignored.  Between the MLE and its matching END comes the body of an mle program as a 
series of statements.  The most basic outline of an mle program looks like this: 

MLE 
  <Statement 1> 
  <Statement 2> 
  <Statement 3> 
  . 
  . 
  . 
END 

A statement is a single complete instruction.  When a program is run, each statement is executed in 
turn.  Here are some things statements do:  

• Print messages to the screen (WRITELN statement) 

• Create data sets (DATA statement) 

• Find maximum likelihood estimates (MODEL statement) 

• Define variables (assignment statement) 

• Assign or change the value of a variable (assignment statement) 

• Define a data file (a call to the DATAFILE procedure) 

• Loop through a series of statements (FOR, WHILE, or REPEAT statements) 

• Conditionally execute one series of statements over of another (IF statement) 

• Create user-defined procedures or functions (PROCEDURE or FUNCTION statements) 

• Call a user-defined procedure (procedure call) 

Each type of statement is briefly discussed below. 

Assignment Statement  

Assignment statement serves two purposes.  The primary purpose is to assign values to variables.  A 
secondary purpose is to define new variables.   A great number of pre-defined variables are 
available to change or fine-tune the behavior of mle, and the values of these variables can be 
changed with assignment statements. 

Assignment statements may be placed anywhere within the body of the mle program—that is, 
between the MLE and its matching END.3  Some examples are: 

                                                        
3 Normally assignment statements do not occur within the DATA...END and MODEL...END statements.  Assignment-like statements 

occur within the DATA statement for transformations.  Additionally, the PREASSIGN and POSTASSIGN functions allow a list of one or 
more assignment (or other) statements to be used.  Finally, the PARAM...END statement uses assignment-like statements, like to define 
start, highest, and lowest values of parameters. 
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MAXITER = 100         {Set the maximum number of iterations} 
EPSILON = 0.0000001   {Set the criterion for convergence} 
PRINT_OBS = TRUE      {print all observations after transformations} 

The simplest assignment statement is generically defined in this way: <variable name> = 
<expression>.  The <variable name> name can be a preexisting variable (e.g. MAXITER, EPSILON), 
or a user-defined variable.  The <expression> that follows the equal sign can be a simple constant, 
another variable, or a mathematical expression.  Details of the syntax and functions that can be used 
to make up expressions are given in a later chapter.  The following are some examples of 
assignment statements using expressions: 

pie      = PI 
bmi_max  = weight_max/height_max^2 
total    = e1_count + e2_count + e3_count + e4_count 
last_age = IF linear THEN max_age ELSE SQRT(max_age) END 
area     = PDF NORMAL(-2, 2) 1, 3 END        {gives area from -2 to 2 for N(1, 3)} 
one      = SIN(total)^2 + COS(total)^2 

Variable Names 
You can create new variables for the purpose of holding values.  A few rules must be observed for 
naming variable (and other identifiers, such as user-defined procedure and function names).   

• A variable name must begin with a letter. 

• After the initial letter, any combination of letters, numbers, the underscore character (_) and 
the period (.) character may be embedded in the name.  Punctuation other than a period and 
underscore character is not permitted. 

• Variable names in mle are insensitive to case: the variable GGG is the same as ggg, Ggg, and 
gGg. 

• Variable names cannot be identical to mle keywords, such as PROCEDURE, DATA, FOR, etc.  
Also, a variable cannot take on the name of an intrinsic procedure (READLN, SEED, OUTFILE, 
etc.). 

• Variable names can be the same as an intrinsic function.  You are discouraged from doing 
this—it can become extremely confusing.  If you do define variable with the same name as a 
function, the function will no longer be available for use by the program. 

Here are some examples of valid variable names: 
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a  = 1 
A  = 2                 {identical identifier: a is the same as A} 
a_ = 1 
a_long_variable_name = 1 
a23 = 1 
measure.left = 1 
United_States.Wisconsin.Madison.longitude = 40.1388333 
 
{ Here are some legal names that are of questionable value } 
 
a________ = 1      {legal, if odd, name} 
a........ = 3      {ditto} 
sin = 4            {bad name -- could be confused with the sin() function} 
a...b = 3          {confusing name.  Looks like a subrange of some sort} 
O.123E23 = 2       {confusing legal name.  The leading oh looks like a zero} 
l423     = 4       {confusing legal name.  The leading el looks like a 1} 
Here are some examples of improper variable names: 
{Bad variable names} 
 
test = 2       {TEST is an mle reserve word} 
model = 2      {MODEL is an mle reserve word} 
writeln = 6    {WRITELN is an mle intrinsic procedure} 
2days = 2      {doesn't begin with a letter} 
_now = 2       {doesn't begin with a letter} 
sib's_name     {embedded punctuation} 
school number  {embedded space} 

Variable Types 
Most examples so far have shown assignments using real numbers and integers.  There are, in fact, 
seven different types supported by mle: REAL, INTEGER, COMPLEX, BOOLEAN, STRING, CHAR 
(character), and FILE. 

A variable's type refers to the domain of values that the variable can take on.  For example, INTEGER 
variables can take on a limited range of integer values, BOOLEAN variables can only take on the 
values TRUE and FALSE.  Variables can be defined for each of the seven types; expressions always 
take on one of these types.  Here is an explanation of each:  

• Real variables represent the continuous real number line.4  Many mathematical functions 
like GAMMA(), BETA(), and BESSELI() return real values, and so the variable to which these 
functions are assigned must be type REAL as well.  Integer variables and functions can always 
be assigned to real variables—they are automatically converted to real values on assignment. 
On the other hand, you must use the ROUND() or TRUNC() functions to convert a real number 
into an integer value for assignment to an integer varuable. 

• Integer variables take on whole number values over a machine-dependent range of numbers.  
For most versions of mle this range is [-2,147,483,648 to 2,147,483,647].  Arguments to 
some functions require INTEGER type variables, like IDIV(). 

• Complex variables include a real number part and an imaginary part.  Complex numbers are 
specified by expressions such as 1.2 + 0.4i.  Most mathematical functions are defined for 
complex types.  For example, SQRT(-1 + 0i) returns 0.000+1.000i.  There is no natural 
ordering for complex variables, so that the comparisons <, <=, >, and >= are undefined.   

Boolean variables take on one of two states: TRUE or FALSE.  No other value is allowed or 
recognized.  Boolean expressions are frequently used to test conditions.  For example, the 
IF...THEN...ELSE...END function evaluates the first expression (between the IF and THEN) to 

                                                        
4 Be aware, however, that the computer representation for real numbers is not strictly continuous.  Occasionally difficulties arise with 

round-off error because of the discrete computer representation of real numbers. 



mle 2.1 manual 

13 

either TRUE or FALSE and decides which of the remaining two expressions will be evaluated and 
returned.  An example of a boolean expression is this: 3.5 == 4.5, which returns the value FALSE.  

• String variables hold a sequence of character constants.   A string written as a constant is a 
sequence of characters, enclosed within quotes (").  The single quote character (') can be 
used as well for strings greater than one character (see Character below for an explanation).  
String variables are typically used to assign file names, titles, etc.  Some functions take on 
string (or character) variables, other functions return strings.  For example, the CONCAT(s1, 
s2) function will add together two string variables and return it as a longer string. 

• Character variables take on the value of a single character.  When written as a constant in a 
program, character constants consist of a single character enclosed within single quotes (').  
Character constants are not typically used within a user's program, but are available if 
needed.  Usually, character constants and variables can be used anywhere string variables are 
allowed. 

• File variables are used to reference files.  Most of the time, file variables are transparent, and 
you need not explicitly define or manipulate file variables.  This is because mle defines and 
does the bookkeeping for the data file, the output file, the plot file, and the screen (or 
standard output) file.  File variables can be created should you wish to create and manipulate 
other files. 

When a variable is first used in an assignment statement, its type will be determined by the type 
returned from the expression on the right-hand side.  Here are some examples to illustrate the point: 

large_data = N_OBS > 5000                     {large_data will be type BOOLEAN} 
subtitle   = "Analysis: " + DEFAULTOUTNAME    {subtitle will be type STRING} 
nine       = 3 * 3.0                          {nine will be REAL} 
five       = 2 + 3                            {five will be INTEGER} 

You can explicitly define the type for a variable when it is first referenced in an assignment 
statement.  Here are some examples: 

c:STRING  = 'x'      {c would default to CHAR, but is explicitly defined as a STRING variable} 
nine:REAL = 3 * 3    {nine would default to INTEGER, but will be a REAL variable} 
t:BOOLEAN = TRUE     {t is explicitly declared as Boolean, although this is the default} 
ang:REAL = SIN(2*pi) {ang is explicitly declared as real, although this is the default} 

Array Variables 
Multidimensional arrays and matrices of all types are supported by mle.  Array variables must be 
explicitly defined the first time the variable is mentioned in the program.  The format is <var> : 
<type>[<min1> TO <max1>, <min2> TO <max2>, . . . ].  Some examples of declarations are:  

s : STRING[1 TO 5]                      {Defines a one-dimensional array of strings} 
r : REAL[1 TO 10, 1 TO 10]              {Defines a 10 x 10 matrix} 
b : BOOLEAN[0 TO 1, 0 TO 1, 0 TO 1]     {Defines a 3 dimensional BOOLEAN array} 

Values within an array variable are accessed using brackets to denote subscripts.  The following 
example creates an array of radian angles for integral degree angles, and prints out a table of sine 
values: 

r : REAL[0 TO 359] 
FOR i = 0 TO 359 DO 
  r[i] = DTOR(i)                          {assignment to element i of array r} 
  writeln("Sin(" i ") = " SIN(r[i]) )     {access the ith element of array r} 
END 
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Initialized Array Variables 
Arrays can be initialized in the same time they are defined.  There are three ways to initialize an 
array.  First, the value of a constant can be assigned to the array.  Examples are: 

s : STRING[1 TO 5] = ""        {Defines s and initializes all values to an empty string} 
r : REAL[1 TO 10, 1 TO 10] = 0 {Defines a 10 x 10 matrix and initializes everything to 0} 

An array can be used to initialize another array, provided that the arrays are identically defined.  
That is, they must have the same number of subscripts and the same subscript ranges.  Here is an 
example: 

a : REAL[1 TO 20] 
FOR x = 1 TO 5 DO 
  a2[x] = x 
END  {for} 
b : REAL[1 TO 5] = a2 

Arrays can also be initialized with a list of values, one per element.  A special function is defined 
that that is enclosed within brackets ([]), and within the function, brackets are used to nest the 
values to different levels.  Here is an example: 

a : REAL[1 TO 5, 1 TO 2]  =  [[1.1  1.2] 
                              [2.1  2.2] 
                              [3.1  3.2] 
                              [4.1  4.2] 
                              [5.1  5.2]] 
 
FOR x = 1 TO 5 DO 
  FOR y = 1 TO 2 DO 
    WRITE(' a[' x ',' y ']=' a[x, y]) 
  END  {for y} 
  WRITELN 
END  {for x} 

Here are the results of running this example: 

 a[1,1]=1.1000000000 a[1,2]=1.2000000000 
 a[2,1]=2.1000000000 a[2,2]=2.2000000000 
 a[3,1]=3.1000000000 a[3,2]=3.2000000000 
 a[4,1]=4.1000000000 a[4,2]=4.2000000000 
 a[5,1]=5.1000000000 a[5,2]=5.2000000000 

Data Statement 

Most mle  programs include a DATA...END statement.  The purpose of a DATA statement is to create a 
series of observations, which will be used to compute likelihoods.  The DATA...END statement 
defines the format of the data file, defines variables to be read in, provides a way of transforming 
variables, and provides a way of selecting and dropping observations.  Only an overview of the 
DATA statement is given here.  Details are given in chapter three. 

Formats for the DATA statement are: 

DATA 
  <variable>  FIELD x                                              {reads variable from field> 
  <variable>  FIELD x LINE y                                       {multiline version} 
  <variable>  FIELD x [LINE y] = <expr>                            {reads and transforms} 
  <variable>  FIELD x [LINE y] [DROPIF <expr> | KEEPIF <expr> ...] {generic from with FIELD} 
  <variable>  = <expr>                                             {creates from an expressions} 
  <variable>  = <expr>  [DROPIF <expr> | KEEPIF <expr> ...]        {creates and conditionally keeps} 
  <variable> [FIELD x [LINE y]] = <expr>  [DROPIF <expr> | KEEPIF <expr> ...] 
   ... 
END 

A description of each field follows: 
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• <variable> is the name of the variable being defined.  The variable must not already exist.  
All variables created by the DATA statement are defined to be type real.  Integer values will 
be read in from the data file and converted to real numbers.  Text strings can exist within a 
fields of a text file, but must not be assigned to a variable. 

• FIELD refers to which column within an input file a variable is found in.  In the hammes.dat 
file, four fields (or columns) existed in the input file.  The field specifier must be a positive 
integer constant. 

• LINE provides a way to read observations spread across multiple lines in the data file.  When 
the LINE keyword is used, the maximum number of lines specified (e.g. 2 for LINE 2) is 
taken as the number of lines for all observations.  If observations each take but one line, the 
statement LINE 1 may be dropped—one line per observation is assumed as a default.  The 
line specifier must be a positive integer constant.  

• <= expr> defines a data transformation expression.  The expression may refer to the variable 
being read, or any variables defined prior to the current variable.  The line newvar FIELD 3 
= newvar^2 will read newvar from field three of the data file; the value of newvar is then 
squared and assigned back to newvar. 

• DROPIF provides a mechanism to drop observations.  The expression following DROPIF will 
evaluate to TRUE or FALSE.  If TRUE, the observation is dropped.  The line newvar FIELD 3 
DROPIF newvar <= 0 will drop all observations when the variable in field three is not 
positive. 

• KEEPIF provides another mechanism to drop observations.  The expression following KEEPIF 
must evaluate to TRUE or FALSE.  If FALSE, the observation is dropped (that is, not kept).  The 
line newvar FIELD 3 KEEPIF newvar > 0 will drop all observations for which the variable 
in field three is not positive.  KEEPIF and DROPIF expressions can be far more complex, but 
must return TRUE or FALSE. 

Usually, data are read from a data file.  The DATAFILE() procedure defines and opens this file.  
Here is an example: 

DATAFILE("test.dat") 
DATA 
  o_time      FIELD 1  = o_time*365.25 
                         DROPIF (o_time > 1000) 
  c_time      FIELD 3  = IF c_time = -1 THEN c_time ELSE c_time*365.25 END 
  height      FIELD 6  DROPIF height <= 0 
  heightsq    = height^2 
  missing     FIELD 4  DROPIF missing_data <> 1 
  frequency   FIELD 5  DROPIF frequency <= 0 
END 

The variable names FREQUENCY or FREQ are taken as frequencies for each observation.  (If both 
variable names are used, FREQUENCY is taken as the frequency variable).  The frequency of each 
observation is used to compute a proper likelihood as if multiple lines of identical observations were 
read.  If the FREQUENCY or FREQ keywords are missing, a frequency of one is assumed for each 
observation. 

The DATA statement is used in conjunction with the DATA function.  Within a MODEL statement, you 
can use the DATA function to evaluate the likelihood, one observation at a time.  Do not be confused 
by the fact that there is both a DATA statement and a DATA function.  They complement each other.  
Simply remember that a DATA statement is used as a statement, and there is typically one such 
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statement per program.  The DATA function can only be used as part of an expression—typically 
only within the likelihood expression of a MODEL statement. 

Model Statement  

The MODEL...RUN...END statement defines the underlying probability model used by mle, defines 
the parameters to be found for the model, and defines constraints under which parameters are to be 
estimated.  Only an overview of the MODEL statement is given here.  An entire chapter is devoted to 
the MODEL statement, including some details for specifying likelihoods. 

The basic structure of the MODEL statement looks like this: 

MODEL 
  <expression> 
RUN 
  <run specifications> 
END 

Between MODEL and RUN is a single expression that is the likelihood.  Within the likelihood is one or 
more PARAM...END functions.  These define the parameters, whose values will be found so that the 
likelihood is maximized.  One of the most important aspects of learning mle  is the design and 
construction of the expression for the likelihood. 

A list of <run specifications> is given between the RUN and the END part of the MODEL statement, this 
provides a way of evaluating the full model as well as a series of nested or reduced models.  If all of 
the parameters (defined by PARAM...END functions) are to be found, a simple FULL command is 
placed between the RUN and its matching END.  Reduced models, where one or more parameters are 
constrained to a constant or another parameter, are specified as REDUCE followed with a list of one 
or more "reductions".  For example, you might constrain a parameter called mean to be zero and 
only allow the parameter called stdev to be found.  Then you would put REDUCE mean = 0 
between the RUN and the END.  Any number of REDUCE commands (along with one FULL) can be used 
in a single model.  The various forms of the model will be evaluated in turn. 

Intrinsic Procedures 

Intrinsic procedures are predefined, single word statements that perform a specific task on a list of 
zero or more arguments.  When called, a procedure executes a series of actions using the arguments.  
(Procedures do not return a value the way a function does).  For example, the statement 
DATAFILE("hammes.dat") found in the earlier example defines and opens the file used by the DATA 
statement.  A list of all procedures, with examples, can be found in a later chapter.  Here are some 
example procedure statements: 

SEED(9734)                             {Seeds the random number generator} 
HALT                                   {stops a program from running further} 
WRITELN("Final value is ", total)      {Writes text to the screen} 
DATAFILE("hammes.dat")                 {Defines and opens a data file} 
OUTFILE("hammes.out")                  {defines and opens an output file} 

User-defined Procedures 

mle provides capabilities for users-defined procedures (and functions).  A procedure is a single-word 
command that takes a list of zero or more arguments; when called, a procedure executes a series of 
statements and returns to the place whence called.  User-defined procedures are something like 
subroutines in FORTRAN; they are very similar to Pascal's user-defined procedures.  User-defined 
procedures must be understood as two components: the procedure definition and a call to the 
procedure. 
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A user-defined procedure must be defined prior to being invoked (called).  By convention, user-
defined procedures (and functions) are usually placed near the beginning of the program.  Here is an 
example of a user-defined procedure being defined and later called. 

MLE 
  a : STRING = "Hello world" 
 
  PROCEDURE myproc (a:INTEGER b:REAL c:STRING)     {Define the procedure here} 
    msg = "    a is " 
    WRITELN("  In myproc: a = ", a, " b = ", b, " c = ",  c) 
    IF a < 10 THEN 
      WRITELN(msg "< 10") 
      a = a + ROUND(b) 
    ELSE 
      WRITELN(msg "> 10 ") 
    END  {if} 
    WRITELN('  Exit myproc with a = ', a) 
  END  {procedure}                                 {End of user-defined procedure definition} 
 
  t = 4 
  WRITELN('Call myproc with t = ' t) 
  myproc(t, 4.2, a)     {Here is a call to the user-defined procedure} 
  WRITELN('Back from myproc with t = ' t) 
 
END 

The definition begins with the word PROCEDURE and ends with the corresponding END.  The word 
following PROCEDURE is the name of the procedure, in this case myproc.  The name is followed by a 
list of 0 or more arguments that are formally defined—that is, a name and type must be specified for 
each argument.  In this example three arguments (a, b, and c) are defined.  The argument names and 
all of the variables defined within the procedure (like msg) are "private" to the procedure.  Names of 
preexisting variables (like a) are not affected by and do not affect declarations outside of the 
procedure. 

The procedure definition does not actually do any (visible) work in a program.  The work comes 
when a procedure is called, as in the line myproc(t, 4.2, a).  Once called, each argument is 
evaluated and a copy of the result is assigned to the formal argument defined in the heading of the 
procedure.  The statements within the procedure are executed, and control is passed back to the 
main program.  Here are results from the sample program: 

Call myproc with t = 4 
  In myproc: a = 4 b = 4.2000000000 c = Hello world 
    a is < 10 
  Exit myproc with a = 8 
Back from myproc with t = 4 

A careful examination reveals an interesting behavior in this example: the arguments passed from 
outside the procedure are not affected by any manipulation within the procedure.  Specifically, t in 
the call was not changed by the assignment to a in the procedure.  The reason is that a copy of each 
argument is passed to the procedure.  This behavior prevents accidental side-effects (outside of the 
procedure) resulting from manipulations within procedures.  Additionally, this permits recursive 
calls to a procedure (i.e. a procedure that calls itself). 

Sometimes it is helpful to permit the procedure to change the variables back in the main program 
(or calling procedure).  It is possible to pass a variable to a procedure so that its value can be 
manipulated within the procedure.  This is done by preceding the variable in the formal argument 
list of the procedure by the name VAR.  (This mechanism is almost identical to variable arguments in 
Pascal and Modula.)  Suppose we rewrite the previous example by adding VAR before the formal 
declaration of variable a: 

 PROCEDURE myproc (VAR a:INTEGER b:REAL c:STRING) 
   msg = "    a is " 
   . . .  
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Now, any changes to variable a within the procedure will be reflected in changes to variable t 
outside of the procedure. 

Call myproc with t = 4 
  In myproc: a = 4 b = 4.2000000000 c = Hello world 
    a is < 10 
  Exit myproc with a = 8 
Back from myproc with t = 8 

Here are some other notes about user-defined procedures 

• VAR arguments require that variables be passed (instead of constants), since the variable may 
be modified 

• Arrays can only be passed as VAR arguments 

• Procedures can be defined and called within a procedure (but will not be available outside 
that procedure) 

• Procedures can "overwrite" the name of intrinsic procedures 

User-defined Functions 

mle provides capabilities for user-defined functions.  A function is a single-word command that 
takes a list of zero or more arguments, performs some operation, and returns a result. User-defined 
functions in mle  are very similar to Pascal's user-defined functions.  They must be understood as 
two components: the function definition and a call to the function. 

A user-defined function must be defined prior to being called.  By convention, they are usually 
placed near the beginning of the program.  Here is an example of a user-defined function being 
defined and later used. 

MLE 
  FUNCTION int_power(a:REAL j:INTEGER):REAL 
    { -- raises a to integer power j} 
    RETURN = 1.0 
    WHILE j > 0 DO 
      IF ISODD(j) THEN 
        RETURN = RETURN*a 
      END  {if} 
      a = a*a 
      j = j DIV 2 
    END  {while} 
  END  {int_power} 
 
  WRITELN( 
          int_power(SQRT(4), 2), ' ', 
          int_power(4.5, 2), ' ', 
          int_power(10/2, 3) 
         ) 
END 

The definition begins with the word FUNCTION and ends with the corresponding END.  The word 
following FUNCTION is the name of the function, in this case int_power.  The name is followed by a 
list of 0 or more arguments that are formally defined—that is, a name and type must be specified for 
each argument.  In this example two arguments (a and j) are defined.  The argument names and all 
of the variables defined within the function are "private" to that function. 

The function declaration does not actually do any work in a program.  The work comes when the 
function is called, as in the  WRITELN line that calls the function.  Once called, each argument is 
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evaluated and a copy is assigned to the formal argument defined in the heading of the function.  The 
statements within the function are executed, and the result is passed back to the expression.  

Within a function, the variable RETURN is automatically declared.  RETURN can be used as an 
ordinary variable.  When the function exits, the value stored in RETURN is passed back to the calling 
expression.  Here is what this example produces: 

4.0000000000 20.250000000 125.00000000 

Here are some other notes about user-defined functions 

• Like procedures, VAR arguments can be defined 

• Arrays can only be passed as VAR arguments to user-defined functions 

• Functions and procedures can be defined and called within a function (but will not be 
available outside that function)  

• User-defined functions can "overwrite" the name of intrinsic functions 

BEGIN...END Statement 

The BEGIN...END statement provides a means of providing multiple statements in contexts where 
only a single statement is allowed.  The format is 

BEGIN  
  <statements>  
END 

The most important use for this statement is with the PREASSIGN...END and POSTASSIGN...END 
functions discussed in a later chapter. 

FOR Statement 

The FOR statement provides a means of looping through statements.  The formats are 

FOR <v> = <expr> TO <expr> DO                   {form 1} 
  <statements>  
END 
FOR <v> = <expr> TO <expr> STEP <expr> DO       {form 2} 
  <statements>  
END 
FOR <v> = <expr> TO <expr> STEPS <iexpr> DO     {form 3} 
  <statements>  
END 
FOR <v> = <array> DO                            {form 4} 
  <statements>  
END 

Form 1 is a simple looping statement.  The variable <v> must either not be previously defined or, if 
it already exists, it must be an integer or real variable.  Its value will change as the FOR statement is 
executed.  The first <expr> will be executed once and will define the starting value of <v>.  The 
second <expr> will be executed once and will define the last value of <v>.  Every iteration through 
the loop, the value of <v> will be incremented by 1. 

Here is an example that will print sine and cosine tables in one degree increments as well as 
creating a table of radians for each degree: 
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r : REAL[0 TO 359] 
FOR x = 0 TO 359 DO 
  r[x] = DTOR(x) 
  WRITELN(x " degrees (" r[x] " radians): SIN()=" SIN(r[x]) ", COS()=" COS(r[x])) 
END 

Form 2 of the FOR statement is like form 1 except that the <expr> after STEP will be used as the 
increment (or decrement) value instead of one.  The step size can be any real or integer value.  If the 
value is positive, then <statements> will not be executed unless the start <expr> is less than or 
equal to the TO <expr>.  Likewise, if the step size is less than zero, then the start <expr> should be 
greater than or equal to the TO <expr>. 

Form 3 of the FOR statement performs the loop in a fixed number of steps, defined by the <expr> 
after STEPS, in equally spaced values from the start <expr> to the TO <expr>.  The variable <v> is 
declared as type REAL (or must be REAL if it is already defined).  Here is a simple example that goes 
from 0 to 1 in 100 steps: FOR x = 0 TO 1 STEPS 101 DO ... END.  

Form 4 of the FOR statement takes an array variable (or a dataarray) and loops through the array 
from its lowest bound to its highest bound.  The index variable may be any type and must match the 
type of the array elements.  Here is an example using a dataarray: FOR x = [TRUE FALSE FALSE 
TRUE TRUE] DO ... END. 

REPEAT Statement 

The REPEAT statement loops through statements until some condition is met.  The format is 

REPEAT  
  <statements>  
UNTIL <bexpr> 

The <statements> are executed and then the Boolean expression<bexpr> is evaluated.  If the result 
is FALSE, the loop repeats and <statements> are executed again.  When <bexpr> evaluates to TRUE, 
the loop terminates.  A REPEAT statement always executes the <statements> at least once. 

WHILE Statement 

The WHILE statement loops through statements while some condition is true.  The format is 

WHILE <bexpr> DO  
  <statements>  
END 

The Boolean expression <bexpr> is executed first.  If the value is TRUE, the <statements> are 
executed once and <bexpr> is evaluated again.  The sequence continues until <bexpr> evaluates to 
FALSE.  That is, when <bexpr> is FALSE, the loop terminates.  Unlike the REPEAT statements, the 
statements will not be executed once if the condition initially fails. 

IF Statement 

The IF statement provides a means of conditionally executing statements.  The following types of 
IF statements are available: 

IF <bexpr> THEN  
  <statements> 
END  

This form will conditionally execute the <statements> only if <bexpr> evaluates to TRUE.  An ELSE 
clause can be added to the statement so that one of two sets of statements will always be executed: 
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IF <bexpr> THEN  
  <statements> 
ELSE  
  <statements> 
END  

In addition, one or more ELSEIF clauses can be added to the statement to allow multiple conditions 
to be tested: 

IF <bexpr> THEN 
  <statements> 
ELSEIF <bexpr> THEN 
  <statements> 
ELSEIF <bexpr> THEN 
  <statements> 
ELSE 
  <statements> 
END 

Here is an example of an IF statement: 

IF SYSTEM = "MS-DOS" THEN  
  PRINTLN("Run from an MS-DOS system") 
  SEP = '\' 
  DATAFILE("C:" + SEP + DIR + SEP + NAME) 
ELSE 
  PRINTLN("Run on a unix system") 
  SEP = '/' 
  DATAFILE(DIR + SEP + NAME) 
END  

The Break Statement 

The BREAK statement works within loop statements (WHILE, REPEAT, and FOR).  When a BREAK 
statement is encountered, the loop is immediately exited.  The behavior of a BREAK statement 
outside of a loop causes the current "scope" to be exited.  This means that within the main program 
(outside of a user-defined procedure or function) a BREAK acts like a HALT statement.  Within a user-
defined procedure or function, the procedure or function is exited. 

The Continue Statement 

The CONTINUE statement works within loop statements (WHILE, REPEAT, and FOR).  When a 
CONTINUE statement is encountered, all further statements are skipped until the end of the current 
loop. 

The Exit Statement 

The EXIT statement immediately exits the current procedure or function.  When an EXIT statement 
is encountered outside of a procedure or function, the program exits. 

Differences Between Version 2.0 and Version 2.1 

Version 2.1 offers improved speed, greater memory capacity, and the addition of some significant 
new capabilities.  With one minor exception (FOR loops using DOWNTO), version 2.0 programs should 
work without change in version 2.1.  Here is a list of the most important changes: 

• User-defined procedures and functions are now available. 
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• BREAK, CONTINUE, and EXIT statements have been added. 

• DOS/Windows versions of mle  execute from two to five times faster. 

• Versions are now available for Linux (and other) operating systems.  New versions are not 
available for Solaris/SPARC systems. 

• The 64 ki limit on user-defined arrays and DATA variables in DOS/Windows versions has 
been lifted. 

• The dataarray structure for defining arrays (single or multidimensional) [<expr>, <expr>, 
...] has been added for assigning initial values to array variables.  

• Array variables can be assigned to other array variables of identical size. 

• Complex numbers are now supported.  Many functions have been extended to return 
complex numbers.  Complex numbers are specified as the expression, for example, 2.7 - 
3.4i.   

• The REAL2STR function has been modified to provide for many new formats. 

• Some predefined files are now flushed (i.e. buffered data are written) before the program 
exits 

• SYMBOLICINFIN is a new Boolean variable that, when TRUE (the default) writes oo and -oo 
for infinity.  When false, it prints a number.  This is useful when writing output to be used by 
other programs.  Also, the value of infinity can be changed by assigning a new value to 
INFINITY. 

• The default width of real numbers is controlled by the REALWIDTH and the default number of 
decimal places is controlled by the REALDECIMALS variables.  Likewise, the default width and 
decimal places for complex numbers is controlled by COMPLEXWIDTH and COMPLEXDECIMALS. 

• Plotting routines have been added for generating GNUPLOT output: PLOT, CURVE, and 
MULTIPLOT.  Also the MODEL statement has been modified to plot estimated distributions 
(with confidence intervals) and likelihood surfaces.  See the PLOTTING chapter in the 
Users manual for details. 

• The FOR statement has been greatly enhanced.  The STEP keyword provides for different step 
sizes.  The looping index variable can be either real or integer.  The STEPS keyword specifies 
the number of steps to loop over between the two limits.  Finally, the FOR statement can take 
a dataarray or an array variable and loop over each element of the array (of any type).  Since 
a step size of -1 can be used, the DOWNTO statement is no longer supported. 

• A great number of intrinsic functions have been added: CLOCKSEED, EXEC(<cmd>,<args>), 
PLOTFILE(), NORMAL(x), NORMALCDF(x), CHISQ(x,df), STUDENTT(x,df), 
INVSTUDENTT(p,df), FDIST(x,df1,df2), INVFDIST(p,df1,df2), INVBETA(p,v,w), 
DIREXISTS, FILESIZE(), ENVCOUNT, ENVSTRING(), ARGCOUNT, ARGSTRING(), GETDIR, 
ZETA(), SETRANSFORM(<expr>). 
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• Added some new procedures. Among them: ERASE, EXEC(<cmd>,<args>), RENAME(n1, 
n2), CHDIR(n1), MKDIR(n1), RMDIR(n1), GETDATE(), GETTIME(), WRITEPLOTLN(), 
WRITEPLOT(), PLOTFILE(), PTRANSFORM(), FINISHPLOT.  Additionally, INC(x) and DEC(x) 
are defined as both procedures and functions. 

• New predefined PDFs: ZIPF, BETABINOMIAL, THOMAS, POLYAEGGENBERGER. 

• A restart file option has been added assist in rerunning programs.  The –sw writes updated 
parameter START values to the file <name ><model_number>.<run_number> each iteration. 
The –sr option on the command line instructs mle to read parameter START values from the 
file. 

• A termination file option has been added.  When the –t is given, the program will 
periodically check for the file <name>.TRM.  If the file exists, the program will terminate. 

• The RUN part of the MODEL statement can now take a WITH clause in addition to FULL and 
REDUCE.  A list of parameter names follow the WITH keyword.  The model will be run using 
only those parameters.  Other parameters will be set to the TEST value set in the PARAM 
function.  Additionally, one or more parameter names can be enclosed in parentheses 
following the WITH keyword.  All possible models (2N for N parameters) that include and 
exclude these parameters will be formed. 

• A Bayesian model selection report is now available.  Setting AIC_SELECT=TRUE will produce 
a report based on Akaike’s information criterion (AIC).  Setting AICC_SELECT=TRUE will 
produce a report based on a sample-size corrected Akaike’s information criterion (AICC).   
Setting BIC_SELECT=TRUE will produce a report based on Bayesian information criterion 
(BIC).  For each report, the most parsimonious model is selected.  Parameters for the 
selected model are reported with new estimates of standard errors that include model 
selection uncertainty.  The variable IC_SAMPLE_SIZE can be set to the effective sample size 
for a set of observations used for AICC and BIC report. 

• The RUN part of the MODEL statement now takes on a THEN <statements> END clause.  The 
statements are executed after each sub-model is solved.  Likewise THEN <statements> END 
can be used after each FULL, REDUCE, and WITH clause to run statements after the model. 

Differences Between Version 1 and Version 2 

Changes and New Features in Version 2 

There are a number of syntax differences and other changes between mle version 1 and version 2.  
Here is a summary of the most important changes: 

• General algebraic expressions are now recognized.  Standard operators include: +, -, *, /, ^, 
AND, OR, XOR, NOT, MOD, DIV, SHL, SHR, >, <, <>, =, ==, >=, <=.  These operators can be used to 
build algebraic and Boolean expressions of nearly unlimited complexity.  Both = and == are 
allowed for specifying Boolean comparisons.  The standard operator precedence, common to 
most programming languages, is recognized by mle: 

Operator(s) Precedence Category 
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- + NOT High Uniary operators 

^  Exponent operator 

* / DIV MOD AND SHL SHR  Multiplying operators 

+ - OR XOR  Adding operators 

= (or ==)  <> < > <= >= low Relational operators 

The expression -23+4*-2^3 is equivalent to ADD(NEGATE(23), MULTIPLY(4, 
POWER(NEGATE(2), 3))) which returns -55.  Parenthesis can be used to override operator 
precedence.  For example, 2*5 + 3*7 will evaluate each multiplication before the addition.  
Addition can be forced to occur first with parenthesis as in 2*(5 + 3)*7. 

• The DATA statement has been rewritten to have a more intuitive transformation mechanism.  
The transformation looks like an assignment statement following the FIELD and LINE 
specification (if any).  A list of DROPIF <expr> and KEEPIF <expr> statements can then be 
specified (replacing the old DROP and KEEP statements).  Here are some examples: 

DATA 
  age     FIELD 1 = age*365.25 + 270  {convert to days since conception} 
  weight  FIELD 2 = weight * 1000  DROPIF weight <= 0 
  height  FIELD 3   KEEPIF height > 0 
  bmi             = height/weight^2 
END {data} 

The formal specification for each variable is this 

<var>  [FIELD x [LINE y]] [= <expr>] [DROPIF <bexpr> | KEEPIF <bexpr> ...] 

The first example above reads a value in the first field of the data file and assigns the value 
to the variable age.  After that, the expression age*365.25 + 270 is evaluated and the result 
assigned to the variable age.  The second example reads the second field and assigns the 
value to the variable weight.  Following that, the expression weight*1000 is evaluated and 
assigned to the variable weight.  Then the expression weight <= 0 is evaluated.  If TRUE, 
the observation is dropped.  If not, the observation is kept. 

• Observations can now be simulated or otherwise created within mle, without reference to a 
data file.  This is done by setting CREATE_OBS to some positive value.  The following 
example will create 100 uniform random observations:  

CREATE_OBS = 100 
DATA 
  v1      FIELD 1 = RAND 
END {data} 

• A number of useless functions that were used with the old data transformations have been 
eliminated, e.g.: ONE, SECOND, ONEIF, RESPONSE, etc. 

• A number of new functions have been added, e.g.: DEFAULTOUTNAME, FISHER, ISODD, 
STRING2REAL, INT2STR, EOF, EOLN.  A fairly complete set of functions are now available to 
work with calendar dates.  A full list of simple functions can be generated by typing mle -h 
functions. 

• The PREASSIGN and POSTASSIGN functions have been generalized so that any single 
statement is allowed in the statement part of the function.  By using a BEGIN ... END block, 
more than one statement can be used in the assignment part of the functions.  For example: 
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PREASSIGN 
  BEGIN  {This is the statement part} 
    r : REAL[0 TO 359] 
    FOR i = 0 TO 359 DO 
      r[i] = DTOR(i) 
    END {for} 
  END {begin — this is the end of the statement part of the PREASSIGN} 
  PDF NORMAL(a, b) c, d END  {This is the function returned by PREASSIGN} 
END {preassign} 

• The conditional expressions in the IF THEN ELSE END and LEVEL functions take a Boolean 
expression of any complexity, e.g., IF (a = b) AND (c^2 + 2 <= 23) OR (d > 1) THEN 
... ELSE ... END. 

• The IF...THEN...ELSE...END function has been generalized so that multiple 
ELSEIF...THEN... conditions may be added.  The following assignment is an example: 

status = IF height < 48 THEN  
           -1  
         ELSEIF (height >= 48) and (height <= 60) THEN 
           0 
         ELSE 
           1 
         END {if} 

• Types can be optionally defined for variables when they are first encountered.  Valid types 
are INTEGER, REAL, CHAR, STRING, BOOLEAN, and FILE.  For example: 

x : REAL = 23   {x would be integer, but is defined to be real} 
c : STRING = '!'   {c would be char, but is defined to be string} 

• In general, types are handled better.  Adding two integers variables together, for example, 
returns an integer value.  The IF...THEN...ELSE...END function can return any type, but 
the type after the THEN must match the type after the ELSE. 

• Multidimensional arrays are supported for all types.  Subscripted values are accessed as, for 
example, z[i, j, k].  Arrays are declared as 

a : REAL[1 TO 5, -1 TO 1]  = 0   {Declare and initialize matrix a} 
b : INTEGER[-4 TO 4, 0 TO 1]     {Declare but no assignment} 

• A new DERIVATIVE function numerically finds the value of a derivative at a specified point 
along some function.  For example, DERIVATIVE x = 2, 3*x^2 + 2*x + 4 END, which is 
the derivative of 3x2 + 2x + 4 evaluated at x = 2, returns 14.0. 

• The new FINDMIN function finds the value that minimizes a bounded function.  An example 
is FINDMIN x (0, 2*PI) COS(x) END, which finds a minimum of the function cosine(x) 
between 0 and 2π.  It returns 3.1415925395570 (π is an exact solution).  The accuracy of the 
solution may be specified as a third argument within the parenthesis. 

• The new FINDZERO function finds the value of an argument for which the function goes to 
zero.  An example is FINDZERO x (0, PI) COS(x) END, which finds a value of x for which 
cosine(x) is zero.  It returns 1.5707963267949 (which is close to the exact solution of π/2).  
The accuracy of the solution may be specified. 

• An important syntactical change is that every PARAM function must have a matching END. 
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• The default FORM for the PARAM function is NUMBER if no covariates are specified and LOGLIN 
if one or more covariates are specified. 

• The COVAR specification part of the PARAM function has been generalized to COVAR <expr> 
<expr>.   A typical specification is   

PARAM x  LOW=0  HIGH=100 START=25 
  COVAR z PARAM beta_z LOW=-5 HIGH=5 START=0 END 
END 

Nevertheless, other expressions are legal.  For example 

PARAM x LOW=0 HIGH=100 START=25 
  COVAR z 1 
END {param} 

• The PARAM options HIGH, LOW, START, and TEST are treated like assignment statements which 
are evaluated just prior to maximization.  The right-hand side of the assignment can be any 
valid expression.  For example, 

PARAM a LOW = IF y > 3 THEN 0 ELSE 3  HIGH = x^2 + 2x - 4  START = y - 1 END 

• The CONST part of the MODEL statement is longer supported. 

• A number of procedures have been added that can be used wherever a statement is allowed, 
including 

OPENAPPEND(,) {Opens a file for appending} 
OPENREAD(,)   {Opens a file for reading} 
OPENWRITE(,)  {Opens a file for writing} 
WRITE()       {writes to standard output} 
WRITELN()     {writes a line to the standard output} 
READ()        {Reads variables from the standard input} 
READLN()      {Reads one line of variables from the standard input} 
PRINT()       {writes to the output file} 
PRINTLN()     {writes a line to the output file} 
CLOSE()       {Closes a file} 
SEED()        {seeds the random number generator} 
DATAFILE()    {defines the data file} 
OUTFILE()     {defines the output file} 
HALT          {halts the program} 

• A variety of statements have been added that can be used wherever a statement is allowed, 
including 

IF <bexpr> THEN <statements> ELSEIF . . . ELSE <statements> END  
FOR <v> = <expr> TO <expr> DO <statements> END 
BEGIN <statements> END 
WHILE <bexpr> DO <statements> END 
REPEAT <statements> UNTIL <bexpr> 
BREAK          {exits the current WHILE, REPEAT, FOR loop, or BEGIN...END block} 
CONTINUE       {Skips to the next iteration of a WHILE, REPEAT, or FOR loop} 

• A new QUANTILE function returns the value that gives the qth quantile of any of the 
predefined pdfs.  For example, the median (where q = 0.5) can be found for the RANDOMWALK 
pdf, with arguments 2 and 3, as: QUANTILE RANDOMWALK(0.5) 2, 3 END.  It returns 
7.4595847118228.  The function uses algebraic solutions for many pdfs.  When no closed 
for solution is known, an iterative solution is found. 
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• Fundamental physical constants have been updated to the most recent recommend values 
provided in Mohr and Taylor (1999). 

• Strings can be delimited by either " or ', except that a one-character sequence using ' is a 
character constant. 

Converting Version 1 Programs to Version 2 

Programs written in earlier versions of mle can be converted into later versions without much 
difficulty.  The most important things to change are given below.   

• Change all INFILE = "mydata.dat" statements to DATAFILE("mydata.dat") procedure 
calls. 

• Change all OUTFILE = "results.out" statements to OUTFILE("results.dat") procedure 
calls. 

• Change all SEED = 5352 statements to SEED(5352) procedure calls. 

• Eliminate all CONST blocks that may have been used at the beginning of MODEL statements.  
Instead, define the constant outside of the MODEL statement.  Alternatively, use a PREASSIGN 
function within the MODEL statement to create temporary variables within that statement. 

• Add an END after all PARAM functions. 

• Some older versions of mle did not have or allow the DATA...END function within the MODEL 
statement.  In more recent versions, a DATA...END function is almost always required to 
cycle through all observations in the data set.  MODEL statements should usually look like this: 

MODEL 
  DATA 
        {the rest of the likelihood goes here} 
  END   {data} 
RUN 
  FULL 
END     {model} 

• Some older versions of mle  used the keyword FREQ followed by a variable name within a PDF 
function to denote the a frequency variable.  These must be deleted.  The special variable 
names FREQ and FREQUENCY should be used in the DATA statement to denote frequencies of 
observations.  

• The method of transforming variables within the DATA statement has changed in version 2.  
All transformations must be re-coded following the new syntax (described earlier in this 
chapter and in a later chapter).  Additionally, the method of dropping or keeping variables 
within the DATA statement has changed.  An example of the old syntax is 
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DATA 
  v1  FIELD 1  DROP < 0 
  v2  FIELD 2  ADD 10 MULTIPLY 2 
  v3  FIELD 3  KEEP >= 24 
  v4  FIELD 4  SUBTRACT 10 POWER 3 DROP <= 1 
END     {data} 
and the corresponding new syntax is 
DATA 
  v1  FIELD 1  DROPIF v1 < 0 
  v2  FIELD 2  = (v2 + 10)*2 
  v3  FIELD 3  KEEPIF v3 >= 24 
  v4  FIELD 4  = (v4 - 10)^3  DROPIF v4 <= 1 
END     {data} 
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Chapter 2 

Installing and running mle 

The mle interpreter is a small, self-contained program that can be run from the command line of the 
operating system.  This chapter describes how to install mle in both the DOS environment and the Windows 
environment.  A brief tutorial is given on how to run mle, and how to edit program files using a text editor.  
Additionally, the editor emle is described.  All command line options are described. 

Installing mle 

Under Windows, mle is installed using a built-in installer.  This will install the interpreter along with a 
rudimentary editor that can be used to edit and run mle programs.  If you prefer, you can install everything 
by hand under Windows as well (this is especially helpful if you want to run mle from the DOS command 
line. 

The current releases of mle can be found on the web at http://faculty.washington.edu/~djholman/mle.  For 
the purposes of this manual we will assume that the current release is 2.1.16. 

Unix 

Find the current release of mle.  For a Linux ELF binary, the current release might be called: mle-
2.1.15.linux.i386.tar.Z.  Experienced Unix users will recognize this as a compressed tar file.  Here 
are the steps for installation: 

• Copy the file to a subdirectory (say, ~/mle). 

• Uncompress the archive with the command uncompress: 
mle-2.1.11.linux.i386.tar.Z  

• Extract everything from the archive with the command 
tar –xvf mle-2.1.11.linux.i386.tar 

• Make sure you have permission to execute the program.  Type: 
chmod u+x mle 

• The directory now contains the executable (mle), example programs, etc.  At 
this point you can run programs from within the directory.  You can add the 
directory to your PATH so that you can execute the program from anywhere.  
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Alternatively, you can move the executable program to a directory in your 
path.  For example: mv mle ~/bin 

Windows 

Find the current release of the mle setup and installation program.  The current release might be called: 
mle_2_1_15_setup.exe. Note that there are versions with and without the mle documentation.  The 
versions should be apparent from the file names.  Here are the steps for installation: 

• The easiest way to install mle  is to “open” the setup program via a web 
browser.  Windows will, in effect, execute the install the package.  
Alternatively, you can download the setup program to any directory, and 
then run the program (from a DOS window or using the Startà Run… 
command). 

• The setup program will walk you through a number of steps for installation.  
If you are not an administrator or power-user on the computer, you will 
want to change the location where the program is installed from the default 
of C:\Program Files\mle to some other location like 
C:\Documents and Settings\<username>\mle 

• Once the installation is complete, you can optionally modify your PATH 
variable so that mle can be run from any directory on the command line.  The 
PATH variable can be changed in most versions of Windows via 
StartàSettingsàControl PanelàSystemàAdvancedàEnvironment Variab
les. 

Editing a program 

Writing an mle program requires that you edit the text of the program, and then “submit” it to the mle  
interpreter.  The next step is to view the output of the program.  Depending on the results, you will then edit 
the program again and submit it again.  Almost any text editor can be used to edit a program.  Additionally, 
the Windows version of mle comes with a simple text editor that is tailored to editing and running programs.  
This section first describes some text editors available in DOS and Unix that can be used for editing 
programs.  Then the mle editor is briefly described. 

Under Unix, there are a number of de facto standard editors that are used for programming.  The vi editor, 
in particular, is available on almost every installation.  Other commonly used text editors on Unix systems 
are Pico and EMACS.  Before you can develop mle programs, you will need to know one of these editors. 

Under DOS or Windows, there are a number of editors available (besides the one that comes with mle).  A 
standard editor available in all later versions of DOS is called EDIT.  Alternatives that come as part of 
Windows are NOTEPAD and WordPad.  Even word processing programs (like MS-Word) can be used, 
although you must be certain to save the programs as text files.  

emle 

A rudimentary editor is now available with Windows versions of mle.  This section of the manual briefly 
describes the editor and its functions.   
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The editor can be started from the Startà Program menu.  A window pops up that looks like the this: 

 

Alternatively, the editor can be opened from a DOS command line.  To do so, the emle.exe command 
must be in your path or current directory.  The command emle myfile.mle will open the editor and load 
(or create) the file myfile.mle 

The text being edited is displayed in the black area of the screen (although the color can be changed).  The 
top of the screen shows the current menu.  The bottom of the screen shows status information.  The first ‘*’ 
means that the current file has been changed.  The line number and column number come next.  The 
“Insert” or “OvrWrt” indicates the mode the editor is in.  Finally the filename is given if a file is opened for 
editing. 

Editor commands can be accessed through the keyboard (there is currently no mouse support).  Keystrokes 
work as expected— that is, the arrow keys navigate around the text, <PgUp> and <PgDn> keys scroll up 
and down through the text, etc.  Additionally, menu items (which are listed at the top of the screen) are 
accessed using the <Alt> key along with the highlighted character.   

Menus 

This section shows and describes the menu commands available in emle. 

File menu 
From the main menu, <Alt>F brings up the File menu.  The File menu provides a number of commonly 
used file-related operations.  The menu contains these elements: 

Open <Alt>O provides a menu for opening up a file.  The arrow keys can 
be used to move through files and directories.  Note that the special 
file “..” is used to change to the previous directory. 

Save Saves the current file. 

saveAs Prompts for a new name and then saves the current work as that 
name. 

Close Closes the current file. 

eXit Exits the program. 

Backups Toggles whether or not back-ups are made while saving files. 

Dos Escapes to a DOS session. 
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Edit menu 
From the main menu, <Alt>E brings up the Edit menu.  The Edit menu provides some special editing 
functions.  The menu contains these elements. 

Del_line Deletes the current line. 

Flipcase Flips the case of all characters from the cursor to the end of the 
current line. 

Lowercase Changes characters to lower case to the end of the current line. 

Uppercase Changes characters to upper case to the end of the current line. 

Ctrl_key After selecting this, a control key can be entered into the text. 

Quit Quits this menu. 

Block menu 
From the main menu, <Alt>B> brings up the Block menu.  This menu provides editing functions for 
selecting, moving and performing other functions on blocks of text.  The menu contains these elements. 

markBegin Marks the beginning of a block. 

markEnd Marks the end of the block. 

Goto Goes to the currently marked block. 

Copy Copies the current block. 

Delete Deletes the current block. 

Move Moves the current block. 

cLear Removes the current block. 

Write Writes the current block to a file. 

Quit Quits this menu. 

Search menu 
From the main menu, <Alt>S brings up the Search menu.  This menu provides text searching and 
replacement functions.  The menu contains these elements. 

Find Searches for a string of text. 

Find (Next) Searches for the next occurrence of the text. 

Find (Opts) Searches for text after setting the search options. 

Replace Searches and replaces text. 

Replace (neXt) Searches and replaces text again. 

Replace (oPts) Searches and replaces text after setting some options. 

Goto_line Goes to the specified line number 

Quit Exits the menu. 

Mle menu 
From the main menu, <Alt>M brings up the Mle menu.  This menu provides some several mle-related 
special functions.  The menu contains these elements. 
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Parse Submits the current file to mle with the parse option (-p).  This, in 
effect, checks for syntax errors. 

Run Submits the current file to mle, so that the program is run. 

Expression Prompts the user for an expression to evaluate via mle. 

template (Insert) Inserts a code template at the current location. 

template (Options) Sets options (intent level, case for code, case for comments) for the 
templates. 

Quit Exits the menu. 

Window menu 
From the main menu, <Alt>W brings up the Window menu.  This menu provides some several mle-related 
special functions.  The menu contains these elements. 

Backcolor Switches through the background color for the text. 

Forecolor Switches the foreground color of the text. 

Wordwrap Toggles word-wrap 

Setmargins Sets the left and right margins. 

Ruler Toggels a ruler display (Off, Top, Bottom). 

reDraw Redraws the current screen. 

Quit Exits the menu. 

Help menu 
From the main menu, <Alt>H brings up the Help menu.  This menu provides for several types of help 
information.  The menu contains these elements. 

Editor_keys Displays the current mapping between editor commands and the 
keyboard. 

Key_map Displays the current mapping of key to editor commands. 

Mle_help Submits the current word (the word the cursor is currently sitting on) 
to mle with the help option (-h) option.  Any mle help messages that 
match the keyword exactly will be displayed. 

mle_Search Submits the current word to mle with the help option (-H) option.  
Any mle help messages that match any part of the keyword will be 
displayed. 

About Shows information about the editor. 

Quit Exits the menu. 

Default settings 

The editor preserves a number of settings from one editing session to the next: foreground color, 
background color, insert status, word wrap status, right and left margins, ruler setting, mle indent setting, mle 
keyword case setting, mle comment case setting,  back-up setting, search “from top” flag, search “ignore 
case” flag. 



mle 2.1 manual  

 36 

The information for these settings is stored in the file emle.cfg which resides in the same directory as 
emle.exe. 

The configuration file can also save a series of user-defined commands that are executed whenever the 
editor is started.  To add commands to the file, use the Alt_F9 command, which prompts for additional 
commands before saving the configuration file. 

Default command mapping 

The default mapping between editor commands and the keyboard is described in this section.  Notice that a 
command can have more than one key assigned to it.  The default keyboard mapping can be changed by 
saving the current map (Shift_F9 by default), and editing the resulting file.  The editor will then read the 
keyboard map by default.  The keymap is stored in the file emle.kbm which resides in the same directory 
as emle.exe. 

Cursor control commands 
RtArr ..................... Go to next character 
LtArr ..................... Go to previous character 
Ctrl_PgUp ............. Go to beginning of file 
Ctrl_PgDn ............. Go to end of file 
End........................ Go to end of line 
Home..................... Go to beginning of line 
DnArr .................... Go to next line 
UpArr .................... Go to previous line 
PgDn ..................... Go down one page 
PgUp ..................... Go up one page 
Ctrl_I..................... Go to next tab 
Shift_Tab............... Go to previous tab 
Ctrl_Home............. Move window up 
Ctrl_End ................ Move window down 
Ctrl_RtArr ............. Skip ahead one word 
Ctrl_LtArr ............. Skip back one word 

Insert and delete commands 
Delete.................... Delete character (del) 
Ctrl_H ................... Delete character (backspace) 
Ctrl_J, Ctrl_M ....... Break line at current position 
Insert ..................... Toggle insert/overwrite 
Ctrl_Y ................... Delete line 
Ctrl_B.................... Delete to beginning of line 
Ctrl_E.................... Delete to end of line 
Ctrl_N ................... Insert new line 
Ctrl_R.................... Delete word 

File commands 
<not assigned>....... Close file. Save if necessary 
<not assigned>....... Close file without saving 
<not assigned>....... Save and close file 
Ctrl_O ................... Open. Save current file if necessary 
<not assigned>....... Open without saving current file 
<not assigned>....... Save current and open 
Alt_X .................... Quit. Save if necessary 
Ctrl_K ................... Quit without saving 
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Shift_F3................. Save and quit 
<not assigned>....... Save as 
<not assigned>....... Save 
<not assigned>....... Save file 
Alt_F3 ................... Set whether backup files are made 

Block commands 
Shift_F4, Alt_-....... Mark beginning of block 
Alt_P ..................... Copy block 
Alt_Q .................... Delete block 
Ctrl_F4, Alt_= ....... Mark end of block 
Alt_O .................... Go to block 
Alt_C..................... Clear block marks 
Alt_V, Alt_F4........ Move block 
Alt_T..................... Write block to a file 

Page formatting commands 
Ctrl_F5.................. Set background color 
Shift_F5................. Set foreground color 
Shift_F8................. Set margins 
F5.......................... Redraw the screen 
Alt_K .................... Toggle ruler display 
F8.......................... Toggle word wrap 

Help commands 
F1.......................... Displays editor commands 
Alt_F1 ................... Displays keys mapped to commands 
Ctrl_F1 .................. Give help on an mle keyword 
Shift_F1................. Match and give help on a keyword 
<not assigned>....... Program information 

Execution commands 
F9.......................... Open up OS window 
Shift_F2................. Parse in mle 
F2.......................... Run in mle 
Alt_F2 ................... Run an mle expression 

Search commands 
F6.......................... Find text 
Shift_F6................. Find next occurrence 
Ctrl_F6 .................. Find with options 
F7.......................... Find and replace 
Shift_F7................. Find and replace next occurrence 
Ctrl_F7 .................. Find and replace options 
Alt_G .................... Goto line 

Other commands 
Ctrl_T, F10............ Insert an mle template 
Shift_F10............... Change mle template options 
Ctrl_F.................... Change case to end of line 
Ctrl_L.................... Change to lower case to EOL 
Ctrl_U ................... Change to upper case to EOL 
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Alt_A .................... Enter ASCII code 
Ctrl_V ................... Accept <Ctrl> key 
Shift_F9................. Writes startup key map file: emle.kbm 
Ctrl_F9.................. Reads key map file: emle.kbm 
Alt_F9 ................... Saves configuration information to the file: emle.cfg 
Alt_F8 ................... Shows internal information (used for debugging). 
Alt_F5 ................... Turns debugging on 

Menu commands 
<not assigned>....... Main menu 
Alt_F, F3 ............... File menu 
Alt_E..................... Edit menu 
Alt_B, F4............... Block menu 
Alt_S ..................... Search menu 
Alt_M.................... mle menu 
Alt_W.................... Window menu 
Alt_H .................... Help menu 

Default keyboard mapping 

The default keyboard map is described in this section.  The default keyboard mapping can be changed by 
saving the current map (Shift_F9 by default), and editing the resulting file. 

Ctrl_A ................. unmapped............... 
Ctrl_B.................. linedelBOL.............Delete to beginning of line 
Ctrl_C.................. unmapped............... 
Ctrl_D ................. unmapped............... 
Ctrl_E.................. linedelEOL .............Delete to end of line 
Ctrl_F.................. flipcase...................Change case to end of line 
Ctrl_G ................. unmapped............... 
Ctrl_H ................. chardelback ............Delete character (backspace) 
Ctrl_I................... tabnext....................Go to next tab 
Ctrl_J................... enter .......................Break line at current position 
Ctrl_K ................. quitnosave ..............Quit without saving 
Ctrl_L.................. tolower ...................Change to lower case to EOL 
Ctrl_M................. enter .......................Break line at current position 
Ctrl_N ................. lineins.....................Insert new line 
Ctrl_O ................. open .......................Open. Save current file if necessary 
Ctrl_P.................. unmapped............... 
Ctrl_Q ................. unmapped............... 
Ctrl_R.................. worddel ..................Delete word 
Ctrl_S.................. unmapped............... 
Ctrl_T.................. mletempl ................Insert an mle template 
Ctrl_U ................. toupper ...................Change to upper case to EOL 
Ctrl_V ................. ctrl..........................Accept <Ctrl> key 
Ctrl_W................. unmapped............... 
Ctrl_X ................. unmapped............... 
Ctrl_Y ................. linedel ....................Delete line 
Ctrl_Z.................. unmapped............... 
Ctrl_[................... unmapped............... 
Ctrl_\ ................... unmapped............... 
Ctrl_]................... unmapped............... 
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Ctrl_^ .................. unmapped............... 
Ctrl__ .................. unmapped............... 
Shift_Tab............. tabprev ...................Go to previous tab 
Alt_Q .................. blockdel..................Delete block 
Alt_W.................. windowmenu ..........Window menu 
Alt_E................... editmenu.................Edit menu 
Alt_R................... unmapped............... 
Alt_T................... blockwrite ..............Write block to a file 
Alt_Y .................. unmapped............... 
Alt_U .................. unmapped............... 
Alt_I .................... unmapped............... 
Alt_O .................. blockgoto................Go to block 
Alt_P ................... blockcopy...............Copy block 
Alt_A .................. ascii........................Enter ASCII code 
Alt_S ................... searchmenu.............Search menu 
Alt_D .................. unmapped............... 
Alt_F ................... filemenu .................File menu 
Alt_G .................. gotoline ..................Goto line 
Alt_H .................. helpmenu................Help menu 
Alt_J.................... unmapped............... 
Alt_K .................. rulertoggle ..............Toggle ruler display 
Alt_L................... unmapped............... 
Alt_Z................... unmapped............... 
Alt_X .................. quit .........................Quit. Save if necessary 
Alt_C................... clearmarks ..............Clear block marks 
Alt_V .................. blockmove..............Move block 
Alt_B................... blockmenu..............Block menu 
Alt_N .................. unmapped............... 
Alt_M.................. mlemenu.................mle menu 
F1........................ helpedit ..................Displays editor commands 
F2........................ mlerun....................Run in mle 
F3........................ filemenu .................File menu 
F4........................ blockmenu..............Block menu 
F5........................ redraw ...................Redraw the screen 
F6........................ find.........................Find text 
F7........................ replace....................Find and replace 
F8........................ wordwraptoggle......Toggle word wrap 
F9........................ exec........................Open up OS window 
F10...................... mletempl ................Insert an mle template 
Home................... linebegin.................Go to beginning of line 
UpArr .................. lineprev ..................Go to previous line 
PgUp ................... pageup....................Go up one page 
LtArr ................... charprev .................Go to previous character 
RtArr ................... charnext..................Go to next character 
End...................... lineend....................Go to end of line 
DnArr .................. linenext ..................Go to next line 
PgDn ................... pagedown ...............Go down one page 
Insert ................... inserttoggle.............Toggle insert/overwrite 
Delete.................. chardel....................Delete character (del) 
Shift_F1............... helpmlesearch.........Match and give help on a keyword 
Shift_F2............... mleparse.................Parse in mle 
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Shift_F3............... quitsave ..................Save and quit 
Shift_F4............... blockbegin..............Mark beginning of block 
Shift_F5............... colorforeset ............Set foreground color 
Shift_F6............... findnext ..................Find next occurrence 
Shift_F7............... replacenext .............Find and replace next occurrence 
Shift_F8............... marginset ................Set margins 
Shift_F9............... writekeymapfile......Writes startup key map file 
Shift_F10............. mletmplopts............Change mle template options 
Ctrl_F1 ................ helpmle ..................Give help on an mle keyword 
Ctrl_F2 ................ unmapped............... 
Ctrl_F3 ................ unmapped............... 
Ctrl_F4 ................ blockend.................Mark end of block 
Ctrl_F5 ................ colorbackset ...........Set background color 
Ctrl_F6 ................ findopts ..................Find with options 
Ctrl_F7 ................ replaceopts .............Find and replace options 
Ctrl_F8 ................ unmapped............... 
Ctrl_F9 ................ readkeymapfile .......Reads key map file 
Ctrl_F10 .............. unmapped............... 
Alt_F1 ................. helpkeyboard..........Displays keys mapped to commands 
Alt_F2 ................. mleexpr ..................Run an mle expression 
Alt_F3 ................. makebackup ...........Set whether backup files are made 
Alt_F4 ................. blockmove..............Move block 
Alt_F5 ................. debug .....................Turns debugging on 
Alt_F6 ................. unmapped............... 
Alt_F7 ................. unmapped............... 
Alt_F8 ................. debugscreen............Shows internal information 
Alt_F9 ................. configsave ..............Saves configuration information 
Alt_F10 ............... unmapped............... 
Ctrl_PrtSc............ unmapped............... 
Ctrl_LtArr ........... wordprev ................Skip back one word 
Ctrl_RtArr ........... wordnext ................Skip ahead one word 
Ctrl_End .............. windowdown ..........Move window down 
Ctrl_PgDn ........... fileend ....................Go to end of file 
Ctrl_Home........... windowup...............Move window up 
Alt_1 ................... unmapped............... 
Alt_2 ................... unmapped............... 
Alt_3 ................... unmapped............... 
Alt_4 ................... unmapped............... 
Alt_5 ................... unmapped............... 
Alt_6 ................... unmapped............... 

Running a program 

mle programs are usually run by typing mle followed by any command-line options, followed by the name 
of the program file on the DOS or Unix command line.  The mle interpreter will then read in and parse the 
entire program file, and the program statements will be executed. 

If mle encounters an error in the program, an error message is printed and further execution terminates.  
Warning messages are printed from mle without terminating the run. 
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The following sections provide more details on how to run mle from the command line. 

Specifying the Program File and Command Line 
Options 

There are several methods for specifying the program file.  Typically, the program file is specified on the 
command line.  Here are some examples of how the mle command is used to run a program file called 
test.mle: 

c:\test> mle test.mle                  Runs mle on the file analysis.mle. 
c:\test> mle -v test.mle               Runs mle, verbose option is set. 
c:\test> mle -p test.mle               Parses test.mle, reports syntax errors. 
C:\test> mle                           mle will request the input file name. 
mle Program file to run? test.mle 

The last example shows that if a program file name is not given on the command line, you will be prompted 
for the program file name. 

The middle two examples show command line options (-v and -p) being specified.  Command line options 
are used to change the behavior of mle, and are discussed below.  If you type an erroneous 
command line option, or the file is not recognized by mle the following synopsis is given: 

c:\test> mle -z analysis.mle              There is no -z option. 
Error: Incorrect number of parameters 
 
Usage: mle [-v] [-p] [-i] [-dd] [-de] [-di] [-dl] [-dp] [-ds] [-dx] [mlefile] 
  -v  Iteration histories and other messages are written to the screen 
  -p  Only parses the mle file 
  -i  Runs mle interactively 
  -dd Turns on data debugging 
  -de Echos characters while parsing 
  -di Turns on integration debugging 
  -dl Turns on likelihood debugging 
  -dp Turns on parser debugging 
  -ds Turns on symbol table debugging 
  -dx Turns on debugging during execution 
  mlefile is the name of the file with the program 
 
Usage: mle -h [name1 name2 . . . .] 
  help for PDFs, functions, symbols, parameter transforms 
  -h matches words exactly, -H searches within words 
 
Usage: mle -pn n1 n2 . . . . 
  parses n's and returns values and type 

Table 1 gives a list of valid command line options.  A useful command line option is -p (parse only) which 
tell mle to parse the program (without running it) and report any errors in the grammar.  The statements 
within the program are not executed.  Another very useful option is the -v (verbose) option, which tells mle  
to provide periodic status reports while solving a likelihood.  Among other things, the status report prints 
out the likelihood and parameter values at each iteration.   

Help Options 

mle predefines a large number of functions, variables, constants, and reserved words.  The -h (help) option 
provides short summaries of mle  language parts, PDFs, and concepts.  Typing mle -h yields 
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Type mle -h <keyword> to match keywords exactly. 
Type mle -H <keyword> to match partial keywords. 
 
 mle -h MLE gives a program outline. 
 mle -h PROCEDURES lists procedures. 
 mle -h PDFS lists PDF types. 
 mle -h FORMS lists parameter forms. 
 mle -h HAZARD gives an example of a hazard specification. 
 mle -h SYMBOLS lists pre-defined variables. 
 mle -h NUMBERS lists number formats. 
 mle -h FUNCTIONS lists simple functions, 
Help is available for the following types of functions/expressions: 
IDENTIFIER     FUNCTION       ARRAY          DATA           DATAARRAY 
DERIVATIVE     FINDMIN        FINDZERO       FUNCTION       IF 
INTEGRATE      LEVEL          LEVELDELTA     PARAM          PDF 
PHAZARD        PPDF           POSTASSIGN     PREASSIGN      PRODUCT 
QUANTILE       QDF            SUMMATION 
 
Help is available for the following statements: 
ASSIGNMENT  BEGIN  BREAK  CONTINUE   CURVE  DATA       EXIT   FOR 
FUNCTION    IF     MODEL  MULTIPLOT  PLOT   PROCEDURE  REPEAT WHILE 
This option is particularly helpful for providing a short summary of intrinsic 
parameters for predefined PDFs.  For example, typing  mle -h weibull  yields: 
WEIBULL Distribution 
4 continuous variables: t(open), t(close), t(left trunc), t(right trunc) 
Exact failure when t(open)=t(close) 
Range:   t: (Time)  0 <= t < +oo 
2 intrinsic parameters: 
  a: (Scale)  0 < a < +oo 
  b: (Shape)  0 < b < +oo 
a is the characteristic life ~= 63.2th % in units of a 
f(t) = S(t)h(t);  S(t) = exp[-(t/a)^b];  h(t) = [b*t^(b-1)]/(a^b) 
mean = a*Gamma[1+1/b]; var = (a^2)*Gamma[1+2/b]-{Gamma[1+2/b]}^2 
mode = a(1-1/b)^(1/b) for b>1; mode = 0 for b<=1; median = a*log(2)^0.5 
   Gamma(x) is the gamma function 
Covariate effects may be modeled on the hazard 
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Table 1.  Command line options. 

Option Description 

–v Sets VERBOSE to TRUE so that an iteration history and other information is printed to standard 
output while solving a likelihood model. 

–h 

–h <name> 

Provides help information about PDFs, functions, variables, constants, reserved words, and 
parameter transformations.  When <name> is replaced by a PDF name, a transformation name, 
a function, or a predefined variable, a brief help message is given.  If <name> is not a known 
topic, a list of topics is printed. 

–H <name> Provides help information like –h, but matches anything that contains the string <name>.  If 
<name> is not given, all help messages are given. 

–i Runs mle interactively.  Commands are typed directly in from the keyboard.  Using interactive 
mode is helpful for using mle as a probability calculator.  Interactive mode is discussed later in 
this chapter. 

–p The program file is parsed for errors and not run.  Sets the internal variable PARSE = TRUE. 

-I <path> Specifies a file system path  to include while searching for include files (see command 
INCLUDE). 

-b Batch mode.  Turns off keyboard monitoring (for interactive debugging) while executing 
models. 

-t Tells mle to watch for a termination file while solving a model, and if it is found, terminates 
solving the model at the end of the next iteration.  

-Sr Tells mle to read in values from the “start-file” to initialize start values for a MODEL statement.  
The start-file is automatically created by the –Sw option.  

-Sw Tells mle to write a “start-file” following each iteration during a MODEL statement.  The values 
are read and used as “updated” start values when the –Sr option is used.   

-S A special flag equivalent to –Sr –Sw –t -v  

-af A flag used by the editor emle  to interact with mle. 

–pn # ... mle supports various number formats (dates, times, Roman, etc.).  This command line option 
takes a list of numbers, parses them, and reports the results. 

-vx Prints out a version number string. 

–dd Turns on data debugging, where details are printed as each observation is read from the data file 
and converted into a data set.  Sets DEBUG_DATA = TRUE. 

–de Echos each character in the program file as it is being read.  Sets DEBUG_ECHO = TRUE. 

–di Turns on debugging for the integration routines, so that a report for each integration call is 
written to the standard output.  Sets DEBUG_INT = TRUE. 

–dl Turns on likelihood debugging, so that parameter estimates and an individual likelihood is 
written to standard output for every likelihood evaluation.  Sets DEBUG_LIK = TRUE. 

–dp Turns on debugging while reading and parsing the program file.  Sets DEBUG_PARSE = TRUE. 

–ds Turns on debugging for the symbol table routines, so that information is printed to standard 
output whenever variables and symbols are created or destroyed.  Sets DEBUG_SYM = TRUE. 

–dx Turns on debugging while running (executing) the program file, so that a message is written to 
the screen just prior to executing each statement.  Sets the internal variable DEBUG_EXEC = 
TRUE. 

–d # Sets the internal variable DEBUG to the value set by #.  When # is greater than zero, debugging 
messages are printed.  The nature and type of messages changes, and the output is used for 
program development.  A value of 0 turns off debugging. 
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which shows that there are two intrinsic parameters.  Note that equations are given for the probability 
density, survival function, or hazard function.  At least one of these is given for other PDFs as well.  Here is 
another example:  mle -h pi 

Symbol: PI{REAL Const Static} = 3.14159265359 
And, a third example: mle -h besseli 
Function BESSELI(x1, x2) 
 returns the modified Bessel fcn I (integer order x1) of real x2 

The -h option provides summaries for a few topics.  For example,  mle -h FUNCTIONS, will list all of 
the intrinsic simple functions, and mle -h SYMBOLS which lists all variables in the symbol table.  Typing 
mle -h functions | more is a useful way to examine all mle intrinsic functions because the more 
program will stop the display after each page of output is listed. 

The -H <name> option is similar to the -h option except that any function, variable, constant, or reserve 
word that includes <name> as some part of the reserve word is printed.  The -H option is particular useful 
when you cannot recall the exact name for some keyword.  Thus, mle -H integra lists all keywords with 
the string "integra": 

INTEGRATE v (expr1, expr2) expr3 END 
INTEGRATE v (expr1, expr2, expr4) expr3 END 
 v is the variable of integration. 
 expr1 is evaluated for the lower limit of integration. 
 expr2 is evaluated for the upper limit of integration. 
 expr3 is the integrand, and may reference v. 
 expr4 is an optional convergence criterion 
 
 INTEGRATE_METHOD = I_TRAP_CLOSED uses closed trapezoidal integration 
 INTEGRATE_METHOD = I_TRAP_OPEN uses open trapezoidal integration 
 INTEGRATE_METHOD = I_SIMPSON uses open simpson integration 
 INTEGRATE_METHOD = I_AQUAD (default) uses adaptive quadrature integration 
 INTEGRATE_N is the number of iterations (default: 100) 
 INTEGRATE_TOL is the convergence criterion (default:  1.0E-0006) 
 
INTEGRATE_METHOD{INTEGER} = 3 
INTEGRATE_N{INTEGER} = 100 
INTEGRATE_TOL{REAL} = 0.00000100000 

Debugging Options 

A number of command line options assist in debugging models, data files, program options, numerical 
methods, and the mle program interpreter itself (see Table 1).  The -dx option provides a way of tracing the 
execution of each statement in turn.  The -dl option is useful for examining likelihoods every time a 
complete likelihood is computed.  More advanced debugging options assume some familiarity with the 
internal workings of parsers, symbol tables, and an advanced understanding of likelihood estimation.  The -
di option offers help with debugging problems of numerical integration in mle. 

The debugging and help options send output to the screen (or standard output device).  The standard DOS 
and Unix redirection symbols ">" and "|" can be used to redirect the output to other devices.  For example, 
the command mle -d 25 test.mle > test.dbg will create a (possibly large) file called test.dbg.  The 
output file specified within the test.mle program will not be affected. 

Other Options 

testing number formats 
mle  supports many formats for numbers.  Each number begins with a numeral, but can contain additional 
symbols to specify different meanings.  A full discussion of the number formats is given in the data 
chapter.  You can test the way in which mle  reads numbers by using the -pn option.  The command line 
mle -pn 8x3017 22'16" 12k returns 
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"8x3017" is the integer 1551 
"22'16"" is the real 0.0064771107796 
"12k" is the real 12000.000000000 

A list of all number formats is given with mle -h numbers 

Start-file options 
The –Sr and –Sw options work together to read and write temporary results to a file, called a start-file, 
while a MODEL statement is executing.  When the –Sw option is used, the current parameter estimates are 
written at each iteration.  The –Sr option will read the start-file and replace the START= parameter values 
with the start-file values.   

The purpose for using these options is to preserve intermediate results for models that take a long time to 
solve.  For example, if a program will take weeks or months to solve, using these options can prevent the 
loss of work in the event the computer crashes. 

Batch options 
“Batch” refers to running programs in an unattended mode.  Typically, batch mode is used when a user (or 
another program) starts running a program and then logs out.  mle provides a few options that assist in 
running in a batch mode.  

The –b option turns off keyboard monitoring (for interactive debugging) while executing models.  
Normally, a user can interrupt mle while solving a model, and the interactive debugger can be used.  
However this can potentially lead to difficulties because the keyboard must be monitored.  While running 
in a batch mode, the –b option turns off this monitoring and slightly speeds up execution. 

The termination file option –t tells mle to watch for a termination file while solving a model.   The term file 
is given the same name as the program file name, but with a .trm file extension replacing the .mle. If the 
file is found, mle terminates solving the model at the end of the next iteration. 

interactive mode 
mle can be run interactively using the -i command line option.  When run interactively, commands are 
typed directly into the command line.  This option is particularly useful when mle is used as a "calculator", 
which is described in the last section of this manual.  Of course, a full program can be written directly from 
the keyboard using this option. 

Calculator Mode 

mle can act like a calculator.  In this mode, instead of a program filled with assignment statement, data 
statements, and model statements, a series of expressions are given to mle.  The expressions are evaluated 
and the result is printed.  This can be done either interactively (using the -i command line option) or by 
reading in a program file.   

This “calculator” mode is assumed when the first keyword of a program is not MLE.  mle will then execute 
all subsequent commands as expressions to be interpreted.  Here is an example 
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c:\>mle -i 
sin(pi * 3) This is the user-defined expression 
2.168404E-0019 And this is what was returned 
 
PDF normal(2, 3) 1, 2 end Compute the area under normal pdf from 2 to 3, µ=1, σ=2 
0.1498822726114 resulting area 
 
INTEGRATE z (2, 3) PDF NORMAL(z) 1, 2 end end Expressions can be nested. Integrate 
for 2 to 3 a normal pdf with µ=1, σ=2 
0.1498822847945 This should be close to the previous result 
 
gamma(3.8) Evaluates the gamma function 
4.6941742051124 
summation i (1, 10) 1/i^2 end Sum from 1 to 10, 1/i2 
1.5497677311665 
 
end Ends and returns to DOS 

In version 2 of mle, when using calculator mode interactively, there will always be a delay of one 
expression before the results is returned.  This is because an expression can continue indefinitely.  For 
example, the expression "SIN(2*pi)" followed by a carriage return does not complete the expression 
because the next line may be "+ 1/2".  A new expression is needed to denote the end of the old expression.  
Thus, typing "1 pi 2" followed by a carriage return will result in two complete expressions (returning 1 
and 3.1415926535898).  The third expression is not yet complete. 

Note that if you begin mle with the options -i -v and begin typing expressions, the verbose result will 
show the entire expression in functional form (i.e. as a series of functions).  For example 

c:\>mle -i -v 
sin(pi^2/4 + 1)      This is the user-defined 
expression 
returns  
SIN(ADD(DIVIDE(POWER( PI ,  2),  4),  1)) ->  -0.320074806512 
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Chapter 3 

Creating data sets 

As a first step in parameter estimation, a data set must be read in or created.  This chapter 
discusses aspects of creating a data set, including 

• How to read a data set into mle 

• How to set up a data file 

• How to transform variables 

• How to drop unwanted observations 

• The number formats recognized by mle 

Reading data from a file 

Data sets are read into mle from an input file.  They consist of at least one, and usually many, 
observations.  Each observation is a collection of one or more variables.  The mle DATA statement 
defines how observations are to be read from a file.  The data statement also has mechanisms for 
doing transformations to the data as they are being read.  In the current implementation of mle the 
transformations and other data manipulations provided by the data statement are adequate for 
most tasks, but are not particularly powerful.  Other programs (spreadsheets or database 
managers, for example) can be used for complicated data transformations, and the resulting data 
set can be then used by mle. 

Naming the data file 

Data sets are created by a DATA statement.  The data statement typically works by reading 
observations from a data file.  This file must be named and opened with a call to the DATAFILE() 
procedure.  The call to DATAFILE() is usually defined near the top of the program, before the 
DATA statement, as in the example in Chapter 1.  The data statement begins with the word DATA 
and is terminated by a matching END.  So, if the name of the data file is MYDATA.DAT, you include 
the statement DATAFILE("MYDATA.DAT") prior to the DATA statement.  Full path names are 
permissible: you might call the DATAFILE procedure as 
DATAFILE("C:\STATS\MLE\BONES\DATAFILE.DAT"). 
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The DATA statement 

The DATA...END statement reads in the data file.  Within the DATA...END is a sequence of one or 
more variable names.  Here is a simple DATA statement that creates three variables. 

DATAFILE("test.dat") 
DATA 
  first_time      FIELD 3 
  missing_data    FIELD 4 
  last_time       FIELD 1 
END 

This example shows three components for defining each variable, the variable name, the key 
word FIELD and a field number. 

Variable name: Variables names begin with a letter and can then contain any combination of 
letters, numbers, the underscore, and period characters.  A variable name may be up to 255 
characters long and all characters are significant.  Examples of valid variable names are: 
LAST_ALIVE, VARIABLE_14 , A_REALLY_LONG_VARIABLE_NAME, and A.  Variable names are not 
case sensitive so the variable abc is the same as ABC and aBc. 

In the current version of mle, all variables created in the DATA...END statement are defined to be 
type real.  This is so even if the number format suggests that the variable should be type integer.  
Integer values read from the data file are simply converted to real number values.  Text strings 
can exist within a text file, but must not be assigned to a variable. 

mle pre-defines many built in constants and variables, so you should avoid variable names that 
exist for some other purpose such as an mle constant (a list of all variables appears in a later 
chapter).  Likewise, mle uses the period as an internal delimiter for some purposes.  Conflicts 
might arise if your variable names contain a period; you are free to use periods, but an underscore 
might be a better choice. 

Field: The word FIELD refers to which column within an input file a variable is found in.  In the 
hammes.dat file used in Chapter 1, four fields (or columns) existed in the input file.  The field 
specifier must be a positive integer constant. 

A number of other elements can be added to a variable definition as well.  These are defined 
below, but the grammar used for specifying each variable is: 

 <variable name>  [FIELD x [LINE y]] [= <expr>] [DROPIF <expr> | KEEPIF <expr> ...] 

Line: Sometimes observations take up multiple lines in the data file.  An example might be times 
to first birth for a married couple in which female characteristics appear on the first line and the 
male characteristics occur on the second line.  When the LINE keyword is used, e.g. LINE 2, mle 
keeps track of the maximum number of lines specified this way.  Then, all observations are 
assumed to have the maximum number of lines.  If observations are each on one line, the 
statement LINE 1 may be dropped—one line per observation is assumed.  The line specifier must 
be a positive integer constant.  

The remaining specification provides ways of transforming variables and dropping (or keeping) 
observations.  The next several sections discuss transformations and gives additional examples of 
declaring variables in the DATA section. 
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Dropping or keeping observations 

A series of statements to drop (or keep) individual observations from the input file can be 
specified as the last items in a variable declaration within the DATA statement.  Here are some 
example of this: 

DATAFILE("test.dat") 
my_drop_value = 100 
DATA 
  first_time      FIELD 3  DROPIF first_time <= 0 
  missing_data    FIELD 4  DROPIF missing_data <> 1 
  last_time       FIELD 1  KEEPIF last_time > 0   
                           DROPIF (last_time == INFINITY) OR (first_time < last_time) 
  alt_missing     FIELD 5  KEEPIF alt_missing == missing_data 
END 

The DROPIF keyword specifies that a condition will be tested; if the condition is true, then the 
entire observation is dropped.  The first DROPIF statement here specifies that the entire 
observation is to be dropped if first_time is less then or equal to zero.  The KEEPIF keyword is 
like DROPIF except that the observation will be kept if the condition is true, and dropped 
otherwise.  The grammar is KEEPIF <bexpr> and DROPIF <bexpr>, where <bexpr> is a boolean 
expression.  A boolean expression is one that evaluates to true or false.  Typically, boolean 
expressions use relational operators (>, >=, <, <=, ==, <>) and boolean operators (NOT, AND, OR, 
XOR).  Functions that return boolean values can be used as well.  

Multiple KEEPIF and DROPIF statements can be used for a single variable.  As mle reads in 
variables, each condition is tested in sequence, until the end of the tests are reached or the 
observation deemed dropped (that is, boolean short-circuiting will be used to drop variables at the 
first opportunity).  The third example is a test that keeps the observation if last_time is greater 
then zero; the second test will examine if the value is equal to INFINITY (a built-in constant) or 
less than first_time, and drop the observation if either condition is true.  Then, if the variable is 
to be dropped, the entire observation is dropped.  Note that the value of other variables in the 
current observation may be used in a DROPIF and KEEPIF statement. 

Observation frequency 

Each observation in a data file (which typically occurs on a single line) is usually a single 
observation.  Sometimes it is convenient to place multiple identical observations on a single line 
along with a count of how many observations are represented.  The names FREQUENCY or FREQ 
have a special meaning when defined as variables in a DATA statement.  They are taken as the 
frequency (or count) for each observation.  (If both variable names are used, FREQUENCY is taken 
as the frequency variable).  For example: 

DATAFILE("test.dat") 
DATA 
  frequency       FIELD 1 DROPIF frequency <= 0 
  start_time      FIELD 2 
  last_time       FIELD 3 
END 

will take the first field in "test.dat" as the frequency for each observation.  The maximizer will 
automatically use the frequency variable as a count of repeated observations. 

Transformations of data 

A number of simple data transformations can be made within mle.  The transformations are done 
while the data are being read from the input file.  Examples of transformations are: 
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DATA 
  event_time   FIELD 5 = (event_time - 1900)*365.25  DROPIF event_time < 0 
  direction    FIELD 6 = COS(direction) 
  winglength   FIELD 8 = LN(winglength/2.25) 
  estage               = 3.7 + winglength*12.76 + winglength^2 * 1.14 
END 

Transformations begin with '=' which is followed by an expression.  Expressions are discussed in 
great detail in the reference manual.  Basically, expressions in mle are similar or identical to 
expressions found in other computer languages and spreadsheets. 

In the first variable declaration of the example, event_time is read in from the input file.  That 
initial value of event_time is then used in the transformation, and a new value of event_time is 
computed as (event_time - 1900)*365.25.  This result is assigned back to event_time.  
Following that, the DROPIF statement will conditionally decide whether or not the observation is 
to be dropped. 

Variables are read in the same order in which they are defined.  This is true even if they are read 
over several lines.  Once a variable is defined, its value can be used in later transformations.  
Then, when reading in the data file, mle will take the value of that variable for the current 
observation for use in the later transformation.  An example might be: 

DATA 
  subject_id   FIELD 1  DROPIF subject_id =1022 DROPIF subject_id = 3308 
  births       FIELD 6  DROPIF births = -1 
  miscarriages FIELD 8  DROPIF miscarriages = -1 
  abortions    FIELD 9  DROPIF abortions = -1 
  pregnancies  = births + miscarriages + abortions  KEEPIF pregnancies > 0 
END 

This data statement will read subject_id, then births, then miscarriages and then abortions.  
These variables will then be added together and assigned to the variable pregnancies.  An 
observation will be dropped if any of births, miscarriages, or abortions are negative one (in 
this case, the "missing" code), or if two particular subject_ids are found, or if pregnancies = 
0. 

Creating dummy variables 

Dummy variables (sometimes called indicator variables) are variables that take on the values 0 
and 1 to denote two different states for an observation.  A typical example is a dummy variable 
for an individual's sex, taking a 0 for females and a 1 for males.  Frequently dummy variables are 
used to simplify a more complex continuous or ordinal variable.  Maternal age, for example, 
might be measured as a continuous variable, but the characteristics of interest are teen mothers, 
mothers from 20 to 35, and mothers over age 35.  Two dummy variables can be created from the 
continuous measure of age.  The reference age group can be defined as mothers from 20 to 35.  
One dummy variable is created that takes on the value 1 for mothers under 20 and 0 otherwise.  
And the second dummy variable takes on a value of 1 for mothers over 35, and a 0 otherwise. 

Dummy variables are easy to create within the DATA statement.  Suppose you are measuring the 
length of some study animal.  You want to create four dummy variables for the length range short 
[0 to 30 mm)5, medium [30 to 40 mm) long [40 to 50 mm) and very long [50+ mm): 

                                                        
5 The [xxx, yyy) notation defines an interval that includes exact number xxx and up to, but not including yyy. 
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DATA 
  length       FIELD 5 DROPIF length <= 0 
  is_short     = IF length < 30 THEN 1 ELSE 0 
  is_medium    = IF (length >= 30) AND (length < 40) THEN 1 ELSE 0 
  is_long      = IF (length >= 40) AND (length < 50) THEN 1 ELSE 0 
  is_verylong  = IF length >= 50 THEN 1 ELSE 0 
END 

Skipping initial lines in the data file 

Data files may have initial descriptive lines at the top that must be skipped.  The INPUT_SKIP 
variable controls how many lines to skip in a data file.  For example, if the first four lines must be 
skipped, the line 

INPUT_SKIP = 4 

should appear before the DATA statement.  It will direct mle to discard the first four lines of the 
data file.  The default value is zero so that no lines are skipped. 

Delimiters in the data file 

Data files consist of a series of text elements separated by one or more delimiters. One or more 
delimiters must appear between each record within a data file.  The delimiters define the fields 
within each line in which variables reside.  By default, the characters space, tab, and comma are 
treated as delimiters.  You can redefine the delimiters by changing the variable DELIMITERS 
before the DATA statement.  If, for example, you wanted the colon and semicolon character as the 
only valid delimiters, you would add the line: 

DELIMITERS = ":;" 

Creating observations without a file 

Sometimes it is useful to create observations, rather than reading observations from a file.  For 
example, you can simulate data sets using the random number generator in mle.  To create 
variables, simply set the variable CREATE_OBS to some positive number, prior to the DATA 
statement.  That number of observations will be created.  Here is an example 

CREATE_OBS = 10         {create 10 observations} 
SEED(8936)              {set the random number generator seed} 
DATA 
  var1   = QUANTILE WEIBULL(RAND) 3.2, 2.5 END  {draw variates from a Weibull(3.2,2.5) pdf} 
  var2   = IRAND(100, 200)                      {draw discrete variates from a uniform} 
  var3   = sin(pi*RAND)                         {sine-transformed variates} 
END 

that yields the following data set: 

var1          var2  var3 
2.6679777032  157.0  0.9809586099 
3.7136215828  117.0  0.2439682743 
3.8714564727  173.0  0.7307000229 
4.6521659697  139.0  0.8642639946 
2.5649275178  197.0  0.8824737096 
0.6017912164  136.0  0.0966561712 
2.6553390371  136.0  0.3989167160 
0.7412253145  198.0  0.7812333882 
2.7631538913  185.0  0.3651667470 
4.0772026291  193.0  0.4812826931 
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Printing observations and statistics 

Some other variables can be used to fine-tune the DATA statement. 

The variable PRINT_DATA_STATS, when set to TRUE, prints summary statistics for each variable, 
including the mean, variance, standard deviation, minimum and maximum.  The default is TRUE, 
so this report can be suppressed with PRINT_DATA_STATS = FALSE. 

When PRINT_OBS is set to TRUE, each observation is printed to the output file.  The report is 
printed after all transformations have been done.  The default value is FALSE, so you must have 
the statement PRINT_OBS = TRUE to print the observations. 

The variable PRINT_COUNTS, when set to TRUE, prints out how many lines were read from the 
input file, how many observations were kept, and how many observations were dropped.  The 
default value is TRUE, so these reports can be suppressed with PRINT_COUNTS = FALSE. 

The PRINT_BASIC variable, when TRUE directs that the title, parameter file name, input file name, 
and the count of variables to be read from the input file are printed.  The PRINT_FIELDS variable, 
when TRUE, prints out the name of each variable and the field it is read in from the input file. 

 

An example of creating and reading a data file 

Data file are read as ordinary ASCII text files, which means they can be created with any text 
editor.  Word processors can be used to create files as well, but the results must be saved as 
ASCII text file.  Nearly all word processors provide an ASCII text option.  An example of a 
typical data file can be seen in Chapter 1, but here we will examine a more complicated data file 
and write the mle program to read and process the file. 

The current version of mle creates variables of type real, and attempts to read real numbers from 
each field for which a variable is defined.  Even so, any delimited text can appear in fields that 
are not assigned to variables.  Consider how we would create a DATA statement to read the 
numeric values for the following file: 

Last   First,MI     Age   Amount     More   Rate  Time 
Smith  James,A      42     12000     TRUE   18%    4.2 
Jones  David,J      38      8000     FALSE  12%    3.1 
Connor Mary         50     11000     TRUE   19%    2.1 

First of all, notice that the first line of the file is a comment.  Clearly, we do not want mle to treat 
this line as an observation, so we can discard the line by setting INPUT_SKIP=1.  From there, the 
data file has one line per observation, with each variable corresponding to one column (meaning 
that we will not need to use the LINE specification here; Some data files place each observation 
across multiple lines, so that the LINE option in the DATA statement must be used). 

This sample data file consists of seven fields delimited by space characters.  Since the space 
character is one of the default delimiters, we do need to change the DELIMITERS variable to 
recognize the space as such.  But, since we have commas embedded in the text that should not to 
be taken as a delimiter, we must redefine DELIMITERS to exclude the comma and include the 
space (and the tab character, if necessary).  The numeric values appear in fields 3, 4, 6, and 7.  



mle 2.1 manual 

 53 

We do not need to do anything with fields 1, 2, and 5.  Let suppose that we want to convert Time 
from years into months. Here is the complete mle  code to read and process this file (but no 
analyses are specified): 

MLE 
  DATAFILE("THEDATA.DAT") 
  PRINT_OBS = TRUE     {print out each observation} 
  INPUT_SKIP = 1       {get rid of the header line} 
  DELIMITERS = " "     {spaces only--treat commas as text} 
  DATA 
    age       FIELD 3 
    amount    FIELD 4  DROPIF amount <= 0 
    rate      FIELD 6    {% is a legal number suffix in mle} 
    time      FIELD 7 = time*12 
  END 
END 

Running mle on this file produces the output to the screen (or standard output) since no OUTFILE 
procedure was called.  Here are the results: 

Table 2. Standard metric/SI suffixes (Taylor 1996) and IEC suffixes for integer and real numbers. 

Suffix Name Conversion  Suffix Name Conversion 

da Deka ×10  d deci ×10-1 

h Hector ×102  c, % centi, percent ×10-2 

k Kilo ×103  m milli ×10-3 

M Mega ×106  µ, u micro ×10-6 

G Giga ×109  n nano ×10-9 

T Tera ×1012  p pico ×10-12 

P Peta ×1015  f femto ×10-15 

E Exa ×1018  a atto ×10-18 

Z Zeta ×1021  z zepto ×10-21 

Y Yotta ×1024  y yocto ×10-24 

Ki Kibi ×210     

Mi Mebi ×220     

Gi Gibi ×230     

Ti Tebi ×240     

Pi Pebi ×250     

Ei Exbi ×260     
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3 lines read from file THEDATA.DAT 
3 Observations kept and 0 observations dropped. 
 
NAME          age      amount        rate        time 
    1  42.0000000  12000.0000  0.18000000  50.4000000 
    2  38.0000000  8000.00000  0.12000000  37.2000000 
    3  50.0000000  11000.0000  0.19000000  25.2000000 
 
MEAN   43.3333333  10333.3333  0.16333333  37.6000000 
VAR    37.3333333  4333333.33  0.00143333  158.880000 
STDEV  6.11010093  2081.66600  0.03785939  12.6047610 
MIN    38.0000000  8000.00000  0.12000000  25.2000000 
MAX    50.0000000  12000.0000  0.19000000  50.4000000 

 

Accessing observations 

Variables created by the DATA statement are treated somewhat differently than are other variables.  
The value of a particular variable changes depending on a counter that keeps track of the current 
observation.  The value of a variable for the current observation is accessed by specifying the 
variable name.  What determines the current observation?  Within MODEL statements, the current 
observation is usually set by the DATA function.  Internally, the DATA function loops through all 
observations and sums the individual likelihood computed for each observation.  The LEVEL and 
LEVELDELTA functions work in similar ways.   

Here are more specific details on how the individual observations are accessed.  Consider the 
variables read in the example above.  When the DATA function is specified with a model, a 
variable called D_IDX is initialized to the value of 1.  When D_IDX is 1, any reference to the DATA 
variables returns the value of the first observation.  Thus, the variable age yields the value 42.  As 
each likelihood (within the DATA function) is computed, the value of D_IDX is incremented up to 
the last observation. 

The total number of observations read by DATA statement is accessed by the variable N_OBS.  This 
variable is assigned the count of lines of observations read in (assuming one line per observation) 
and kept (i.e. not dropped).   However, this variable is incorrect if a single line represents more 
than one observation.  For example, if the FREQUENCY variable is defined and some observations 
have frequencies other than one, the N_OBS will no longer represent the correct number of 
observations.  Another variable, TOTAL_OBS, is the sum over all FREQUENCY observations, and can 
be used as a count of the total number of observations.  

Internally, variables are stored as special array variables.  Whenever a data variable name is 
specified, the value of D_IDX is used as the index into the array.  All observations are easily 
accessed outside of the DATA, LEVEL, or LEVELDELTA functions by directly manipulating D_IDX.  
Here is an example that builds on the previous example.  The following code, which is placed 
after the DATA statement, counts and prints the number of observations under and over the age of 
40: 

lessthan40 = 0 
greaterthan40 = 0 
FOR D_IDX = 1 TO N_OBS DO 
  IF age >= 40 THEN 
    greaterthan40 = greaterthan40 + 1 
  ELSE 
    lessthan40 = lessthan40 + 1 
  END {if} 
END  {for} 
WRITELN(lessthan40, " < 40 and ", greaterthan40, " >= 40") 
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Number formats 

The mle language primarily works with numbers.  With this in mind, a wide variety of number 
formats, including some automatic conversions, are supported.  The standard formats for real and 
integer numbers are recognized, so that "3.14159", "-12.14" and "0.001" are read as would be 
expected.  Real numbers must have a digit both before and after the decimal point, so ".23" is not 
valid but "0.23" is.  Real numbers can be specified in scientific notation so that  "2.1E-23", 
"0.3E12", "-1e4", "12345e-67" are valid numbers. 

Table 3. Standard number formats. 

Format Examples Conversion Result 

D 1, 200  integer 

 d.d, d. 3.1415, 3.  real 

ds, -ds, d.ds, -d.ds, 14%, 23.7M, 45.7da, 2n, 2.418E Metric / other suffix (Table 2) real 

dEd, dE-d, d.dEd, d.dE-d, 

d.Ed, d.E-d 

3e23, 511E-10, 31.416e-1, 7.0E-10, 
12.e-6, 1.45E-3, 1.0E0 

Standard exponential format. 

xEy ⇒ x × 10y 

real 

0Rv 0RXLVII, 0rMXVI, 0rmdclxvi Roman numerals to integer integer 

dXy 2x1001 (binary), 8X3270 (octal), 
16xA4CC (hex), 32x3vq4h (base 32).  

Converts y from base d (from 
2 to 36) into integer. 

integer 

d:d:d,  d:d:d.d,  d:d, d:d.d  10:42, 14:55:32, 10:40:23.4, 16:53.2 24-hour time into hours.  
Hours must be 0-24. 

real 

d:d:dAM, d:d:dPM, d:d:d.dAM, 
d:d:d.dPM, d:dPM, d:dAM, 
d:d.dAM, d:d.dPM  

10:42AM, 2:55:32pm, 10:40:23.4am 12-hour time with AM and 
PM suffixes into hours.  Hours 
must be 0-12. 

real 

dHd'd", dHd'd.d", dHd', dHd.d'', 
dHd.d'' 

230h16'32", 14H32'6", 100h22', 
30H32.2', 0h12', 0H12'3" 

Degree/hour minute, second 
format.  Converted to real 
angle/time. 

real 

d`d'd", d`d'd.d", d`d', d`d.d'', -
d`d'd", d ,̀ d.d`, d°d'd", d°d'd.d", 
d°d', d°d.d'', d°, d.d° 

230`16'32", 14`32'6", 100`22', 30`32.2', 
14`, 230°16'32", 14°32'6", 270°10'0", 
30°18.2', 3.4° 

Degree, minute, second 
format, converted to radians. 

real 

d'd", d'd.d", d', d.d', d", d.d" 12'32", 166'12.9", 19', 14.7', 12", 607.3" Minute-second and second 
format, converted to radians. 

real 

d_d/d 12_5/16, 3_2/3, 0_1/7 Fraction notation. real 

dDdMdY 16d12m1944y, 1D6M1800Y Date converted to Julian day integer 

dMdDdY 12m16d1944y, 6M1D1800Y Date converted to Julian day integer 

dYdMdD 1944y12m16d, 1800Y6M1D Date converted to Julian day integer 

Dmmmy 14Dec1999, 30jun1961, 1MAY1944 Date converted to Julian day integer 

d is a strings of one or more positive digits; s is a one or two character case-sensitive metric or percent suffix (see Table 2), v is a string of 
one or more Roman numeral digits {IVXLCDM}, y is a string of one or more characters, mmm is a 3-character English month name.  
E.g. jan, Feb, MAR, etc. The degree character (°) is available on some hardware platforms as ASCII code 230.  On many Intel platforms, 
holding down the <ALT> key and typing 230 on the numeric keypad gives the degree character. 

The Greek letter micro (µ) is available on some hardware platforms as ASCII code 248.  On many Intel platforms,  holding down the 
<ALT> key and typing 248 on the numeric keypad gives this character. 
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Less common formats include numbers with metric and percent suffixes, numbers interpreted as 
times, numbers in an angle notation (one format that converts degrees to radians), numbers in 
bases from 2 to 36, Roman numerals ("why?" you ask.  Why not!), numbers in fraction notation, 
and several date formats.  These formats are supported in data files as well as numeric constants 
within an mle program. Table 3 is a comprehensive list of formats recognized by mle , and Table 2 
is a list of suffixes permissible on standard integer and real format numbers. 
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Chapter 4 

Building Likelihood Models 

The MODEL statement is at the heart of parameter estimation.  It specifies the likelihood, defines 
parameters, and specifies which parameters are to be estimated.  A complete understanding of 
how models are built in mle requires an understanding of the structure of the MODEL statement, 
an understanding of parameters and how they are specified, an understanding of how expressions 
are specified and are built into likelihoods, and an understanding of the specification for running 
models. 

This chapter discusses the MODEL statement.  It is assumed that you understand the basics of 
expressions and data types for the mle language.  The reference manual and Chapter 1 provides 
much of the necessary background on expressions.  This chapter covers several aspects of 
expressions that are primarily used for building typical likelihood models in mle: the PARAM 
function, the PDF function, the DATA function, and LEVEL functions. 

Structure of the MODEL Statement 

The basic structure of the MODEL statement looks like this: 

MODEL 
  <expression> 
RUN           [THEN … END] 
  <runlist> 
END 

The single <expression> in the MODEL statement defines the likelihood that is to be maximized.  
Technical details about writing expressions are given in the Reference manual; some details are 
provided here as well. 

The optional THEN…END clause gives you a way to do something after each model is solved.  For 
example, you could insert code to transform the parameters from one form into another, plot 
distributions, or write results to another file.    Most legal statements can come between the THEN 
and END (except DATA…END and MODEL…END statements). 

The <runlist> is a series of one or more commands that specify which of the parameters are to be 
changed in maximizing the likelihood.  The commands are FULL, REDUCE, or WITH. 

A simple example 

Here is an example of a simple model for finding the two parameters of a normal distribution from a series of interval-
censored observations.  Suppose there are N interval-censored observations.  The interval in which events occur fall between 
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the times topen and tclose.  The goal is to estimate the parameters µ and σ of the normal distribution (we will use mu and sigma 
as parameter names). 

The likelihood needed for this problem looks like this: 
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where S(t) is the survival function for a normal distribution.  The mle program for this likelihood 
looks like this: 

{1}  MODEL 
{2}    DATA 
{3}      PDF NORMAL(topen, tclose) 
{4}        PARAM  mu     LOW = 5   HIGH = 14  START = 8   END 
{5}        PARAM  sigma  LOW = 0.1 HIGH = 5   START = 1.2 END 
{6}      END  {pdf} 
{7}    END  {data} 
{8}  RUN 
{9}    FULL 
{10} END 

Everything beginning with the DATA function on line 2 to the END on line 7 is a single expression 
that defines the likelihood.  The DATA function corresponds to the product in the likelihood.  It 
loops through all data and evaluates the expression nested within it for each observation.  

The expression PDF NORMAL(topen, tclose)…END defines the area under a normal distribution 
in the interval [topen, tclose).   Finally, the PARAM functions tell mle that mu and sigma are the 
parameters in the model that are to be changed in pursuit of maximizing the likelihood.  Values 
for the parameters mu and sigma will be tried until those that maximize this likelihood are found.   

The word FULL between RUN and END tells mle that all parameters defined in the likelihood—in this 
case mu and sigma—are to be manipulated in order to maximize the likelihood.  Alternatively, the 
REDUCE or WITH keywords can be used in place of FULL.  

Another example 

The expression that defines the likelihood within a model statement can become much more 
complicated than the first example.  Consider the following likelihood: 
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This is the likelihood for a mixture model, in which observations are drawn from two distributions (that is, two different sets 
of parameters for the same distribution), and mixed at some fraction p.  This type of model arises when one cannot tell which 
of the two distributions observations are drawn from.  An example might be a collection of people heights with no 
information on the sex of each individual.  Even without such information, the proportion of each sex can be treated as a 
latent variable, and sex-specific parameters can be estimated along with the proportion. 

This more complicated likelihood can be coded as follows: 
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MODEL     {mixture of two normal distributions} 
  DATA 
    MIX( 
      PARAM   p  LOW = 0  HIGH = 1  START = 0.5 END 
    , 
      PDF NORMAL(topen, tclose) 
        PARAM  mu1     LOW = 5   HIGH = 14  START = 8 END 
        PARAM  sigma1  LOW = 0.1 HIGH = 5   START = 1.2 END 
      END  {PDF} 
    , 
      PDF NORMAL(topen, tclose) 
        PARAM  mu2     LOW = 0   HIGH = 6  START = 2 END 
        PARAM  sigma2  LOW = 0.01 HIGH = 5   START = 1.2 END 
      END  {PDF} 
    ) {mix} 
  END {data} 
RUN 
  FULL 
END      {model} 

Here, again, the <expression> begins with the DATA function and ends with a matching END just 
before the RUN.  Within the DATA function, the MIX function is immediately called, and the MIX 
function contains three arguments separated by commas.  Each of these three arguments contains 
an expression.  Here, we see one parameter p (a mixing proportion) and two function calls: 
PDF...END.  Within each PDF...END, two parameters are defined.   

The model contains a total of five parameters.  The FULL keyword specifies that all parameters 
will be estimated. 

Runlist 

Parameters that are defined with the PARAM…END function can be free parameters, and therefore 
estimated as part of maximizing the likelihood. Alternatively, they can be constrained for the 
purpose of hypothesis testing or otherwise modifying the model.  Parameters may be held 
constant, or fixed to the value of another parameter.  These are called fixed parameters, and an 
estimate will not be found for them when the likelihood is maximized.  The <runlist> in mle 
provides the mechanism to specify a series of one or more models containing different 
combinations of free and fixed parameters.   

For example, in the mixture model likelihood above, we may have reason to believe that the 
proportion parameter (p) ought to be 0.5.  Perhaps this is because of the nature of the system 
being modeled.  We could first fit our collection of t values to the model with parameter p free, 
and secondly fit it with p held constant to 0.5.  Statistical criteria (a likelihood ratio test, Akaike’s 
Information Criterion, or a Walt test) can then be used to determine whether p deviates from the 
value 0.5. 

The run list defines which parameters are free and allows the user to test reduced models.  The 
run list begins with the word RUN and ends with a matching END.  Between the RUN and the END 
comes a list that specifies how the model is to be run.  Each model can be run with a different 
combination of free and fixed parameters.  Generically, a runlist looks like this: 

RUN 
  FULL                   [THEN … END] 
  REDUCE  <reducelist>   [THEN … END] 
  WITH  <withlist>       [THEN … END] 
  ... 
END 
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FULL 
When FULL is specified, all model parameters defined with the PARAM…END function are taken to 
be free parameters and estimated.  Only one FULL is usually needed for a model.  

REDUCE 
The REDUCE keyword provides a mechanism to constrain some parameters of the model.  The 
REDUCE keyword is followed by a list of constraints.  All parameters of a model will be considered 
free except those constrained in the <reducelist>.  Parameters may be constrained to other 
parameters, to constants or to variables.  More than one REDUCE keyword may occur in a single 
run list.   

The <reducelist> is a set of one or more constraints that look like assignment statements.  
Parameters so constrained will not be estimated.  Consider the following likelihood: 
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This likelihood estimates the effect of the variable sex on the mean of a distribution.  Suppose f(t) 
is a normal distribution.  This likelihood would be written as 

largeeffect = -1.9 
 
MODEL 
  DATA 
    PDF NORMAL(topen, tclose) 
      PARAM mean low=5 HIGH=500 START=100 FORM=LOGLIN 
        COVAR sex  PARAM b_sex LOW=-5 HIGH=5 START=0 END 
      END {param} 
      PARAM stdev LOW=0.001 HIGH=25 START=10 END 
    END  {pdf normal} 
  END  {data} 
RUN 
  FULL   {Runs the model with no constraints} 
  REDUCE  b_sex = 0                 {One constraint} 
  REDUCE  mean = 100  b_sex = 0     {Constrains 2 parameters} 
  REDUCE  b_sex = largeeffect       {Fixes sex to another param or variable} 
END 

Notice that there are four versions of the model that will be estimated.  The first case (FULL) 
estimates all three parameters (mean, b_sex, and stdev). The second case constrains the 
parameter b_sex to 0 (no effect), so that only two parameters are estimated.  The third case 
constrains the parameter mean 4 and b_sex to 0, so that only one parameter is estimated.  The 
forth REDUCE constrains b_sex to the value of a variable. 

WITH 
The WITH keyword provides a mechanism to include certain parameters in a model.  The WITH 
differs from the FULL and REDUCE keywords because a single WITH command can generate more 
than one model.  The WITH keyword is followed by a list of parameters to always include in each 
model.  Additionally, a list of parameters can be specified that will be used to create a series of 
models.   More than one WITH keyword may occur in a single run list.   

The <withlist> is a list of parameters.  Parameters are listed in one of two ways.  Parameters 
listed outside of parentheses are included in every model.  Parameters listed in within parentheses 
are included in some models, but not others—essentially, all permutations of models are 
generated from parameters listed in parentheses. 
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Here is an example.  Suppose the likelihood of interest specifies a logistic regression model with 
three covariates:   
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B(t, p) is a Bernoulli trial with parameter p; the function returns p whenever t is 1 (success) and 
returns 1 – p when t is 0 (failure).  This likelihood has four parameters.  β0 defines the baseline 
probability of success.  β1 to β3 are the effects of covariate x1 to x3 on the baseline probability, 
respectively.   

A natural way of estimating this model is try every permutation of covariates, and take the most 
parsimonious of the models.  Here is a likelihood that will do just that. 

MODEL  
  DATA 
    PDF BERNOULLITRIAL(success) 
       PARAM b_0 LOW = -500 HIGH = 500 FORM = LOGISTIC 
         COVAR x1 PARAM b_1 LOW = -10 HIGH = 10 START = 0 END 
         COVAR x2 PARAM b_2 LOW = -10 HIGH = 10 START = 0 END 
         COVAR x3 PARAM b_3 LOW = -10 HIGH = 10 START = 0 END 
       END  {param} 
    END {pdf} 
  END  {data} 
RUN 
  WITH b_0 (b_1 b_2 b_3) 
END  {model} 

The single WITH keyword creates a total of eight models.  All of the models include the parameter 
b_0.  And, all models will be created from the list (b_1 b_2 b_3).  Here is the equivalent list of 
models that will be estimated from this single WITH statement. 

MODEL 
  ... 
RUN 
  WITH b_0 b_1 b_2 b_3 
  WITH b_0 b_1 b_2 
  WITH b_0 b_1 b_3 
  WITH b_0 b_2 b_3 
  WITH b_0 b_1 
  WITH b_0 b_2 
  WITH b_0 b_3 
  WITH b_0  
END  {model} 

The use of parameters within parentheses in the <withlist> raises the issue of the number of 
models that will be created.  Since each parameter has two states (included and not included), 
there are 2K models formed, where K is the number of parameters given in parentheses.  The 
practical use of WITH in this way depends on how quickly a single model solves.  With eight 
parameters, there are 256 models estimated.  At 10 parameters, the number is 1024, and 15 
parameters yields 32768 models. 

THEN…END 
Each of the keywords FULL, REDUCE, and WITH can be followed by an optional THEN…END clause 
gives you a way to do something a particular model is solved (or set of models for WITH).  For 
example, you could insert code to transform the parameters from one form into another, plot 
distributions, or write results to another file.    Most legal statements can come between the THEN 
and END (except DATA…END and MODEL…END statements). 
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Bayesian model averaging 

The WITH keyword can generate many models from a single line of text.  Ideally, the uncertainty 
of estimating multiple models can be taken into account.  mle supports Bayesian model selection 
and Bayesian model averaging.  Accessible introductions to these topics can be found in 
Burnham and Anderson (1998) and Raftery (1995).  The following show how to enable Bayesian 
model selection and the types of model selection are supported:   

AIC_SELECT = TRUE     {selects via Akaike’s information criterion (AIC)} 
AICC_SELECT = TRUE    {selects via sample-size corrected AIC} 
BIC_SELECT = TRUE     {selects via Bayesian information criterion (BIC)} 

When any of these three variables are set to TRUE, Bayesian model averaging will be conducted 
according to the criterion.  Bayesian model averaging uses certain assumptions to find relative 
probabilities that each of the models is the true model or the best fitting model.  A final set of 
parameters (estimated according to the best overall model) is computed, and a second set of 
standard errors are computed that is an average over all models, weighted by the probability of 
each model.  The standard errors contain a component of variability from model-selection 
uncertainty and a component for uncertainty of the parameter estimates.  See Burnham and 
Anderson (1998:325). 

Results 

The output report from a mle MODEL statement consists of a number of smaller reports.  Most 
reports can be enabled or disabled by modifying variables.  Some examples are: parameter 
estimate reports, the variance-covariance matrix, a list of the individual likelihoods for each 
observation, and tables of distributions, Bayesian model averaging reports, etc.   This section 
describes the output options and how to direct the output to a file. 

Defining the output file 
mle defines a special file that is used for the results of DATA and MODEL statements. The OUTFILE is 
used to define where the results will be sent (otherwise they are sent to the screen).  A number of 
variables control the format of the output.  Typically, an program used to estimate a likelihood 
model contains a line like the following near the top of the program: 

OUTFILE("analysis.out")     {writes to the file analysis.out} 

As an alternative to specifying the file name explicitly, the function DEFAULTOUTNAME can be 
called.  This function will use the name of the program to automatically generate an output file 
name.  Suppose you run the command mle myprog.mle.  The statement 

OUTFILE(DEFAULTOUTNAME)      

Will create a file called myprog.out for the output.  

Standard Error Report 
A report with estimated standard errors is printed when PRINT_SE = TRUE.  The parameters will 
be written with an estimate of standard errors.   By default standard errors are written to the 
output file.  Whenever standard errors are reported, a variance-covariance matrix will be 
estimated.  If the matrix is singular (which can happen for a number of reasons), the standard 
errors are +∞.   

When the variable PRINT_SHORT = TRUE, the report format is modified so that all parameters estimates are printed on one 
line.   
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Variance-covariance Matrix 
The estimated variance-covariance matrix is printed by setting PRINT_VCV = TRUE.  The number 
of elements of the matrix printed on a single line is normally 5, but can be changed by modifying 
the value of VCV_WIDTH. 

The asymptotic variance-covariances of maximum likelihood estimates are found by inverting the 
local Fisher's information matrix I for the n parameters: 
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The expectations are, ideally, taken at the true parameter values.  In practice, we have parameter 
estimates, not the true values.  Hence, numerical estimates of the information matrix, Î , are 

found by plugging in parameter estimates, θ̂ .  An estimated variance-covariance matrix is then 

estimated as 1ˆ ˆ−=V I .   

mle  uses two different estimates for the variance-covariance matrix.  Either one or both methods 
may be used by setting INFO_METHOD1 or INFO_METHOD2 to TRUE or FALSE.  The default method 
(INFO_METHOD1=TRUE) computes the variance and covariance matrix by inverting Nelson's (1983) 
approximation to the Fisher's information matrix.  The xth, yth element of that matrix is computed 

as ( )( )ˆ / /xy i i
i

L x L yΕ = ∂ ∂ ∂ ∂∏ , using the standard perturbation method for approximating the 

partial derivative.  Appropriate sizes for ∆x and ∆y are iteratively computed for each parameter.  
mle initially uses a ∆x (and ∆y) of DX_START and then iteratively finds a ∆x that changes the 
loglikelihood by at least DX_TOOSMALL but no more than DX_TOOBIG.  Up to DX_MAXITS such 
iterations are permitted.  The default values are almost always suitable.  The one serious 
limitation of this method is that it does not work well for hierarchical likelihoods. 

The second estimate of the variance-covariance matrix is computed by estimating the second 
partial derivative by numeric perturbation.  This method does not truly compute an expectation, 
and is sometimes inaccurate—you can compare the two methods by setting both 
INFO_METHOD1=TRUE and INFO_METHOD2=TRUE.  Nevertheless, when hierarchical likelihoods are 
being computed, this method will produce better estimates. 

Confidence Interval Report 
An approximate confidence region for each parameter can be estimated by mle.  The report is 
printed when PRINT_CI = TRUE.  When the variable PRINT_SHORT = TRUE, the report format is 
modified so that all parameters estimates are printed on one line. 

The confidence interval is defined as the extent of upper and lower perturbations away from the 
estimates that change the loglikelihood by a specified amount.  For example, approximate 95% 
confidence intervals are formed when the change in the loglikelihood in each direction is 5.0239.  
This value corresponds to an expected probability of 0.025 on each tail of the chi-squared 
distribution with one degree of freedom.  Over both directions, the total interval can be 
considered a 95% confidence interval for the parameter. 
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The interpretation of the one-dimensional confidence region must be done with caution, as the 
method assumes that parameters are uncorrelated.  Figure 4 shows what happens when 
parameters are correlated (which is quite common).  Panel a. shows the contour of the 
loglikelihood surface when parameter 1 is changed over the p1 axis, and parameter 2 is changed 
over the p2 axis.  The bold ellipsis represents the desired confidence level (say, 95%).  The dotted 
lines show the confidence limits when p1 is perturbed along the axis to each side of the estimate; 
this occurs where the bold ellipse intersects the p1 axis.  Panel b. shows what happens when 
parameters are correlated.  Now, the dotted lines still show the 95% confidence limits when p1 is 
perturbed from the estimate and p2 is held constant at its maximum.  The dashed lines show the 
true confidence region defined as the greatest extend of the 95% confidence ellipse over the space 
of p1 and p2.  It is easy to see that the one-dimensional confidence interval will always 
underrepresented the true interval p1 and p2 are correlated. 

p1

a.                                                                 b.

p1

p2 p2

 
Figure 4 The log likelihood contour over the space of parameters p1 and p2.  The bold ellipse represents the target change in likelihood 
that defines the upper and lower bounds of the confidence interval.  Panel a: uncorrelated parameters, where the one dimensional change 
in likelihood is identical to the change over both parameters.  Panel b: correlated parameters where the change in likelihood (dotted lines) 
is less than the change in likelihood over both parameters (dashed lines). 

Given the limitation of these confidence intervals, why use them?  There are several cases where 
they are helpful: 

• When a single parameter is being estimated. 

• In some models where parameters are statistically independent, like while estimating the 
location and scale parameters of a normal distribution. 

There are circumstances when the variance-covariance matrix is singular.  For example, this 
happens when one or more parameters are collinear and don’t independently contribute 
information to a likelihood.  Under these circumstances, the confidence intervals are helpful for 
identifying poorly identified parameters so that the model can be modified to eliminate collinear 
parameters. 

The confidence intervals are found iteratively in one dimension at a time.  For each of the limit 
pairs, mle first evaluates the likelihood at the extremes LOW + CI_LIMIT_DELTA and HIGH + 
CI_LIMIT_DELTA.  Convergence occurs when the difference between the likelihood at the 
parameter estimate and the confidence limit estimate is equal to CI_CHISQ, down to an absolute 
error of ±CI_CONVERGE.  The maximum number of iterations for each of the limits is CI_MAXITS. 
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Report with no standard error or confidence intervals 
At times, it is desirable to print parameter values without standard errors or confidence intervals.  
This can be done by including the assignment PRINT_PARAMS = TRUE.  This will print out an 
additional report with parameter estimates.  Additionally, PRINT_SE and PRINT_CI can be set to 
FALSE so that neither confidence intervals nor the variance-covariance matrix are computed.  

When the variable PRINT_SHORT = TRUE, the report format is modified so that all parameters 
estimates are printed on one line. 

Printing Distributions 
The values of all survival function, the probability density function and the hazard function can 
be tabulated for each PDF function in the likelihood.  To do so, set PRINT_DISTS = TRUE.  All 
distributions that are in the model will be tabulated.  The tabulation starts at value DIST_T_START, 
ends at the value DIST_T_END, and is tabulated for DIST_T_N equally spaced points.  The mean 
values of data variables (e.g. covariates) are used when computing the distributions.   

For example, to print the SDF, PDF, and hazard function at 101 points from 0 to 100 use the 
following code: 

PRINT_DISTS   = TRUE     {print out distributions} 
DIST_T_START  = 0        {lowest value to print} 
DIST_T_END    = 100      {highest value to print} 
DIST_T_N      = 101      {number of points to print} 

Other Printing Options 
The MIN_SIGNIFICANT variable controls the minimum number of significant digits in each 
numeric field of the confidence interval and standard error reports.  More significant digits are 
displayed if there is room.  If the number of leading zeros becomes too large, that number will be 
printed in scientific notation (e.g. 1.2343E-56). 

The variable PRINT_INFO, when TRUE, directs mle to print basic information about the model, 
including the method being used, the maximum number of iterations, the maximum number of 
function evaluations, and the criterion for normal convergence. 

The PRINT_FREE_PARAMS variables, when TRUE¸ directs mle to print a list of all free parameters 
and the attributes of those parameters.  

The variable PRINT_LLIKS controls printing of the individual likelihoods in a model.  When set to 
TRUE, the likelihood and frequency for each observation will be printed to the output file. 

Variables created by models 
mle creates variables in order to access the results from previous runs (either within or outside of 
the MODEL statement).  Each MODEL statement is numbered (beginning with 1) in the order in 
which they are found in the program.  Furthermore, each run of the model, defined by the FULL or 
REDUCE statement, is numbered beginning with 1 for each MODEL.  The following variables are 
created: 
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<param>.<m>.<r> 
<param>.LOW.<m>.<r> 
<param>.HIGH.<m>.<r> 
<param>.START.<m>.<r> 
<param>.UCI.<m>.<r> 
<param>.LCI.<m>.<r> 
<param>.SE.<m>.<r> 
LOGLIKELIHOOD.<m>.<r> 
FREE_PARAMS.<m>.<r> 
DELTA_LL.<m>.<r> 
ITERATIONS.<m>.<r> 
EVALS.<m>.<r> 
VCV_EVALS.<m>.<r> 
CI_EVALS.<m>.<r> 
INVERTFLAG.<m>.<r> 
CONVERGENCE.<m>.<r> 
VCV.<m>.<r> 

where <m> is the model number and <r> is the run number for the model, and <param> is the 
name for a free parameter in the model.  Each VCV.<m>.<r> is an n×n matrix where n is the 
number of free parameters, which is available in FREE_PARAMS.<m>.<r>.  The variable 
INVERTFLAG.<m>.<r> is a boolean variable that specifies whether or not the variance-covariance 
matrix was inverted without error.   

Each CONVERGENCE.<m>.<r> variable has an integer value that takes on a value given in Table 4.  

Building MODEL statements 

Expressions are used in many ways within mle, so that you should become thoroughly acquainted 
with expressions before attempting to develop mle programs.  The likelihood within a MODEL 
statement is a single (sometimes complicated) expression.  Expressions are used to define limits 
of integration, summations, and products, they can be used to define START, HIGH, LOW, and TEST 
values for parameters, and many other things.  This section briefly discusses expressions and 
functions, and then provides some details on functions of special interest when building 
likelihood models.  The reference manual should be consulted for summaries of expressions and 
descriptions of all functions defined in mle . 

At the simplest level, an expression in mle can be a numerical constant or a variable name.  More 
complex expressions consist of algebraic operators (*,^,+, etc.) and function calls each with zero 
or more arguments.  Most functions in mle are simple functions with a fixed number of arguments, 
for example: PERMUTATIONS(x, y), ARCSIN(x), ABS(x), MIX(p, x, y). 

Table 4.  Meaning of the CONVERGENCE variable. 

Value Meaning 

0 Not done 

1 Stopped after maximum function evaluations 

2 Stopped after maximum number of iterations 

3 Converged normally 

4 Trouble converging in one dimension 

5 Starting value is not within min and max bounds 

6 Starting temperature is not positive 

7 Did not converge 
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A second class of functions are more complex, and have a more complicated syntax.  These 
functions begin with a keyword, and end with an END.  Examples of some of these functions are 
the PARAM...END function, DATA...END function (not to be confused with the DATA END 
statement described in a previous chapter), the PDF...END function, the INTEGRATE a (b, 
c)...END  function, and the IF  THEN...ELSE...END function. 

Suppose you want to integrate sin(x2 + 2x) from -√π to √π.  Here is an example of how that could 
be coded: INTEGRATE x (-SQRT(PI), SQRT(PI)) SIN(x^2 + 2*x) END.  (The function 
evaluates to ≈ -1.525). Here it is with comments: 

INTEGRATE x  (      {x is the variable of integration} 
  -SQRT(PI),        {This is the lower limit of integration} 
   SQRT(PI)         {This is the upper limit of integration} 
             )      {Close of the argument list} 
    SIN(x^2 + 2*x)  {The function to be integrated} 
END                 {End of the integrate function} 

Any of the predefined probability density functions can be used as part of an expression.  For 
example, the area under a normal distribution with µ=10 and σ=3, between 8 and 12, could be 
calculated by 

PDF NORMAL(8, 12) 10, 3 END 

The DATA function 

The DATA...END function provides a mechanism to "feed" observations to the likelihood.  This 
function specifies that observations are to be "fed" to the likelihood one at a time, corresponding 
to the product (∏) over all observations shown in likelihoods (or the Σ shown in loglikelihoods).  
The DATA function loops through all observations that were previously read in by the DATA 
statement.  In other words, the DATA...END function returns the total logloglikelihood or total 
likelihood, given a series of observations and an expression for an individual likelihood or 
individual loglikelihood.  The general form for the DATA function is:  

DATA <optional_form> 
  <expression> 
END 

where optional_form is one of  

• FORM = SUMLL —  This takes the log of each individual likelihood and sums the 
loglikelihoods over the data.  A likelihood (rather than a loglikelihood) is specified for 
<expression>.  This is the default value if no <formtype> is specified. 

• FORM = SUM or FORM = SUMMATION — Sums loglikelihoods over the data without first taking 
the log.  This is used when a loglikelihood is specified rather than a likelihood for 
<expression>. 

• FORM = PROD or FORM = PRODUCT —  Takes the product of likelihoods over the data and 
does not take the log of the likelihood.  This is used when a likelihood (rather than a 
loglikelihood) is specified for <expression> and some function appears outside the data 
function that takes the log. 

Here are three models that yield the same overall likelihood function, but uses different forms for 
the DATA function: 
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  MODEL 
    DATA  FORM = SUMLL        {the default form} 
      PDF NORMAL(topen tclose) 
        PARAM mu     LOW = 10     HIGH = 100 START = 30 END 
        PARAM sigma  LOW = 0.0001 HIGH = 10  START = 1  END 
      END  {pdf} 
    END {data} 
  RUN 
    FULL 
  END  {model} 
  MODEL 
    DATA  FORM = SUM         {The loglikelihood is specified} 
      LN(PDF NORMAL(topen tclose) 
           PARAM mu     LOW = 10     HIGH = 100 START = 30 END 
           PARAM sigma  LOW = 0.0001 HIGH = 10  START = 1  END 
         END  {pdf} 
      ) 
    END {data} 
  RUN 
    FULL 
  END  {model} 
  MODEL 
    LN( 
      DATA  FORM = PRODUCT         {The likelihood is specified} 
        PDF NORMAL(topen tclose) 
          PARAM mu     LOW = 10     HIGH = 100 START = 30 END 
          PARAM sigma  LOW = 0.0001 HIGH = 10  START = 1  END 
        END  {pdf} 
      END {data} 
    ) 
  RUN 
    FULL 
  END  {model} 

In theory, these three models will yield identical results.  In practice, results may differ slightly 
because of round-off errors.  This will be most noticeable in the last model, because the product 
of very small numbers will lead to smaller and smaller numbers before the log is taken of the 
entire likelihood.  There are several reasons for providing these three ways of specifying how the 
data is used within the likelihood: 

Some likelihoods are much easier to write as a loglikelihood. 

• Some likelihoods require things like taking an expectation outside of the individual 
likelihoods, where the integration is done outside of the data function. 

• Some multilevel or hierarchical likelihoods require this type of control over the likelihood. 

There are two functions that are closely related to the DATA function: the LEVEL function and the 
LEVELDELTA funciton.  These two functions provides a mechanism by which multilevel or 
hierarchical models can be constructed. 

The PARAM function 

mle has a general method for defining all parameters to be used in a likelihood model.6  The PARAM 
function defines a parameter and its characteristics.  The function should only be used within a 
MODEL statement.  When models are “solved”, free parameters are estimated by iteratively 
plugging new values in for those parameters until the values that maximize the likelihood are 
found.  In other words, free parameters are values that are to be estimated by mle —they are the 
unknowns in likelihood models.  When the MODEL statement is run, mle will estimate the value of 

                                                        
6 The word parameter is used in a very specific way, as defined in Chapter 1.  Parameters are the quantities to be estimated in a likelihood 

model 
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that parameter, unless the parameter is constrained to some fixed value in the REDUCE part of the 
model statement. 

In the simplest case, parameters are specified as 

PARAM  <p> HIGH = <expr> LOW = <expr> START = <expr> TEST = <expr> FORM = <formspec> END 

where <p> is the name chosen for the parameter.  The keywords HIGH, LOW, START, and TEST 
specify characteristics for the parameter.  HIGH and LOW specifies the minimum and maximum 
value allowed for the parameter.  mle will not exceed these values while trying to maximize the 
likelihood.  START tells the maximizer what value to start with.  TEST denotes the value against 
which to test the parameter for significance.  By default, TEST is zero.  It is used for a Wald test as 
the parameter is being written to the output file.  Additionally, this is the value that the parameter 
is constrained to when left out by the WITH command. 

Setting Parameter Information 
Five characteristics may be set for each parameter.  They are: 1) the highest possible value that 
can be tried for the parameter, 2) the lowest possible value that can be tried for the parameter, 3) 
an initial value for the parameter, 4) a test value against which the parameter will be tested when 
standard errors are computed, and 5) a form for the parameter that defines simple algebraic 
transformations and the mathematical from for incorporating covariates.  The following model 
statement defines all five characteristics for the parameters of a beta distribution: 

MODEL  
  DATA 
    PDF BETA(p) 
      PARAM  a  LOW = 0.5  HIGH = 10  START = 1  TEST = 1  FORM = NUMBER  END 
      PARAM  b  LOW = 0.5  HIGH = 10  START = 1  TEST = 1  FORM = NUMBER  END 
    END {pdf} 
  END {data} 
RUN 
  FULL 
END {model} 

The two parameters of the beta distribution are limited to the range 0.5 to 10, whereas, 
mathematically, they are only restricted to positive values.  The TEST = 1 specifies that the 
parameter will be tested against one instead of the default value of zero, after standard errors for 
the parameters are found.  The START value of one simply gives mle a starting place that falls 
within the LOW and HIGH values. 

Use care when setting the HIGH and LOW limits.  Most importantly, limits must be constrained to 
valid ranges for the intrinsic parameters.  Thus, for the MIX mixing proportion parameter (the first 
of the three parameters) then, HIGH = 1 and LOW = 0, should be defined as is appropriate for a 
probability—unless some FORM like FORM = LOGISTIC is used to constrain the resulting parameter 
to between 0 and 1 for estimates from -∞ to ∞.  Sometimes it is useful to impose narrower limits, 
perhaps to avoid getting hung-up at a local maximum or to solve the model more quickly.  Be 
careful, though. Limits that are too narrow may exclude the global maximum—after all, the best 
parameter estimates for a set of data are presumably unknown.  Excessively narrow limits may 
cause problems when numerical derivatives for the variance-covariance matrix are computed, as 
well.  Also, likelihood confidence intervals will bump up and stop at the limits you set. 

The TEST = xxx part of a PARAM function provides a value against which the parameter will be 
tested (in some reports). In a sense, the TEST value is a null hypothesis value (h0).  The test 
performed is ˆ ˆ( ) / ( )ot p h SE p= − , where p̂ is the maximum likelihood parameter estimate and 
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ˆ( )SE p  is the standard error for the parameter estimate.  The Wald test is provided for 
convenience only.  mle does not make use of the test in any way. 

Modeling Covariate Effects 
The PARAM function allows covariate effects (and their associated parameters) to be modeled 
within the parameter statement.  This is done as follows: 

PARAM  x HIGH = <expr> LOW = <expr> START = <expr> TEST = <expr>  FORM = <formspec> 
  COVAR <expr>  PARAM  z .HIGH = ... END 
  COVAR <expr>  PARAM  z .HIGH = ... END 
  ... 
END  {param} 

With covariates, the <expr> following COVAR is a covariate effect.  Typically this is a variable 
like age, sex, income, etc.  The effect of the covariate is multiplied by the value of the PARAM 
function that follows.  The way in which covariates and parameters are modeled is discussed in 
more detail below. 

Here is an example of a likelihood hand-coded for an exponential PDF for exact failure times.  
PARAMs and built-in simple functions, and algebraic expressions are all shown in this likelihood: 

MODEL 
  DATA 
    PARAM lambda LOW = 0 HIGH = 1 START = 0.23 END * EXP(-lambda * t) 
  END 
RUN 
  FULL 
END 

Notice that lambda is first defined as a parameter, and thereafter is used as an ordinary variable.  
As mle iteratively seeks a solution, new values of lambda will be tried.  As the likelihood itself is 
being computed, the PARAM function will simply return the current estimate of lambda. 

An alternative way to code this example is to define the parameter first and assign it to another 
variable: 

MODEL 
  PREASSIGN 
    lam = PARAM lambda LOW = 0 HIGH = 1 START = 0.23 END 
    DATA 
      lam*EXP(-lam*t) 
    END  {data} 
  END  {preassign} 
RUN 
  FULL 
END {model} 

The PREASSIGN function is described in another chapter. 

In the next example, five parameters are defined, two each for the two PDF functions and one 
parameter that was added for the first argument to the MIX function call. 

Typically, parameters are defined for the intrinsic parameters of a PDF function.  For example, the 
normal PDF has two intrinsic parameters µ and σ.  The first parameter specified in the parameter 
list will be treated as µ.  The second will be treated as σ.  How can you know the proper order for 
parameters?  Generally location parameters appear first (and are usually denoted a in this 
manual), scale parameters are second and shape parameters are third.  You can get a quick 
synopsis of each type of PDF by using the -h option from the command line, e.g.:  mle -h 
SHIFTWEIBULL 
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Parameters are also used to model effects of covariates on other parameters.  Here is an example 
in which two parameters, used in place of some fixed values of µ and σ for a normal distribution, 
are defined with two covariate parameters, each: 

PDF NORMAL(topen tclose) 
  PARAM mean  LOW = 100  HIGH = 400  START = 270  TEST = 0  FORM = LOGLIN 
    COVAR  sex    PARAM b_sex_mu     LOW = -2  HIGH = 2  START = 0 END 
    COVAR  weight PARAM b_weight_mu  LOW = -2  HIGH = 2  START = 0 END 
  END 
  PARAM stdev     LOW = 0.1  HIGH = 100 START = 20  FORM = LOGLIN 
    COVAR  sex    PARAM b_sex_sig     LOW = -2  HIGH = 2  START = 0 END 
    COVAR  weight PARAM b_weight_sig  LOW = -2  HIGH = 2  START = 0 END 
  END 
END 

In this example, the first parameter of the normal distribution (µ) has two covariates and their 
corresponding parameters modeled on it.  The exact specification of how covariates and their 
parameters are modeled depend on the FORM of the intrinsic parameter.  In the example, the FORM 
= LOGLIN specifies that a log-linear specification is to be used.   The log-linear specification is µi 
= µ’exp(xiβ), where µ’ is the estimated intrinsic parameter (mean in this case).  Thus, for the ith 
observation, the µ parameter of the normal distribution will be constructed as:  
µi=mean×exp(sexi×b_sex + weighti×b_weight).  The second parameter, stdev, has the same 
two covariates modeled on it, but the parameter names are (and must be) different from the 
parameters modeled on mean. 

For some forms, the parameter itself is transformed.  For example, when a parameter is a 
probability (as it is for the MIX function in above) the parameter can be defined as: 

PARAM p  LOW = -999  HIGH = 999  START = 0  FORM = LOGISTIC END 

The logistic transformation permits the parameter p to take on any value from negative infinity to infinity, but the resulting 
value passed used by the likelihood will be constrained to the range (0, 1).  In other words, mle  will estimate a parameter over 
the range –999 to 999, but before that parameter is used in computation, it will undergo a logistic transformation as p = 1/[1 + 
exp(p’)], so that the value of p will be a probability.  mle currently provides a limited number of specifications for how 
parameters and covariates are modeled (see the Reference Manual).  Even so, this mechanism for modeling covariates on any 
parameter is extremely general and provides the basis for building unique and highly mechanistic (Box et al. 1978) or 
etiologic (Wood 1994) models.   

The PDF functions 

One of the most frequently used functions in the MODEL statement is the PDF function.  The 
purpose of the PDF function is to specify the component of a pre-defined probability density or 
distribution functions.  Although the name is PDF, the PDF function can return the probability 
density function, areas under the PDF curve including the cumulative and survival density 
functions, and the hazard function.  In addition, the PDF function can return areas or densities that 
are left and right truncated.  The structure of the PDF function call is: 

PDF <PDF name> ( <time variable1>, <time variable2>, ... ) 
  <intrinsic parameter 1>, 
  <intrinsic parameter 2>, 
  ... 
  <optional HAZARD> 
END 

The name following PDF is the name of the built-in distribution.  mle predefines over 60 density functions, including most 
well-known ones like the normal, lognormal, weibull, gamma, beta, and exponential distributions.  A complete summary of 
built-in distribution is given in a later chapter. 
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Time variable list is a list of the time arguments passed to the PDF.  Most univariate PDFs can 
take from one to four ‘time’ arguments.7  In fact, these four times describe a single observation in 
such a way as to incorporate a number of defects in the observation process, including right 
censoring, left truncation, right truncation, cross-sectional observations.  A description of how the 
four arguments combine to specify a probability are given in the section that follows.  Note that 
the time arguments can be any expression, so that time shifts and transformations can be 
incorporated in this list. 

Intrinsic parameter list provides specifications for the PDF’s intrinsic parameters.  The order that 
the intrinsic parameters are specified is important; it corresponds to how the PDF is defined 
within mle.. The PDFs chapter lists the order for intrinsic parameters; alternatively, the command 
line mle -h can be used to determine the proper argument order.  Note that any expression can be 
used for an intrinsic parameter.  That is, you do not need to use a PARAM function for the intrinsic 
parameters, although this is the most common use.  Here is an example in which the location 
parameter is fixed to a constant for a shifted lognormal distribution: 

PDF SHIFTLOGNORMAL ( tooth_eruption_age ) 
  9,  {shift the time back to conception} 
  PARAM location LOW = 1 HIGH = 4 START = 2.5 END, 
  PARAM scale LOW = 0.0001 HIGH = 3 START = 0.9 END 
END 

PDF Time Arguments 
Most PDFs can have as few as one and as many as four time arguments specified.  They are: tu, 
the last observation time before an event; te, the first observed time after the event; tα, the left 
truncation time for the observation or the PDF; and tω, the right truncation time for the 
observation or the PDF.  Understanding how these four times act on the PDF statement is critical 
to creating the desired and proper likelihood. 

                                                        
7 These are called time variables in the context of survival analysis; however, they may represent other measurements (length, dose, height, 

etc.). 
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PDFs contribute to likelihoods in a number of ways.  In survival analysis, for example, the 
likelihood for an exact failure time is given by the value of the PDF at the exact point of failure.  
For a right censored observation, the likelihood is given by summing up (integrating) all possible 
PDF values from the last observation time until the maximum possible time.  The likelihood for a 
cross-sectional “responder” is the integral from zero to the time of first observation.  Table 5 lists 
the likelihoods that result from the four time variables for different conditions.  For example, 
when tu=te or when only one time variable is specified, mle returns the density at tu.  This is the 
desired likelihood for an exact failure.  Likelihoods for right and interval censored observations, 
with and without left and right truncation are given in Table 5. 

Table 5.  Likelihoods returned by PDF for one, two, three, and four time variables under different conditions. The Log Normal distribution 
is used as an example. 

Example When Class Resulting Likelihood 

LNNORMAL(te) 1 arg. Exact failure at te ( )eL f t=  

LNNORMAL(tu, te) tu=te Exact failure at tu=te ( ) ( )u eL f t f t= =  

LNNORMAL(tu, te) te=oo 

te < tu 

Right censored or cross-sectional 
non-responder at tu ( ) ( )

u

u
t

L f z dz S t
∞

= =∫  

LNNORMAL(tu, te) tu = 0 Cross-sectional responder at te 

0

( ) ( )
et

uL f z dz F t= =∫  

LNNORMAL(tu, te) tu ≠ te Interval censored over the interval 
(tu,  te).  Includes, as a limiting 
case cross-sectional responder and 
right-censored. 

( ) ( ) ( )
e

u

t

u e
t

L f z dz S t S t= = −∫  

LNNORMAL(tu, te, tα) tu = te Left-truncated exact failure ( ) ( )
( )

( )

u u

t

f t f t
L

S t
f z dz

α

∞
α

= =

∫
 

LNNORMAL(tu, te, tα) tu ≠ te Left-truncated, interval censored 
failure 

( ) ( ) ( ) ( )
( )

( )

u e u e

t

S t S t S t S t
L

S t
f z dz

α

∞
α

− −
= =

∫
 

LNNORMAL(tu, te, tα, tω) tu = te Left- and right-truncated, exact 
failure 

( ) ( )
( ) ( )

( )

e e
t

t

f t f t
L

S t S t
f z dz

ω

α

α ω

= =
−

∫
 

LNNORMAL(tu, te, tα, tω) tu < te 

tα ≤ tu 

tω ≥ te 

Left- and right-truncated, interval 
censored failure 

( ) ( ) ( ) ( )
( ) ( )

( )

u e u e
t

t

S t S t S t S t
L

S t S t
f z dz
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α
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− −
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−
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LNNORMAL(tu, te, tα) tu=te=tα Hazard ( )
( )

( )
u

u
u

f t
L h t

S t
== =  

LNNORMAL(tu, te, tα, tω) tu=te=tα Right-truncated hazard ( )
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( ) ( )
u

u
u

f t
L h t

S t S tω

== =
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The Hazard Parameter 
For most parametric distributions (like the normal or lognormal distributions) the hazard function 
does not take on a simple or closed form.  For this reason, most studies have modeled the 
covariates as acting on the failure time for these distributions.  Nevertheless, there is no inherent 
reason why hazards models cannot be constructed using distributions without a closed form for 
the hazards functions.  Most of the PDFs included in mle provide a general mechanism for 
covariates to be modeled as affecting the hazard of failure, rather than (or in addition to) affecting 
intrinsic parameters.  Here is an example: 

PDF NORMAL(topen tclose) 
  PARAM mean   LOW = 100  HIGH = 400  START = 270  TEST = 0  FORM = LOGLIN END, 
  PARAM stdev  LOW = 0.1  HIGH = 100 START = 20 END, 
  HAZARD COVAR  sex     PARAM b_sex     LOW = -2  HIGH = 2  START = 0 END 
         COVAR  weight  PARAM b_weight  LOW = -2  HIGH = 2  START = 0 END 
END 

The covariates sex and weight are modeled to effect on the hazard of failure.  Parameters b_sex 
and b_weight provide estimates of the effect. 

The HAZARD statement always provides a proportional hazards specification modeled directly on the hazard of the PDF.  
Usually, the specification is loglinear, so that the hazard for the ith observation including the covariate effects defined as 
hi(ti|xiβ) = h(ti)exp(xiβ), where h(t) is the baseline hazard for the specified PDF, and xiβ is a vector of covariates xi and 
parameters β, so that xiβ = xi1β1 + xi2β2+ xi3β3 . . . .  Then, the survival function becomes Si(ti|xiβ) = S(ti)exp(xβ), and the 
probability density function becomes fi(ti|xiβ) = f(ti)S(ti)exp(xβ)–1exp(xiβ).   

This particular hazards model specification is commonly used.  By exponentiating the xiβ array, 
the covariate effects will never cause the hazard to go negative (hazards are never negative). 

A multiplicative form for the proportional hazards specification can also be specified by setting 
the constant EXP_HAZARD = FALSE (it is TRUE by default).  Then, the model is hi(ti|xiβ) = h(ti)xiβ, 
S(ti|xiβ) = S(ti)xβ, and f(ti|xiβ) = f(ti)S(ti)xβ–1xiβ. You must insure that xiβ never goes negative. 

The LEVEL function 

The LEVEL function provides a mechanism by which multilevel or hierarchical models can be 
constructed.  The syntax of the LEVEL function is 

LEVEL <boolean expression> THEN <optional_form> 
  <expression> 
END 

The effect of the LEVEL function is to test the <boolean expression> for each observaton and, 
while the condition is true, form the sum of loglikelihoods out of the observations.  The 
<optional_form> provides alternative ways of tallying the likelihoods, and is specified as it is for 
the DATA function, save for one difference:The default form is .FORM = PRODUCT.   

The best way to understand the effect of the LEVEL command is by an example.  Consider the 
likelihood 
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This is a standard model for which a distribution of clustering (or heterogeneity), g(z), is 
estimated along with the model's other parameters (θ).  There are two levels that make up this 
model.  Let us call the outer level, denoted by the outer product, the subject level—that is, we 
have N individual subjects and this outer product is taken over all subjects. For each of N 
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subjects, there are multiple repeated observatons taken.  For the ith subject, we have ni repeated 
observations.  The inner level formed by the innermost product is the likelihood formed by ni 
repeated observations of the ith subject.   

The rationale for this type of model is that the repeated observations for individuals violate the 
condition that the likelihoods for each observation are independent.  To fix this problem, we can 
compute an expected likelihood for each individual’s observations.  The integral computes the 
expected likelihood for each subject.  Here is a concrete example 

Say we have data in which levels are denoted by the number 1 or 2 as in  

1  Tom Smith 
2  23.4   26.8 . . . 
2  19.2   22.9 . . . 
2  26.8   -1   . . . 
1  Steven Jones 
2  19.5   23.7 . . . 
2  26.8   -1   . . . 
1  Martin Johnson 
2  0      44.1 . . . 
2  19.9   22.7 . . . 
2  19.9   -1   . . . 
... 

where the observations beginning with a 2 correspond to the individual at the preceding 1, so that 
Tom Smith has three observations beginning 23.4, 19.2, and 26.8.  If we were to treat all 
observations, within and among individuals, as independent, we could simply drop all of the level 
1 lines, and form a likelihood as the product of all observations.  But, if we want to treat 
observations within individuals as correlated (non-independent), the we can integrate over a 
distribution of common effects as shown in the likelihood above.  Usually, we will estimate one 
or more parameters for the distribution g(z), in addition to θ. 

If we assume that g(z) and f(t) are normal distributions, the likelihood in mle would be specified as 

MLE 
  DATAFILE("example.dat") 
  OUTFILE("example.out") 
 
  DATA 
    lev FIELD 1 
    topen FIELD 2 
    tclose FIELD 3 
  END 
   
  MODEL 
    DATA 
      LEVEL lev = 2 THEN 
        INTEGRATE z (-12, 12) 
          PDF NORMAL (z) 
            0, PARAM sigmaz LOW = 0.0001  HIGH = 3 START = 0.2 END 
          END {pdf} 
         * 
          PDF NORMAL(topen tclose) 
            PARAM mu LOW = 10 HIGH = 100 START = 30 END 
            PARAM sigma  LOW = 0.0001 HIGH = 10 START = 1 END 
            HAZARD COVAR z 1 
          END  {pdf} 
        END {integrate} 
      END {level} 
    END {data} 
  RUN 
    FULL 
  END  {model} 
END  {mle program} 
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The LEVEL statement advances through all of the individual level observations and computes the 
product of the likelihoods for each individual.  The DATA statement only "sees" observations that 
begin with a 1, because the LEVEL statement "consumes" all of the observations that begin with a 
2.  The LEVEL statement returns a likelihood, which is the product of likelihoods taken within 
each subject;  the DATA statement takes those likelihoods, one per subject, takes the natural log of 
each, and sums them over all subject. 

The LEVELDELTA function 

The LEVELDELTA function is very similar to the LEVEL function.  LEVELDELTA provides a 
mechanism by which multilevel or hierarchical models can be constructed.  The syntax of the 
LEVELDELTA function is 

LEVELDELTA <expression> THEN <optional_form> 
  <expression> 
END 

The effect of the LEVELDELTA function is to evaluate <expression> for each observation and, 
while the expression does not change, form a product of likelihoods out of the observations.  The 
<optional_form> is specified as it is for the DATA function, but with one difference: the default 
form is .FORM = PRODUCT. 

The only real difference between the LEVELDELTA and the LEVEL function is how each function 
decides when to "exit" the current level.  The LEVELDELTA function simply looks for a change in 
the value of <expression> whereas LEVEL evaluates a boolean function <bexpr> for each 
observation and terminates when the expression evaluates to FALSE.  In the example given under 
the LEVEL function, the only change necessary to use the LEVELDELTA function is replace the 
LEVEL line with 

      LEVELDELTA lev THEN 

Here is an example program uses the LEVELDELTA function.  The program estimates the change in 
oxygen consumption (∆V02) in individuals undergoing repeated exercise tests, using a variety of 
predictor variables like the increase in heart rate over the resting state.  Since there are repeated 
measures on individuals, a distribution of individual effects is estimated along with other 
parameters.  The likelihood is  
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Where gz(z) is the distribution of individual effects, with a mean of zero and a variance of σz
2, 

fv(v) is the distribution of ∆V02 values with parameters β, µ, and σ.  
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MLE 
  { -- does a linear regression w/ repeated measures model} 
   
  DATAFILE("example.dat") 
  OUTFILE(DEFAULTOUTNAME) 
 
  DATA 
    subject      FIELD 1    {subject ID} 
    sex          FIELD 2    {individual’s sex 0=female, 1=male} 
    age          FIELD 3    {individual’s age} 
    weight       FIELD 4    {individual’s weight} 
    height       FIELD 5    {individual’s height} 
    armcirc      FIELD 6    {mid-upper arm circumference} 
    skinfold     FIELD 7    {individual’s skinfold measurement} 
    deltahr      FIELD 8    {heart rate adjusted for baseline rate} 
    deltav02     FIELD 9    {volume of 02 used during exercise adjusted for baseline} 
  END  {data} 
 
  MODEL  
    PREASSIGN 
      BEGIN 
        sigz = PARAM sigmaz LOW = 0.001 HIGH = 50 START = 1 END 
        upperlim = 6*sigz 
        lowlim = -upperlim 
      END, 
      DATA 
        INTEGRATE z (lowlim, upperlim) 
          PDF NORMAL(z) 0, sigz END * 
          LEVELDELTA subject THEN 
            PDF NORMAL(deltav02) 
              PARAM b0 LOW = -200  HIGH = 50  START=0  FORM=ADD 
                COVAR sex      PARAM  bsex      LOW=-10  HIGH=50 START=0 END 
                COVAR age      PARAM  bage      LOW=-10  HIGH=50 START=0 END 
                COVAR weight   PARAM  bweight   LOW=-10  HIGH=10 START=0 END 
                COVAR height   PARAM  bheight   LOW=-10  HIGH=10 START=0 END 
                COVAR armcirc  PARAM  barmcirc  LOW=-10  HIGH=10 START=0 END 
                COVAR skinfold PARAM  bskinfold LOW=-10  HIGH=10 START=0 END 
                COVAR deltahr  PARAM  bdeltahr  LOW=-10  HIGH=10 START=0 END 
                COVAR z 1 
              END {param b0} 
              PARAM sigma LOW = 0.00001 HIGH = 50 START=5 END 
            END {pdf normal} 
          END {leveldelta} 
        END {integrate} 
      END {data} 
    END  {preassign} 
  RUN 
    WITH sigmaz b0 sigma (bsex bage bweight bheight barmcirc bskinfold bdeltahr) 
  END {model}   
END  {mle} 

Setting the maximization method 

mle has four methods for maximizing the likelihood function.  Each of the methods has strengths 
and weaknesses for different types of functions.  Understanding some of the details of each 
method is useful for deciding which to use for any given application.  The following sections 
describe each of the maximizers and points out strengths and weaknesses of each.  The behavior 
of some methods can be modified considerably by the user. 

The maximization method is selected by setting the variable METHOD.  For example, METHOD = 
ANNEALING will use the simulated annealing method.  The default method is DIRECT. 

The overall goal of function maximization is to find the set of parameters that maximize a 
function.  A simple analogy is to imagine that you are looking at a topographic map that codes 
altitude by color.  You want to find the longitude and latitude coordinates (the "parameters") that 
will put you at the highest point on the map.  By looking over the map, you may be able to 
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quickly ascertain a mountain peak or some other maximum.  In order to do this, however, you 
effectively scanned hundreds of thousands of points on the map until finding those places where 
the colors suggest the highest altitude.  With a little more work, the highest peak is easily 
resolved.  Visual evaluation of maximum elevation is easy and takes almost no time because the 
map shows the elevations evaluated at hundreds of thousands of points on the map, and our eyes 
can quickly scan those points.  That is, each "function" evaluation was inexpensive—we merely 
had to look at a point to know its value.  Now imagine that the map surface is covered by a piece 
of paper.  You can only expose a tiny hole in the map in order to read the color at that point (that 
is, to evaluate the function at that point).  Furthermore, each hole takes a long time to cut, perhaps 
minutes or hours.  Then the question becomes this: how do we find the maximum elevation of the 
map in the shortest possible time?  The map analogy will be used to understand how different 
computer algorithms finds the maximum of a likelihood surface. 

Many different function maximization methods have been developed at least since Isaac Newton 
developed methods out of the calculus.  Nevertheless, no single method has emerged as superior 
for all types of problems.  In general, function maximization is easiest to do when information is 
available for the derivative of the function.  A traditional way of finding maximum likelihood 
parameters for simple functions is to symbolically find the derivatives of the function with respect 
to each free parameter.  Each partial derivative is set to zero. This set of equations is collectively 
called the likelihood equations.  Since the derivatives are defined as the slope of the function, it 
follows that any place where all the partial derivatives go to zero must be a minimum or a 
maximum of the function.  If practical, the likelihood equations are "solved"; that is, the sets of 
parameter values are analytically found that simultaneously yields zero for each of the partial 
derivatives.  The maximum likelihood estimates for a parameter is found from a particular series 
of observations by simply applying that equation on the set of observations.  Unfortunately, this 
method is difficult and non-general and, therefore, not practical for general-purpose maximization 
as found in mle.  Advances in computer-assisted symbolic mathematics (packages like Maple and 
Mathematica) may eventually prove this method feasible for many users, but the need for 
specialized mathematical knowledge and skills still limits this method.  A general method must 
work for most types of likelihood functions, whether or not analytical derivatives are easy (or 
even possible) to find. 

Another class of fast maximizers estimates derivatives numerically.  These methods are not 
robust for complex surfaces with many local maxima.  From some starting point, they tend to 
rush up to the top of the nearest local maximum. A given function may have one or many points 
where the derivatives goes to zero, so this method may not find the global maximum.  Numerical 
derivatives have limitations resulting, in part, from the inaccuracy of real number representation 
in computers, so that a number of derivative-free methods have been developed.  One clever 
method solves a two dimensional maximization problem by trying to enclose the maximum 
within a triangle.  The triangle grows and shrinks based only on information from the three points 
of the triangle at a given step.  A rather unsophisticated method alternates between maximizing 
the function first by longitude, using as many evaluations as needed to find the maximum 
longitude for a given latitude, and then does the same for latitude.  By repeating this many times, 
a maximum (usually the global maximum) is found.  Needless to say, this method can be very 
slow.  Finally, a newer method has been developed that mimics natures own maximization 
method.  The method can be slow, but seems to be as robust at finding the global maximum as 
any iterative method. 

Conjugate gradient method 

The conjugate gradient method searches through parameter space for combinations of parameters 
where the slope of the likelihood function goes to zero.  Now, the computer numerically 
computes a slope (or gradient) using the equation mi = [f(xi + ∆xi) – f(xi]/∆xi, for parameters x and 
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small values ∆x.  This procedure uses the slopes (mi) to figure out the next set of x under the idea 
that the slope will decrease as the maximum is approached (unless the surface is flat). 

The conjugate-gradient method used in mle was developed by Powell (1964), Brent (1973), and 
further developed by Press et al. (1989).  For problems of more then two free parameters, the 
conjugate gradient method is usually much faster than the direct method.  Caution must be 
exercised when using this method.  At times a local maximum is latched onto by the solver and 
the rest of the parameter space is excluded.  Furthermore, some conditions can cause the 
maximizer to leap to another part of the surface, where a local minimum might be reached.  For 
example, when maximizing a likelihood function that includes numerical integration, the 
tolerance in the integrator must be several orders of magnitude smaller than that of the solver, or 
else the error in integration can lead the solver astray. 

Two forms of the conjugate gradient method are available, METHOD=CGRADIENT1 and 
METHOD=CGRADIENT2. 

Simplex 

The simplex method is a derivative-free maximization method described by Nelder and Mead 
(1965) and popularized by Press et al. (1989).    The method is set with METHOD=SIMPLEX. 

Direct Method 

A simple method for finding a maximum is to consider only one dimension at a time.  So, for our 
map, we would find the highest latitude for a given longitude by examining points along a line of 
longitude.  We could use the method of bisection or even better ways to find the maximum along 
that line of longitude in the fewest number of evaluations (i.e. fewest holes).  Once we have 
settled on a latitude, we can find the longitude of highest elevation along that latitude.  We next 
go back and find a new latitude for the new longitude, etc.  This is known as the direct method 
(Nelson 1983), and works well for some functions over a small number of dimensions.  In fact, 
the method is usually more robust at finding a global maximum than the simplex or congugate 
gradient methods.  Furthermore, it is easy to constrain the algorithm so that new parameter values 
never overstep the user-defined (or mathematically defined) limits—that is, it respects the 
boundaries of our map.  Unfortunately, the number of function evaluations goes up as an 
exponent of the number of dimensions in the problem.  When the number of parameters gets 
large, the solution is very slow in coming.  Furthermore, some functions that have the maximum 
along a long narrow ridge at a 45° angle to the lines of longitude and latitude require a large 
number of tiny movements before reaching the maximum. 

The direct method and is set by METHOD=DIRECT.  It uses the HIGH = value and LOW = values to 
constrain all parameters (as discussed below).  The START = values define the initial starting 
parameters. 

The direct method uses Brent's (1973; see also Press et al. 1989) parabolic interpolation to find 
the maximum along a single direction (i.e. for a single parameter holding all other parameters 
constant).  The maximizer uses the HIGH = value and LOW = value to define the extreme bounds 
of the problem.  The START = value is the first "guess" at the maximum.  A parabola is then fit 
through the set of three points, and the maximum is analytically computed.  This procedure is 
repeated with the three points enclosing the maximum until the maximum in that dimension is 
found to some prespecified tolerance.  There are three ways you can modify the Brent maximizer.  
First, the maximum number of iterations in a single dimension can be set with BRENT_ITS = 
value, which is sufficient for almost every function.  The next modification is to change the value 
of BRENT_MAGIC to some other number.  This number defines the interpolation point between two 
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points of a parabola—the so-called golden mean of ancient Greece.  With such a heritage, there is 
little reason to change it.  Finally, the value BRENT_ZERO is an arbitrary tiny number used in place 
of zero for the difference of two equal function evaluations. 

Simulated Annealing Method 

The simulated annealing method is an exciting and relatively new idea in maximization.  It was 
first proposed by Kirkpatrick et al. (1983) for combinatorial problems.  The algorithm was further 
developed for functions of continuous variables by Corana et al. (1987) and refined by Goffe et 
al. (1994); both papers lucidity describe how the method works.   

As a metal is heated to its melting point, it loses its crystalline organization.  Then as it again 
cools, the crystalline pattern reemerges.  When cooled slowly, a process called annealing, small 
crystals of metal rearrange themselves and join other crystals with maximum orderliness (or 
minimum energy).  This occurs as random movements of atoms and groups of atoms eventually 
fall into an alignments that minimize gaps.  Once these structured alignments arise, they form a 
larger crystal and are subsequently less likely to fall out of alignment.  As the temperature drops 
and the atoms move around less, large overall changes in structure become less probable.  When 
absolute zero is reached, the structure becomes fixed (at room temperature, solid metals continue 
to anneal very slowly).  Rapid cooling of the metal, called quenching in metallurgy because the 
metal is thrust into cool water or pickle, does not provide sufficient time for crystals to move 
about and organize.  Thus, numerous vacancies and dislocations exist among many small crystals, 
and orderliness is minimal.  Maximizing the crystalline order (or minimizing vacancies and 
dislocations) is done by cooling the metal very slowly and providing ample opportunity for the 
random crystal movements to fortuitously align themselves into more ordered structures. 

The simulated annealing method attempts to mimic the physical process of annealing.  An initial 
"temperature" is set, and a cooling rate is specified.  New parameters are randomly chosen over a 
large range of the parameter space.  As the temperature cools, smaller and smaller ranges of the 
parameter space are explored.  Additionally, the maximizer will not always travel up hill.  At any 
given temperature, a certain fraction of downhill moves will be taken so that local maxima will 
not trap the maximizer. 

The advantage of simulated annealing over other methods is that it is very good at finding the 
global maximum, even in the presence of highly multimodal likelihood surfaces.  The user can 
fine tune the behavior of the algorithm so that functions with  complex topography can be 
searched more thoroughly for the maximum.  Another advantage of simulated annealing is that it 
does not require computation of derivatives.  In fact, simulated annealing can find the maximum 
of discontinuous functions and those otherwise without first derivatives.  Finally, the simulated 
annealing algorithm is extremely simple and intuitive.  The disadvantages of simulated annealing 
are that it usually takes from one to several orders of magnitude more function evaluations than 
do other methods and the user must have an understanding of the algorithm to set up initial 
parameters that lend themselves to efficient estimation.  Sometimes it is worth experimenting to 
find the best combinations of input parameters to the simulated annealing algorithm so as to 
minimize the total number of function evaluations. 

Simulated annealing begins at some user-defined temperature (T) and a user-defined rate of 
cooling (r).  At the end of one cycle of annealing, the temperature is reduced as T = T×r, and a 
new cycle of annealing is performed.  Typically the temperature will be 1 for simple function to 
100,000 for difficult functions, and it is cooled every cycle by r = 0.85.  When the algorithm 
begins, the starting point is evaluated and becomes the best value, so far.  Each iteration will then 
search the likelihood surface in a partially random way and always keep track of the best point so 
far.  A single cycle of annealing (i.e. one iteration) consists of the following.  First, a cycle of 
random movements is started.  Nrand random steps are taken over one direction at a time.  The 
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maximum width of the random step for parameter i is controlled by the step length variable vi.  
For our map example, this would correspond to evaluating Nrand randomly picked points along a 
line of longitude or latitude.  Initially we would use the entire height and with of the map for the 
maximum step length.  As each point is evaluated, we keep track of the overall best maximum.  
Any time we find a point higher than our current maximum, we move to that point and consider it 
our new starting point.  But, if a lower point is found we might accept that point according to the 
Metropolis criterion (Metropolis et al. 1953) by which the point is accepted with probability 
exp(–∆l/T), where ∆l is the difference between the current starting point and the downhill point 
we have just evaluated.  In other words, we draw a uniform random number on [0, 1), and accept 
the move if that number is less than a negative exponential survival function of ∆l, with 
parameter 1/T.  This criterion means that at high temperatures we will frequently accept downhill 
moves with large changes in the loglikelihood, but as temperature drops, downhill moves will 
only occur at small changes in the loglikelihood.  After completing the Nrand movements and 
evaluations, we now adjust the maximum steplength vector v.  The reduction or increase in 
steplength is done according to the proportion of accepted and rejected movements by an 
algorithm described in detail below.  In short, the maximum step length is reduced or increased so 
that we can expect to accept about one half of all moves in the next cycle of random steps.  
Following this adjustment, a new cycle of random steps is initiated until a total of Nadj of these 
adjustments have been completed.  Thus, after Nrand×Nadj function evaluations, a single iteration 
completes, and a new iteration is begun until convergence, the maximum number of iterations is 
reached, or the maximum number of function evaluations is reached. 

The simulated annealing method is set by METHOD=ANNEALING.  The method does use the HIGH = 
value and LOW = values to constrain all parameters (as discussed below).  The START = values 
define the initial starting parameters.  A number of other variables should be set with this method.  
Since the simulated annealing method uses random numbers, the user must set a random seed, by 
calling the procedure SEED() with a positive integer.  The starting temperature is set with 
SA_TEMPERATURE.  The default value is 1000.0, which is too high for all but extremely wild 
functions.  It is difficult to know what a good starting temperature is for a function, but values 
under 100 empirically seem to work for all but the most topographically complicated likelihood 
functions.  When a likelihood is to be solved multiple times on similar data sets, like when 
running on bootstrapped data sets, it is worth exploring a couple of different temperatures and 
monitoring the progress of the annealing by using the verbose (–v) option.  In fact, watching the 
entire annealing process is useful for developing and understanding of the algorithm.  The 
variable SA_COOLING controls the cooling rate, and is 0.85 by default.  Too high a value will slow 
down cooling and may lead to unnecessary evaluations, whereas too low a value may resulting in 
(simulated) quenching.  The number of steps of random parameter perturbation is set using 
SA_STEPS.  The number of step length adjustments taken every iteration is controlled by 
SA_ADJ_CYCLES.  Finally, the size of each step adjustment can be controlled by 
SA_STEPLENGTH_ADJ, but the default value of 2.0 usually works well. 

The simulated annealing algorithm uses a different criterion for convergence than do the other 
solvers.  An array of the best likelihoods of size SA_EPS_NUMBER (default is 4) is created and 
updated every iteration.  Convergence is considered achieved when the likelihood for the current 
iteration differs from all SA_EPS_NUMBER likelihoods by the value of EPSILON. 

Several other variables can be used for fine tuning of the simulated annealing algorithm, but there 
is rarely a need to mess with them. SA_STEPLENGTH is the initial step length for all parameters.  
Empirically, the starting step length value has little effect on the outcome of the maximizer. 
SA_ALT_ADJUSTMENT uses an alternative formula for adjusting the step length.  
SA_ADJ_LOWERBOUND defines a "null" area for which step length is not adjusted.  If the proportion 
of accepted moves is greater than SA_ADJ_LOWERBOUND and is less than 1 – SA_ADJ_LOWERBOUND, 
the current steplength will continue to be used.  See Corana et al. (1987) for more details. 
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Stopping Criteria 

There are three ways to terminate finding the solution of a model.  The first way is to minimize 
the change in the log-likelihood to below some specified minimum value.  You can specify this 
by setting, for example, EPSILON=1E-8.  When the absolute difference between the log-
likelihoods of the previous iteration and the current iteration falls below this value, the problem 
will be considered to have converged normally. 

The second way of controlling the stopping criteria is by specifying the maximum number of 
iterations permissible.  For example, setting MAXITER=1000, would stop searching for the 
maximum after 1,000 iterations, regardless of the change in the likelihood.  Note that a single 
iteration is that over all dimensions. 

The third stopping criterion is by specifying the maximum number of function evaluations 
permissible.  You can specify, for example, MAXEVALS=10000, which would stop searching for the 
maximum likelihood after 10,000 evaluations of the likelihood.   

Looping Through Methods 

mle provides a mechanism to specify that different methods be used to solve the same likelihood.  
For example, you can set  

METHOD1=DIRECT 
MAXITER1=10 
METHOD2=CGRADIENT1 
MAXITER2=500 

to begin the problem with the direct method and then switch to a conjugate gradient solver for the 
next 500 iterations.  The variables METHOD, MAXEVALS, MAXITER, and EPSILON can have a digit 
appended in this way.  When the variable METHOD_LOOP is set to true, mle  will loop back to the 
first method and continue the solver sequence again until one of the methods converges normally. 

The Interactive Debugger 

mle incorporates an interactive debugger that provides some degree of control while models are 
being solved.  Entries in the symbol table can be viewed and changed, so that convergence can be 
forced early or postponed, output variables can be changed, and the values of various debugging 
options can be set and reset. 

The debugger is called by typing <CTRL> C on most systems.  The <BREAK> key also works 
on some systems.  After mle gets to some reasonable stopping point—usually the end of an 
iteration—control will be passed to the user.  The debugger responds with 

Exit: immediately exits the program. 

Resume: resumes running mle from where it left off. 

One step: continue from where it left off for one more iteration and then reenters the interactive debugger. 

Pick a symbol: selects a symbol to display.  The value of the symbol is displayed between debugger commands, for this and 
all subsequent calls to the debugger. 

Change the value of a symbol:  If no symbol is selected, the user will be prompted for a symbol to change and then a value 
to change it to.  If a symbol is selected (with Pick), then that symbol will be changed. 
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Search for symbols:  Prompts the user for search text, and then searches the symbol table for symbol names that match any 
part of the search text.  The name, types, and value of matching symbols are displayed. 
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Chapter 5 

Plots and graphs 

The PLOT command is used to create plots and charts in mle.  This chapter discusses the command, 
and gives some examples of creating graphs. 

mle does not directly generate graphs.  Instead, it writes graphing programs in the Gnuplot plotting 
language.  The graphs can be printed using one of the many device drivers included in Gnuplot.  
Additionally, graphs can be imported into a number of text processing languages like ΤΕΧ or 
MSWord, or manipulated in graphics editing programs. 

Here is a list of the plotting capabilities offered by mle: 

• Two-dimensional data plots of data points, parametric functions, bar charts, histograms, 
graphs with error bars for x, y or both. 

• Three-dimensional plots including surfaces and contour plots. 

• Multiple curves or surfaces can be drawn on a single plot. 

• A simple mechanism to specify a grid of multiple plots on a single page. 

• Data points and fitted curves 

• Up to two x and two y axes on a single (two-dimensional) graph. 

• Cartesian or polar coordinates in two dimensions.  Rectangular, spherical, or cylindrical 
coordinates in three dimensions. 

• Simple generation of estimated distributions with error bars. 

• One- and two-dimensional likelihood profiles 

Creating Plots 

There are four steps used for creating graphs in mle.   

• Define the plot file using the PLOTFILE(<name>) procedure in a program. 
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• Define one or more plots using the PLOT . . . END statement in a program.  Usually the 
statements within PLOT . . . END will include one or more CURVE . . . END statements 
that draw the curve on the current plot. 

• Run the mle program.  The plot file and its data files will be created as a Gnuplot program.  
At this point you have the option to edit the plot as a Gnuplot program. 

• Run the Gnuplot program on the plot file to create, display, or print the graph.  In some 
cases, this forth step can be done from within the mle program using the FINISHPLOT 
procedure. 

Defining the Plot File 

The first step in creating a graphic is to define a plot file using the PLOTFILE( <name> ) procedure.  
mle writes a Gnuplot program to the plot file (Gnuplot is discussed in a later section).  The name of 
the plot file also determines the name of data files created for use by the plot file. 

Suppose we wish to create a plot called sincos.plt.  The statement PLOTFILE("sincos.plt") 
will create a plot file by that name.  Information will be written to this file that defines the plot.  The 
information comes from six places: 

• The PLOTFILE() procedure writes an initialization string to the plot file.  The string is stored 
in the variable GNUPLOTINIT.  For example, in DOS-based operating systems, this variable is 
initially set to "set terminal windows; reset; set data style lines; set 
autoscale; set nokey".  These Gnuplot statements specify that the terminal is Windows, 
plot parameters will be reset, lines will be plotted by default, Gnuplot will figure out a good 
scale to use, and a graph key will not be generated.  You can change this initialization string 
by assigning a new string to the PLOTINIT variable.  Alternatively, you can keep this string 
as is and add new program lines using the WRITEPLOTLN() statement (discussed next). 

• The WRITEPLOTLN() and WRITEPLOT() procedures provide a simple way of writing Gnuplot 
statements directly to the plot file.  These statements must be used after the PLOTFILE() 
statement.  For example, if you want to add a title to the plot, the statement 
WRITEPLOTLN("set title 'Sin and Cos functions'").  You can insert any Gnuplot 
statement into the plot file this way.  The difference between WRITEPLOTLN() and 
WRITEPLOT() is that the former adds a newline after writing, whereas the latter does not. 

• The MULTIPLOT(<x>, <y>) . . . END statement can be used to create x by y grids of x×y 
plots on a single page.  The statement writes commands to the plot file, and an initialization 
string taken from the variable MULTIPLOTINIT. 

• The PLOT . . . END statement initiates a single plot, graph, or chart.  It will write an 
initialization string to the plot file taken from the variable PLOTINIT.   

• The CURVE . . . END statement writes a single curve to the current plot.  This is the 
statement that writes the Gnuplot plot and splot statements to the plot file.  Each CURVE 
statement also creates a data set used by the plot file. 

The name of a plot file should usually end in the file extension ".plt", because this extension is 
used by mle and Gnuplot.   
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mle  can select a plot file name based on the name of the program file by using the 
DEFAULTPLOTNAME function.  The statement PLOTFILE(DEFAULTPLOTNAME) will create a plot name 
that matches the name of the program file, but with the ".plt" extension replacing the ".mle" 
extension. 

The plot file will accumulate graphics instructions from the mle MULTIPLOT, WRITEPLOTLN, PLOT, 
and CURVE commands until a new plot file is opened or the mle program terminates.  The plot file is 
then processed through Gnuplot to display or print the plots. 

The Plot Statement 

The PLOT...END statement initiates a single graph or chart.  The statement does not do the plotting 
itself, instead each CURVE...END statement executed within the PLOT...END statement will add a 
single curve to the plot.  

The format of the statement is 

PLOT [(<string_expr>. . .)] 
  <statements> 
END 

When a PLOT statement is executed, a few statements may be written to the plot file.  Then, the 
<statements> are executed.  All CURVE statements executed before the END is reached will result in 
one curve being added to the current plot. 

The optional series of string expressions (enclosed within parentheses) can immediately following 
the PLOT statement.  These strings will be written to the plot file.  The purpose of these strings is to 
provide additional information to the Gnuplot program, such as titles, ranges, and borders.  They are 
simply written verbatim to the plot file.  In fact, plots can be written in the Gnuplot language with 
these strings.  Here is an example: 

MLE 
  PLOTFILE("gploteg.plt")  
  PLOT ( "plot [0:2*pi][-5:5] sin(x), cos(x), tan(x)" ) END 
END 

The resulting Gnuplot file is: 

set terminal windows; reset; set data style lines; set autoscale; set nokey 
 
plot [0:2*pi][-5:5] sin(x), cos(x), tan(x) 

And, here is the resulting plot.  
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The PLOT statement writes the PLOTINIT string to the plot file.  You can assign a string to the 
PLOTINIT variable, and it will be written for each PLOT. 
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The Curve Statement 

The CURVE...END statement does the bulk of the work in creating plots.  Each CURVE statement 
generally creates a single curve or surface.  For simplicity, the curve statement will be discussed 
separately for two-dimensional and three-dimensional plots. 

Two-dimensional Plots 
The idea of the curve statement is to generate a series of points for a function.  For simple curves 
two points must be defined: an x value and its corresponding y value.  There are two forms for the 
CURVE statement (for producing two-dimensional plots).  One form generates a series of REAL x 
values for use in computing y values.  The second form generates an INTEGER series of points. The 
REAL version looks like this: 

CURVE  
  [KEY <keystring> | WITH <withstring> | AXES <axesstring> . . . ] 
  <x_var> ( <x_min>  <x_max> [ <x_points> ] ) 
    <x_expr> <y_expr> [ <expr> . . .] [ <strings> . . .] 
END 

The KEY, WITH, and AXES will be discussed later.  This form of the CURVE statement creates a series 
of x points.  It begins with the point <x_min> and ends with the point <x_max>; <x_points> points 
will be generated in total.  Each point will be assigned to <x_var> in turn.  The value of <x_var> 
will be used at each point to compute <x_expr> and <y_expr> (and perhaps other expressions as 
well).  If the expression for <x_points> is missing, the value stored in PLOTPOINTS will be used 
instead (which is initially 100). 

Here is an example that draws two curves on a plot: 

MLE 
  PLOTFILE(DEFAULTPLOTNAME) 
  PLOT 
    CURVE z ( 0, 15, 100 ) z, PDF NORMAL(z)  5, 2   END   END 
    CURVE z ( 0, 15, 100 ) z, PDF WEIBULL(z) 5.5, 2 END   END 
  END  {plot} 
END 
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The second form for the two-dimensional curve statement generates a series of INTEGER x values for 
use in computing y values.  It looks like this: 

CURVE 
  [KEY <keystring> | WITH <withstring> | AXES <axesstring> . . . ] 
  <x_var> = <x_min> TO <x_max> 
    <x_expr> <y_expr> [ <expr> . . .]  [ <strings> . . .] 
END 

This form of the CURVE statement creates a series of INTEGER x points.  It begins with <x_var> set 
to <x_min> and ends with the point <x_max>.  The value of <x_var> will be incremented by 1 for 



mle 2.1 manual 

 89 

each point and will be used to compute <x_expr> and <y_expr> (and perhaps other expressions as 
well).  Here is an example that draws two curves on a plot: 

MLE 
  PLOTFILE(DEFAULTPLOTNAME) 
  PLOT ("set data style boxes", "set xrange [-0.5:12.5]) 
    CURVE i = 0 TO 10   i, PDF BINOMIAL(i)  0.5, 10  END   END 
    CURVE i = 1 TO 12   i, PDF GEOMETRIC(i) 0.2      END   END 
  END  {plot} 
END 
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Each CURVE...END statement defines a single graph as a series of x and y points.  The x and y values 
(and perhaps some values used for error bars and other things) are written to a data file.  These data 
files (one per CURVE...END statement) are read by Gnuplot when creating the graphs. 

KEY 
There are three optional keywords that can be used in the CURVE...END statement.  The first is KEY, 
followed by a string expression.  This sets up a title for the plot key.   

AXES 
The AXES keyword defines the axis to which a curve will be plotted.  A single string expression 
follows AXES.  Valid values for this string are "x1y1", "x2y1", "x1y2", and "x2y2".   

WITH 
The WITH keyword defines the style of curve to be plotted, along with any options for that style.  A 
single string expression follows WITH.  The string begins with one of the Gnuplot plot styles, and is 
followed by options for that style.  mle checks the first word of this string and makes sure there are 
enough PLOT expressions for the desired graph type.  The information is also used to put together 
the Gnuplot plot or splot command.  Valid values for the first word of this string are: 

WITH style string Number of expressions 

"boxerrorbars" 4 to 6 CURVE expressions (2d only) 

"boxes" 2 CURVE expressions (2d only) 

"boxxyerrorbars" 4 to 7 CURVE expressions (2d only) 

"candlesticks" 7 CURVE expressions (2d only) 

"dots" 2 (2d) or 3 (3d) CURVE expressions 

"errorbars" 3 to 4 CURVE expressions (2d only) 

"financebars" 7 CURVE expressions (2d only) 

"fsteps" 2 CURVE expressions (2d only) 

"histeps" 2 CURVE expressions (2d only) 

"impulses" 2 (2d) or 3 (3d) CURVE expressions 
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"lines" 2 (2d) or 3 (3d) CURVE expressions 

"linespoints" 2 (2d) or 3 (3d) CURVE expressions 

"points" 2 (2d) or 3 (3d) CURVE expressions 

"steps" 2 CURVE expressions (2d only) 

"vector" 4 (2d) or 5 (3d) CURVE expressions 

"xerrorbars" 3 to 4 CURVE expressions (2d only) 

"xyerrorbars" 4 to 6 CURVE expressions (2d only) 

"yerrorbars" 3 to 4 CURVE expressions (2d only) 

 

Options can follow each plot style in the WITH string.  The options are linetype <number>, 
linesize <number>, linewith <number>, pointtype <number> and pointsize <number> (the 
options can be abbreviated lt, ls, lw, pt, ps respectively). The Gnuplot manual discusses these 
options in more detail. 

Here is example of a simple plot that makes use of some of the CURVE options: 

MLE 
  PLOTFILE(DEFAULTPLOTNAME) 
  PLOT("set key bottom left; set y2tics") 
    CURVE   KEY "sin(x)" AXES "x1y1" WITH "lines linetype 3"   
      x (0, 2*PI, 100)   
        x, SIN(x) 
    END 
    CURVE   KEY "cos(x)" AXES "x1y1" WITH "lines linetype 3" 
      x (0, 2*PI, 100) 
        x, COS(x)   
    END 
    CURVE   KEY "tan(x)" AXES "x1y2" WITH "lines linetype 2" 
      x (0, 2*PI, 100) 
        x, TAN(x)   
    END 
  END  {plot} 
END  {mle} 
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ERRORBARS 
Additional expressions within CURVE...END define things like error bars.  Gnuplot provides two 
standards for error bars.  If only one additional (error bar) expression exist, that value is taken as a 
delta value to add and subtract from the y value.  If two error bar expressions exist, the values are 
taken as the minimum and maximum (respectively) values for the error bars.   

Here is an example of plotting error bars for a binomial experiment involving 40 observations: 
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MLE 
  { -- Plots the probabilities of observing x boys in a families of exactly 5 children.} 
  n = 5       {bernoulli trials -- for families of size 5} 
  p = 0.502   {probability of a male child per trial} 
 
  { -- Also plots the standard errors for each outcome assuming that} 
  fam = 40  {a sample of fam families are observed} 
 
  PLOTFILE(DEFAULTPLOTNAME) 
  PLOT("set yrange [0:]; set xrange [-0.25:" + REAL2STR(n + 0.25, 6, 2) + "]") 
    CURVE WITH "errorbars" 
      x = 0 TO n 
        x                             {x-axis value} 
        PDF BINOMIAL(x) p, n END      {y-axis value} 
        SQRT(p*(1 - p)/fam)           {errorbar delta} 
    END  {curve} 
  END  {plot} 
END  {mle} 

The Gnuplot file and graph resulting from this program looks like this 

set terminal windows; reset; set data style lines; set autoscale; set nokey 
 
set yrange [0:]; set xrange [-0.25:5.2500] 
plot  "eg5.001" using 1:2:3 notitle with errorbars \ 
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Other strings 
A series of one or more string expressions can follow the numeric expressions in the CURVE...END.  
These strings will be appended to the Gnuplot plot statement so that plot options or other functions 
can be plotted.  The statements will be written to the plot file.  The typical purpose is to re-plot 
curves in a different style. 

Suppose we want to plot the normal distribution with µ=0 and σ=5 over the range -10 to 10, and 
also show an 21-point histogram superimposed on the continuous curve.  The mle code to do this is: 

MLE 
  PLOTFILE(DEFAULTPLOTNAME)    { open a plot file} 
 
  PLOT("set ylabel 'normal pdf f(t)'; set xlabel 't' ") 
    CURVE WITH "boxes" 
      x (-10 10 21) 
        x                        { the x value} 
        PDF NORMAL(x) 0, 5 END   { the function to plot} 
        ", '' with lines" 
     END  {do} 
  END  { plot} 
END  {mle} 

The plot file, written in the Gnuplot graphics language looks like this: 
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set terminal windows; reset; set data style lines; set autoscale; set nokey 
 
set ylabel 'normal pdf f(t)'; set xlabel 't' 
plot  "eg6.001" using 1:2 notitle with boxes \ 
 , '' with lines 
 

The first line was written when the PLOTFILE() statement was executed.  The next line is blank, 
because the PLOTINIT variable, written to the file when PLOT was executed, is empty.  The next line 
came directly from the string argument list for the PLOT statement.  The line beginning with plot 
was generated by the CURVE statement.  Notice that the Gnuplot continuation character \ comes at 
the end of the line.  This means that the next line (taken from optional string expression in the 
CURVE statement) is a continuation of the plot statement.  That line, beginning with a comma, tells 
Gnuplot to re-plot the same data file using lines. 

The name eg6.001 is the data file containing the plot points.  These file is written by mle, and read 
by Gnuplot.  Here is the result of running Gnuplot on this plot file: 
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Three-dimensional Plots 
Three-dimensional plots follow the same syntax as do two-dimensional plots, except that both an 
<x_var> and a <y_var> must be defined in the CURVE statement along with their ranges.  Here is 
the formal definition for one form: 

CURVE    
   [KEY <keystring> | WITH <withstring> | AXES <axesstring> . . . ] 
   <x_var>  ( <x_min>  <x_max> [ <x_points> ] ) 
   BY <y_var> (<y_min>  <y_max> [ <y_points> ] ) 
        <x_expr>, <y_expr>, <z_expr> [ <expr> ... ] 
        [<string>. . .] 
  END 
Note that there is now a variable for both x and y.  The specification for each variable is separated 
by the keyword BY.  If the value of <x_points> or <y_points> is missing, it will be taken from the 
variable PLOTPOINTS (which is initially 100). 

Alternatively, the INTEGER from of the CURVE statement can be used: 

CURVE    
   [KEY <keystring> | WITH <withstring> | AXES <axesstring> . . . ] 
   <x_var> = <x_min> TO <x_max> 
   BY <y_var> = <y_min> TO <y_max> 
        <x_expr>, <y_expr>, <z_expr> [ <expr> ... ] 
        [<string>. . .] 
  END 

Additionally, the REAL and INTEGER forms can be combined: 
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CURVE    
   [KEY <keystring> | WITH <withstring> | AXES <axesstring> . . . ] 
   <x_var> = <x_min> TO <x_max> 
   BY <y_var> (<y_min>  <y_max> [ <y_points> ] ) 
        <x_expr>, <y_expr>, <z_expr> [ <expr> ... ] 
        [<string>. . .] 
  END 

or 

CURVE    
   [KEY <keystring> | WITH <withstring> | AXES <axesstring> . . . ] 
   <x_var>  ( <x_min>  <x_max> [ <x_points> ] ) 
   BY <y_var> = <y_min> TO <y_max> 
        <x_expr>, <y_expr>, <z_expr> [ <expr> ... ] 
        [<string>. . .] 
  END 

Gnuplot does not support error bars or boxes for three-dimensional plots.  Thus, there are three 
required numeric expression (<x_expr>, <y_expr>, <z_expr>) following the <y_var> definition 
(although additional numeric expressions can be written to the data file for other uses).  These three 
required expressions gives the x, y, and z values to be plotted for each combination of x_var and 
y_var. 

Here is an example of a simple three-dimensional plot.  Suppose we want to plot the function 
SIN(x)^2 + COS(y)^2 over the range 0 to 2π with 30 points in each dimension.  The mle code to do 
this is: 

MLE 
  PLOTFILE(DEFAULTPLOTNAME)                   { open plot file} 
 
  PLOT("set contour base; set hidden3d"       { plot a surface plot and a contour plot} 
       "set view 50")                         { change the perspective a bit} 
    CURVE x (0, 2*PI, 30) BY y (0, 2*PI, 30)  { define the ranges } 
      x,  y,  SIN(x)^2 + COS(y)^2               { the function to plot} 
    END  {curve} 
  END  {plot} 
END  {mle} 

The resulting Gnuplot file is: 

set terminal windows; reset; set data style lines; set autoscale; set nokey 
 
set contour base; set hidden3d 
set view 50 
splot "eg7.001" using 1:2:3 notitle \ 
 

The file eg7.001 contains the points generated by mle.  Here is the resulting plot. 
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Three-dimensional plots can include multiple curves.  For example, to the previous curve, we can 
add to the graph, a plane through z = 1, and another plane through z = y/4. 

MLE 
  PLOTFILE(DEFAULTPLOTNAME)                   { open plot file} 
  PLOT("set nocontour"                        { no contours} 
       "set hidden3d"                         { hide lines} 
       "set view 50")                         { change the perspective a bit} 
    CURVE x (0, 2*PI, 30) BY y (0, 2*PI, 30)  { curve 1} 
      x,  y,  SIN(x)^2 + COS(y)^2 
    END  {curve} 
    CURVE x (0, 2*PI, 10) BY y (0, 2*PI, 10)  {curve 2} 
      x,  y,  1 
    END  {curve} 
    CURVE x (0, 2*PI, 10) BY y (0, 2*PI, 10)  {curve 3} 
      x,  y,  y/4 
    END  {curve} 
  END  {plot} 
END  {mle} 

The resulting Gnuplot file is: 

set terminal windows; reset; set data 
 
set nocontour 
set hidden3d 
set view 50 
splot "eg8.001" using 1:2:3 notitle \ 
    , "eg8.002" using 1:2:3 notitle \ 
    , "eg8.003" using 1:2:3 notitle \ 
 

Notice that there were three plot data files created: one for each surface.  The resulting graph looks 
like this 
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Multiple plots 

Multiple plots can be placed on a single page with the MULTIPLOT...END statement.  The form of 
the statement is: 

MULTIPLOT( <xplots> <yplots> ) 
  <statements> 
END 

The two arguments determine the number of plots that are placed across the page (<xplots>) and 
vertically down the page (<yplots>).  In this way, <xplots> by <yplots> pages of plots are 
generated.  Once a page is filled, a new page is automatically generated. 

The <statements> are any valid mle statements, including PLOT...END statements (typically two or 
more PLOT statements are executed).  The PLOT...END statements may be executed within a user-
defined procedure call. 

The PLOTFILE() procedure must be called before the MULTIPLOT statement. 

Here is an example.  The following program shows a series of Weibull distributions. 

MLE 
  PLOTFILE(DEFAULTPLOTNAME) 
  nx = 3 
  ny = 2 
  MULTIPLOT(nx, ny) 
    totp = nx*ny 
    FOR mu = 1 to totp DO 
      PLOT 
        FOR sig = 1 TO 3 DO 
          CURVE t (0, 10, 50) t, PDF WEIBULL(t) mu, sig END  END 
        END  {for sig} 
      END  {plot} 
    END  {for mu} 
  END  {multiplot} 
END  {mle} 
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The MULTIPLOT statement makes use of a multiplot routine available in Gnuplot.  The Gnuplot 
statement does not work correctly for all terminal types.  In particular, the x axis labels an plot titles 
do not always print correctly for the right-most plots.  Also, plots with x axis labels and plot titles 
are sometimes scaled to an overly small size. 

mle attempts to scale the multi-plots so that none of the figures overlap, and so that the aspect ratio is 
unchanged.  You can affect the scaling size from within mle by changing the variables MPLOTYSCALE 
and MPLOTXSCALE (both begin as 1.0).  These variables control the relative degree of shrinkage or 
expansion beyond that required to fit a plot in its rectangle. 

Working with Gnuplot 

What is Gnuplot? 
Gnuplot is a function and data plotting program that is designed to work on a large range of 
computer systems.  The program has many graphing capabilities, including the ability to plot 
directly from files.  mle makes use of a relatively small subset of the Gnuplot capabilities to generate 
graphs.  In fact, mle simply writes a Gnuplot program and creates data sets, Gnuplot does the rest. 

The authors of Gnuplot provide for free distribution of the software, including the source code.  
Over the years, many individuals have contributed to writing the program, but the main authors are 
Thomas Williams, Colin Kelley, Russell Lang, Dave Kotz, John Campbell, Gershon Elber, and 
Alexander Woo. 

How to Obtain Gnuplot 
mle requires Gnuplot version 3.7 (or later). 

Gnuplot and its documentation can be downloaded from many ftp and web sites.  Gnuplot can be 
downloaded and compiled on your computer system.  For some platforms (particularly DOS and 
Windows) executable packages are commonly available.  Here are some ways of obtaining Gnuplot 

The official ftp distribution site for the Gnuplot source is ftp.dartmouth.edu.  The file is called 
/pub/gnuplot/gnuplot.3.7.tar.Z. 

Most comp.sources.misc archive sites distribute Gnuplot. 

Executable versions of Gnuplot for MS-DOS and MS-Windows are available from oak.oakland.edu 
[141.210.10.117] as pub/msdos/plot/gpt37*.zip; garbo.uwasa.fi (Europe) [128.214.87.1] as 
/pc/plot/gpt37*.zip and archie.au (Australia) [139.130.4.6] as micros/pc/oak/plot/gpt37*.zip.  The 
files are: gpt37doc.zip, gpt37exe.zip, gpt37src.zip and gpt37win.zip. 

• OS/2 2.x binaries are at ftp-os2.nmsu.edu [128.123.35.151], in /os2/2.x/unix/gnu/gplt37.zip. 
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• There are many other web-sources are available.  Give the name "Gnuplot" to any major 
search engine to find a location near you. 

• Most sites that distribute software under the Free Software Foundation GNU Public License 
also distribute Gnuplot.8  

• Many Linux distributions contain Gnuplot as a package. 

Basics of Gnuplot 
Full documentation for Gnuplot is available for free with the program.  Here are a few notes on the 
language. 

• Gnuplot can be used interactively or in a batch mode.  For example, you can read in a file 
created by mle into the Windows version of Gnuplot, and then modify the plot interactively. 

• The Gnuplot language usually takes one statement per line.  Multiple statements on one line 
by are formed by separating the commands by a semicolon(;).  Also, a single statement can 
be spread across multiple lines by using the backslash (\) character as the last character on a 
line.  The pound sign (#) is used as a comment delimiter. 

• The Gnuplot language is case sensitive.  Lower case is used for functions and key words.  
Also, algebraic operators follow the syntax of c.  So, != in Gnuplot is equivalent to <> in mle, 
and % in Gnuplot is equivalent to mod in mle.  Exponentiation in Gnuplot uses the operator **. 

• Many options in Gnuplot are set with the set command.  Here are some examples: set 
terminal hpljii; set key on; set title "fun with graphics"; set logscale 
xy; set size 0.5 0.5; set xlabel "time (hours)-4 "; set ylabel "density".  
There are many set options available in Gnuplot.  These are usually inserted into the plot file 
using mle's WRITEPLOTLN() statement or in the initial string list in the PLOT statement.   

Setting the Output Device 
Gnuplot is relatively device independent.  That is, it can work across a number of computer 
platforms, and write to different types of graphics devices.  In order to plot or display a graph on a 
particular device, you must specify a "terminal" type.  Gnuplot can then generate graphics for that 
specific device.   

As an example, in previous graphs in this chapter, the device was set to Windows (the graphs were 
copied and pasted into this document).  The terminal Gnuplot statement  

set terminal windows 

is in all of these programs.  You can set the terminal to another device.  One type of device defined 
by Gnuplot is a dumb terminal, specified by set terminal dumb.  You can the graphics device to 
a dumb terminal in two ways.  First, you can editing the Gnuplot program (i.e. the program that 
ends in .plt) and add this statement before the plot command (and after any other set terminal 
statement).  Alternatively, you can insert the command WRITEPLOTLN("set terminal dumb") in 
the mle  program after the PLOTFILE() statement.   

The following example shows the result of plotting the previous sine and cosine example with the 
terminal set to dumb. 

                                                        
8 Even so, Gnuplot is not distributed under the same license.  In fact, it is a coincidence that GNU appears in Gnuplot and is the name 

adopted by the Free Software Foundation.  See the Gnuplot manual for details. 
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    1 ###-------+-*******+---------+---------+---------+--------+###-----+ 
     +  ###    ***     ***        +         +         +      ###         + 
 0.8 ++    ## **          **                               ##           ++ 
     |      **             **                             ##             | 
 0.6 ++    ** #              *                           #              ++ 
     |    **   #              *                         #                | 
 0.4 ++  *     ##              **                      ##               ++ 
     |  **       #              *                     #                  | 
 0.2 ++*          #              *                   #                  ++ 
     |**           #              *                 #                    | 
   0 **.............#..............*...............#..............*.....++ 
     |              ##              *             ##             *       | 
     |                #              *           #              **       | 
-0.2 ++               ##              *         ##              *       ++ 
     |                 #               *        #             **         | 
-0.4 ++                 ##              *     ##              *         ++ 
     |                   ##              *   ##             **           | 
-0.6 ++                    #              * #              **           ++ 
     |                      #              **             **             | 
-0.8 ++                      ##          ## **          **              ++ 
     +         +        +     ### +    ###  + ***     ***      +         + 
  -1 ++--------+--------+--------######-----+---*******--------+--------++ 
     0         1        2         3         4         5        6         7 

Some terminal types allow device-specific options to be included after the name of the terminal.  
For example, set terminal dumb 80 60 would set the size of the previous plot to 80 characters 
across by 60 characters high.  Information on specific device options is available in the Gnuplot 
manual.  Here is a synopsis of some commonly used terminal devices: 

• set terminal dumb <xsize> <ysize> for "dumb" terminals and printers.  (see the 
previous example). 

• set terminal epson for printing bit mapped graphics to an Epson printer 

• set terminal gpic for generating ΤΕΧ output for use with the gpic/groff package from the 
Free Software Foundation. 

• set terminal hpljii <resolution> for printing to an Hewlett Packard LaserJet II 
printer.  The <resolution> is 75, 100, 150, or 300. 

• set terminal hpdj <resolution> for printing to an Hewlett Packard Deskjet printer. The 
<resolution> is 75, 100, 150, or 300. 

• set terminal latex <font> <size> for generating ΤΕΧ output for use with LaTeX and 
EMTeX. 

• set terminal pcl5 <mode> <font> <size> for printing to an Hewlett Packard HGPL-2 
printer or plotter. 

• set terminal postscript for printing to a postscript printer or device.  There are a 
number of mode, color, and font options for this device. 

• set terminal table for printing a table of values as an ASCII text file instead of a graph. 

• set terminal windows <color> "<fontname>" <size> for displaying in windows 
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The FINISHPLOT procedure 
The procedure FINISHPLOT provides a way to execute Gnuplot from within the mle program itself.  
The procedure takes a single boolean argument.  Here is what the procedure does: 

• If the argument is TRUE, a “pause –1“ statement will be written to the plotfile.  This will 
cause the graph to be displayed until you either press a key or click on a dialog box.  If the 
argument is FALSE, the pause statement is not written to the plotfile.  

• The plotfile is closed.  No more curves can be written to this file. 

• The Gnuplot program is executed with plotfile as its argument.  This will cause the plot to be 
written to whatever terminal is defined.  For example, if the command set terminal 
windows (Windows) or set terminal x11 (Unix) is specified in the plotfile, the graph will 
be displayed on the screen.  Other drivers will cause the plot to be written to the file defined 
by a Gnuplot set output command. 

Additional details on how the Gnuplot program is executed, see the description of the FINISHPLOT 
procedure in the procedure summary chapter. 

More Examples 

Additional examples of graphical programming in mle  are given here. 

Graphing PDFs, SDF, CDF, and HFs 

Here is an example of plotting all four basic probability functions for the Weibull distribution with 
three different sets of parameters.  This example shows multiple plots in one program, and how key 
titles can be added to the plot.  Also note that the keys are moved around for different sets of plots. 

MLE 
  PLOTFILE(DEFAULTPLOTNAME) 
  WRITEPLOTLN('set xlabel "t"; set autoscale; set key') 
  minz = 0.01 
  maxz = 10 
  np = 100 
  titles : STRING[1 TO 4] =  
             ["Probability Density", 
              "Survival", 
              "Cumulative Density" 
              "Hazard"] 
  ylab : STRING[1 TO 4] = ["f(t)", "S(t)", "F(t)", "h(t)"] 
 
  MULTIPLOT(2, 2) 
    FOR ty = 1 TO 4 DO                      {loop through PDF, SDF, CDF, HF} 
      PLOT('set title "Weibull ' + titles[ty] + ' Function"' 
           'set ylabel "' + ylab[ty] + '"') 
        FOR v = 1 TO 3 DO                   {use three different variances} 
          CURVE z (minz, maxz, np) 
            KEY 'Weibull[6, ' + INT2STR(z) + ']' 
            z, PDF WEIBULL(z,   
                           IF ty = 2 THEN 0 ELSEIF ty = 3 THEN oo ELSE z END, 
                           IF ty = 3 THEN z ELSE 0 END)  
                 6,  v                      {these are the weibull parameters} 
               END {pdf} 
          END  {curve} 
        END  {for v} 
      END  {plot} 
    END  {for ty} 
  END  {multiplot} 
END  {mle} 
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Here is the result of this program: 
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Contour plots 

Contours can be drawn beneath the surface of a three-dimensional plot.  Here is an example: 

MLE 
  PLOTFILE(DEFAULTPLOTNAME) 
  WRITEPLOTLN('set zrange[0:1]; set contour base; set hidden3d; set view 70') 
  PLOT 
    DO x y (-3  3  25) (-3 3 25) 
      x, y, EXP(-(x^2 + 1.8*x*y + y^2))  {a type of bivariate normal} 
    END  {do} 
  END  {plot} 
END 
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A contour plot alone is generated from the previous example by turning off the surface and 
changing the perspective: 

MLE 
  PLOTFILE(DEFAULTPLOTNAME) 
  PLOT('set zrange[0:1]; set contour base; set nosurface' 
       'set yrange [] reverse; set view 180, 0') 
    CURVE x (-3  3  25) BY y (-3 3 25) 
      x,  y,  EXP(-(x^2 + 1.8*x*y + y^2))  {a type of bivariate normal} 
    END  {curve} 
  END  {plot} 
END 
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A Helix 

A helix is defined parametrically with simple functions.  The following code generates a helix 

MLE 
  PLOTFILE(DEFAULTPLOTNAME) 
  WRITEPLOTLN('set zrange[-1:]; set view 60, 30, 0.75, 2; set hidden3d') 
  PLOT 
    CURVE x (0 2 15) BY y (-PI 4*PI 40) 
      x*COS(y),  x*SIN(y),  y/3 
    END  {curve} 
  END  {plot} 
END 
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Geometric Figures 

Mathematically defined geometric figures can be easily drawn.  This example shows a number of 
useful tricks in Gnuplot, including turning off the axis borders, and graphing multiple plots. 

MLE 
  PLOTFILE(DEFAULTPLOTNAME) 
  WRITEPLOTLN('set zrange[0:]; set hidden3d; set view 70') 
  WRITEPLOTLN('set noborder; set noxtics; set noytics; set noztics') 
  PLOT 
    CURVE x (0 2*PI 20) BY y (0 4 20)         {plot a cone} 
      SIN(x)*y,  COS(x)*y,  (-y + 5) 
    END  {curve} 
    CURVE x (0 2*PI 20) BY y (0 2*PI 20)      {Now plot a torus around the cone} 
      COS(x)*(3 + COS(y)),  SIN(x)*(3 + COS(y)),  SIN(y) + 2.5 
    END  {curve} 
    CURVE x (0 2*PI 20) BY y (-PI/2 PI/2 20)  {And place a sphere on top} 
      COS(x)*COS(y),  SIN(x)*COS(y),  SIN(y) + 6 
    END  {curve} 
  END  {plot} 
END  {mle} 
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Animation Example 

Multiple PLOT...END statements can be used to create animation in mle.  Alternatively, the time 
dimension can be introduced with the use of a looping statement outside of the PLOT...END 
statement.  Gnuplot has a pause command that helps control the length of time each plot is 
displayed.  Here is an example: 

MLE 
  { -- An animation example } 
  PLOTFILE(DEFAULTPLOTNAME)        { open plot file} 
  WRITEPLOTLN("set contour both; set hidden3d") 
  FOR f = 4 TO 9 DO 
    PLOT("pause 2")   {wait two seconds before showing the next plot} 
      CURVE x (-10, 10, 30) BY y (-10, 10, 30) 
        x, y, BESSELI(0, SQRT(x^2 + y^2) - f) 
      END  {curve} 
    END  {plot} 
  END  {for} 
END  {mle} 

This example produces this sequence of plots: 
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Creating Plots from the Model Statement 

The MODEL statement can create two types of commonly used plots that are related to model 
estimation.  The first plot includes three graphs of distributions: the survival density function, the 
probability density function and the hazard function.  Each of these is graphed with error bars.  The 
second type of plot is a likelihood surface graph in either one or two variables. 

Before attempting to plot either one of these special plots, a plotfile must be defined with the 
PLOTFILE() procedure.  This opens the plot file and defines the name of the plot data file.  
Additionally, the PLOT...END statement must surround the MODEL statement. 

Estimated Distributions 

The survival function, probability density function and hazard function can be plotted from a MODEL 
statement by setting the variable PLOT_DISTS to TRUE.  (The mechanism is similar to that used for 
printing the values using the PRINT_DIST variable).  In addition to PLOT_DISTS=TRUE, you must set 
three other values.  DIST_T_START defines the lowest value over which the distribution is plotted, 
DIST_T_END is the highest value over which the distribution is plotted.  DIST_T_N is the number of 
points to plot. 

An example of plotting these distributions is given after the description of likelihood surfaces. 

Likelihood Surfaces 

A likelihood surface can be plotted over one parameter or two parameters of a model.  All other 
parameters are taken at their estimated value.   

Surface plots are made by adding SURFACE(<xparam>) or SURFACE(<xparam>, <yparam>) to the 
end of the RUN or REDUCE list part of the MODEL statement.  Here is the format: 

PLOT            {surrounds the model statement for plotting surfaces} 
  MODEL 
    <model statement> 
  RUN 
    FULL  SURFACE(<xparam>)                  {plots a likelihood profile over one parameter} 
    FULL  SURFACE(<xparam>, <yparam>)        {plots a likelihood profile over two parameters} 
    REDUCE  ... SURFACE(<xparam>) 
    REDUCE  ... SURFACE(<xparam>, <yparam>) 
  END  {model} 
END  {plot} 

For each parameter being plotted, the minimum plotted value is taken from the PARAM function as 
the LOW = value, and the maximum is taken from HIGH = value.   

An Example 

Here is an example of statistical estimation and plotting of distributions and a likelihood surface. 
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MLE 
  TITLE = "Japanese tooth eruption: lower first incisor." 
  DATAFILE("japan.dat") 
  OUTFILE(DEFAULTOUTNAME) 
  PLOTFILE(DEFAULTPLOTNAME) 
  DATA 
      li1o     FIELD 5 LINE 1     {earliest eruption age for lower central incisor} 
      li1c     FIELD 6 LINE 1     {latest eruption age} 
      sex      FIELD 3  LINE 2    {Child's sex} 
  END 
 
  PLOT_DISTS = TRUE 
  DIST_T_START = 5.0   {Plot the distribution from 5} 
  DIST_T_END = 15.0    {to 10 months} 
  DIST_T_N = 25        {in 25 points} 
 
  PLOT            {surrounds the model statement} 
    MODEL 
      DATA 
           PDF NORMAL(li1o, li1c) 
             PARAM  mean    LOW = 6  HIGH = 10  START = 8   END 
             PARAM  stdev   LOW = 1.2  HIGH = 3   START = 1.7  END 
           END  {pdf normal} 
      END  {data} 
    RUN 
      FULL SURFACE(mean, stdev)  {plots the surface for mean and stdev} 
    END  {model} 
  END  {plot} 
END  {mle} 

The following four plots result: 
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Chapter 6 

Statistical examples 

This chapter provides a series of examples in creating likelihood models and 
estimating parameters of the models.  The examples are categorized by the type of 
likelihood problem being done.  Some of the examples include data files. 

Survival analysis—Exact measurements 

This first example not only provides an illustration of a simple mle program, but 
also shows the notation that will be used throughout this chapter.  The problem at 
hand is finding one or more parameters θ of some distribution f(t|θ), given a series 
of observations, t=t1, t2, . . ., tN.  The values of t are known exactly.  For an 
individual observation, ti, the individual likelihood is Li = f(ti|θ), and the overall 
likelihood for the N observations is  

(2) ( | ) ( | )
N

i
i=1

L = f dtt∏tθ θ . 

Data for this example (Table 6) are a series of 15 observations of times to 
breakdown for an insulating fluid at 32 kV.  The times are arranged as one 
observation per line in a file named ex1.dat.  The underlying distribution is 
believed to follow a negative exponential probability density function, with a single 
parameter lambda.  The following mle program analyses these data.  Comments are 
enclosed in curly brackets. 

Here is the code for this problem: 
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MLE 
  TITLE = "32 kV Insulating Fluid Example from Nelson (1982:105)" 
  DATAFILE("ex1.dat")   {Input data file name} 
  OUTFILE("ex1.out")    {Name to which results are written} 
 
  DATA                  {data are read from the data file here} 
    failtime   FIELD 1 
  END 
 
  MODEL                 {this specifies the likelihood model} 
    DATA                {this corresponds to the product in the likelihood equation} 
       PDF EXPONENTIAL(failtime) 
         PARAM  lambda  LOW=0.00001  HIGH=1  START=0.05  END 
       END  {pdf} 
    END {data} 
  RUN 
    FULL 
  END {model} 
END {program} 

Here is the abridged output 

New model:  32 kV Insulating Fluid Example 
 
LogLike= -70.76273 Iterations= 2 Func evals= 26 Del(LL)= 0.0000000000 
Converged normally 
 
Results with estimated standard errors.  (7 evals) 
Solution with 1 free parameter 
         Name Form       Estimate         Std Error          t        against 
       lambda LOGLIN   0.024294254090   0.004468859626    5.43634307759   0.0 

The first part of the output shows the loglikelihood, and information about 
iterations, function evaluations, and convergence.  This is followed a report of 
parameter estimates and their standard errors. 

Table 6 Times to breakdown for an insulating fluid at 32 kV, from Nelson W (1982:105). 

0.27 0.4 0.69 

0.79 2.75 3.91 

9.88 13.95 15.93 

27.8 53.24 82.85 

89.29 100.58 215.1 

Survival analysis—Exact Failure and Right Censored 
observations 

The standard problem in survival analysis is to find parameters of a parametric 
model when some observations are right censored.  Typically we have N exact 
observations, and N+ right-censored observations, the likelihood is  

(3) 
1 1

( ) ( | ) ( | )
N N

i i
i i

L = f St t
+

= =
∏ ∏tθ | θ θ , 

where S(t|θ) is the survival distribution, which is the area under f(t|θ) to the right 
of t.  The area under a right censored observation is specified in the mle PDF 
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function by setting the second time variable to infinity (or something less than 
the first time variable).  So, the function PDF NORMAL(14,-1) 10, 6 END would 
return the area from 14 to infinity of under a normal pdf with parameters µ = 10, 
and σ = 6, or about 0.2525.  This would correspond to the likelihood of an 
individual surviving past 14 units of times under the specified model. 

For this example, we use the data in Table 6 and suppose that there were three 
additional observations that had not failed by time 220—the end of the experiment.  
The data will be coded so that the three right censored times are  given as negative 
times, -220.  The DATA statement now creates two variables, the first is the absolute 
value of time to failure, and the second is the unmodified time.  Thus, failed 
observations have two identical failure times, for example [9.88, 9.88], which 
defines an exact failure.  When the two identical observations are used in the PDF 
function, the probability density function at that point is returned.  The right-
censored observations have a positive and a negative failure times [220, -220].  
When the second failure time is less than the first, the PDF function gives the area 
under the pdf from 220 to infinity, which is the survival function. 

MLE 
  TITLE = "32 kV Insulating Fluid Example" 
  DATAFILE("ex2.dat")   {Input data file name} 
  OUTFILE("ex2.out")    {Name to which results are written} 
 
  DATA     
    topen   FIELD 1 = ABS(topen) 
    tclose  FIELD 1  
  END 
 
  MODEL 
    DATA  
       PDF EXPONENTIAL(topen, tclose) 
         PARAM  lambda  LOW=0.00001  HIGH=1  START=0.05  END 
       END  {of the PDF} 
    END 
  RUN 
    FULL 
  END  {of the MODEL} 
 
END    {of the MLE program} 

The abridged output is 

 

18 lines read from file ex2.dat 
18 Observations kept and 0 observations dropped. 
 
New model:  32 kV Insulating Fluid Example 
 
LogLike= -81.66833 Iterations= 2 Func evals= 28 Del(LL)= 0.0000000000 
Converged normally 
 
Results with estimated standard errors.  (8 evals) 
Solution with 1 free parameter 
         Name Form       Estimate         Std Error          t        against 
       lambda LOGLIN   0.011742333138   0.002142967492    5.47947329296   0.0 
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Survival analysis—Interval censored Observations 

Interval censored observations, are those collected between two points of time.  
These observations frequently arise from prospective studies in which periodic 
observations are collected.  The exact times to the event are not known.  What is 
known is tu, the last time before the event occurred, and te, the time of the first 
observation after the event occurred.  The likelihood for interval censored events is 
the area under the pdf between tu and te, 

(4) ( , ) ( | ) ( | ) ( | )
ei

i i

ui

tN N

u e u e
i=1 i=1t

L f z dz S t S t = = − ∏ ∏∫t tθ | θ θ θ  

In mle, the area under the pdf (that is, the integral over the interval (tu, te] is 
specified for most distributions as the first two times, with the second time greater 
than the first.  For example, PDF NORMAL(11, 15) 10, 6 END returns 0.231, 
which is the area between 11 and 15 under a normal distribution with µ=10, and 
σ=6.  Here is an mle program that finds parameters of a lognormal distribution from 
interval censored data. 

MLE 
  TITLE = "Example" 
  DATAFILE("ex3.dat") 
  OUTFILE("ex3.out") 
 
  DATA     
    topen   FIELD 1 
    tclose  FIELD 2 
  END 
 
  MODEL 
    DATA  
       PDF LOGNORMAL(topen, tclose) 
         PARAM  a  LOW=0.00001  HIGH=9  START=1  END 
         PARAM  b  LOW=0.00001  HIGH=2   START=0.4  END 
       END  {of the PDF} 
    END 
  RUN 
    FULL 
  END  {of the MODEL} 
 
END 

Current status analyses 

Current status analysis consists of observations that are collected cross-sectionally.  
The methods most commonly associated with current status analysis are probit and 
logit analysis.  mle makes it easy to do current status analysis with any of the built-
in distribution functions. 

Under a cross-sectional study design, each observation consists of (1) time of a 
single observation since the study began (t), (2) an indicator variable to determine 
whether or not the individual experienced the event.  The result of the indicator 
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variable is that the individual is a responder (r) or non-responders (n).  The 
likelihood from N observations made up of Nr responders and Nn non-responders is 

(5) 
1 1

( ) ( | ) ( | )
n r

i i
i i

L = S Ft t
= =

∏ ∏tθ | θ θ  

This likelihood can be interpreted as follows.  For the likelihood for the non-
responders is the area under the pdf from the time of observation to infinity.  Thus, 
a responder contributes a likelihood that is exactly like a right-censored 
observation.  The likelihood for a responder is the area under the pdf from -∞ (or 0 
for pdfs defined to have positive arguments) to the time of observation, which is 
the probability of the event occurring at some time unknown time before the time 
of observation.  In mle, the area under the likelihood for a responder is specified as 
PDF LOGNORMAL(-1, 5) 2, 0.5 END return 0.217, which is the area between 0 (or 
anything less than 0) and 5 under a lognormal distribution with µ=2, and σ=0.5. 

Consider a data set that contains a time of observation and an indicator variable 
that is 0 if the observation was a non-responder and 1 for a responder.  One way of 
coding this model is to place an IF...THEN...ELSE...END statement to switch 
between responder and nonresponder likelihoods as appropriate for each 
observation: 

MLE 
  TITLE = "Example" 
  DATAFILE("ex4.dat") 
  OUTFILE("ex4.out") 
 
  DATA     
    t       FIELD 1  {time of observation} 
    resp    FIELD 2  {1 if responder, 0 if nonresponder} 
  END 
 
  MODEL 
    DATA  
      IF resp = 1 THEN        {it is a responder} 
        PDF LOGNORMAL(0, t) 
          PARAM  a  LOW=0.00001  HIGH=9  START=1    END 
          PARAM  b  LOW=0.00001  HIGH=2  START=0.4  END 
        END  {of the PDF} 
      ELSE  {non-responder} 
        PDF LOGNORMAL(t, oo) a, b END 
      END  {of if then else} 
    END {data} 
  RUN 
    FULL 
  END  {of the MODEL} 
 
END 

Alternatively, The following mle data statement will transform the observation time 
into a set of two times.  For a responder, topen will be set to zero and tclose will 
take the value of the observed time.  For a non-responder, topen will take the value 
of the observed time and tclose will be set to zero.  Note that when the second 
time is set to zero, it will be less than topen, so mle returns the area from topen to 
infinity.  
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MLE 
  TITLE = "Example" 
  DATAFILE("ex4.dat") 
  OUTFILE("ex4.out") 
 
  DATA     
    time     FIELD 1    {read in observation time} 
    resp     FIELD 2    {1 if responder, 0 if nonresponder} 
    topen     = IF resp == 1 THEN 0 ELSE time END 
    tclose    = IF resp == 1 THEN time ELSE -1 END 
  END 
 
  MODEL 
    DATA  
       PDF LOGNORMAL(topen, tclose) 
         PARAM  a  LOW=0.00001  HIGH=9  START=1    END 
         PARAM  b  LOW=0.00001  HIGH=2  START=0.4  END 
       END  {of the PDF} 
    END 
  RUN 
    FULL 
  END  {of the MODEL} 
 
END 

Survival analysis—Left-truncated observations 

Left truncation arises in survival analysis when some early portion of an 
individual's period of risk is not observed.  For example, in a prospective study of 
mortality, we might want to follow all living people in some area, instead of just 
following individuals from birth.  This type of data collection can lead to unbiased 
results, provided observations are left-truncated at the age at which people are 
enrolled in the study.  The idea is that, had the someone died prior to being enrolled 
in the study, that would not have been enrolled; therefore, their risk of mortality is 
know to be zero. 

For this example, we will use the Siler competing hazards mortality model for a 
fictitious prospective study of mortality.  We will two types of observations: those 
who died and those who are right censored.  For each observation we know three 
times: the time an individual was enrolled for prospective observation (tα), the last 
time an individual was observed as alive (tu), and the first time the individual was 
known to be dead (te).  The first time, tα, defines the left truncation point, tu and te 
define an interval within which death took place.  For right censored observations, 
te is set to infinity (or a number greater than the human lifespan).  The likelihood is 
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From this likelihood it can be seen that an individual's probability of death is the 
area under pdf between tu and te and divided by the area from tα to infinity, which 
renormalizes the pdf for the period of actual observation.  An individual likelihood 
is constructed in mle as PDF SILER(14, 15, 6) 0.05, 0.3, 0.0, 0.001, 0.05 
END, which represents a person who died between ages 14 and 15, and were 
enrolled in the study at age 6. 
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MLE 
  TITLE = "Example" 
  DATAFILE("ex5.dat") 
  OUTFILE("ex5.out") 
 
  DATA     
    talpha    FIELD 1  {Left truncation time} 
    topen     FIELD 2  {time last known alive} 
    tclose    FIELD 2  {time first known dead, or oo if censored} 
  END 
 
  MODEL 
    DATA  
       PDF SILER(topen, tclose, talpha) 
         PARAM  a1  LOW=0.00001  HIGH=0.5 START=0.01   END 
         PARAM  b1  LOW=0.01     HIGH=2   START=0.1    END 
         PARAM  a2  LOW=0        HIGH=1   START=0.001  END 
         PARAM  a3  LOW=0.0000   HIGH=1   START=0.001  END 
         PARAM  b3  LOW=0.00001  HIGH=1   START=0.001  END 
       END  {of the PDF} 
    END 
  RUN 
    FULL 
  END  {of the MODEL} 
 
END 

Survival analysis—Right-truncated observations 

Right truncation arises in survival analysis when the later risk is determined by the 
study design.  For example, we might have data on child mortality for analysis.  
Each child was followed from birth to age five, and the only children available in 
the data set were those who died from birth to five.  This type of data collection can 
lead to unbiased results, provided child's observations are right-truncated at age 
five. 

For this example, we will use the Gompertz competing hazards mortality model for 
a fictitious prospective study of mortality.  We will have observations selected for 
mortality by age five and no right-censoring.  A single age at death is known.  The 
likelihood for exact times to death with right truncation is 
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From this likelihood it can be seen that an individual's probability of death is the 
pdf at the age of death, divided by the area from 0 to tω, which renormalizes the pdf 
for the period of actual observation.  An individual likelihood is constructed in mle 
as PDF GOMPERTZ(2.1, 2.1, 6) 0.05, 0.3 END, which is a death at the age of 
2.1. 
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MLE 
  TITLE = "Example" 
  DATAFILE("ex6.dat") 
  OUTFILE("ex6.out") 
 
  DATA     
    tdeath    FIELD 1  {Left truncation time} 
  END 
 
talpha = 5.0     {set a constant for right truncation} 
 
  MODEL 
    DATA  
       PDF GOMPERTZ(tdeath, tdeath, talpha) 
         PARAM  a1  LOW=0.00001  HIGH=0.5  START=0.01  END 
         PARAM  b1  LOW=-2       HIGH=-0   START=0.1   END 
       END  {of the PDF} 
    END 
  RUN 
    FULL 
  END  {of the MODEL} 
 
END 

Survival analysis—Left-and right-truncated 
observations 

This example extends the previous one by including both left and right truncation, 
as well as interval censored observations.  We will use a child mortality example 
again, but now each children is recruited at some age from 0 to 5 years.  Their risk 
will be left-truncated at the age of entry.  Again, only children who die before age 5 
would be included in the analysis, so that all exposures are right-truncated.  Finally, 
children are periodically visited, so all observations are interval censored.  Again, 
we will use the Gompertz competing hazards mortality model for this fictitious 
prospective study of child mortality.  The likelihood is 

(8) 
1

( | ) ( | )
( , , , )

( | ) ( | )
i i

i i

N
u e

u e
i

S t S t
L

S t S tα ω
= α ω

−
=

−∏t t t t
θ θ

θ,
θ θ

. 

From this likelihood it can be seen that an individual's probability of death is the 
area under pdf between tu and te and divided by the area from tα to tω, which 
renormalizes the pdf for the period of actual observation.  An individual likelihood 
is constructed in mle as PDF GOMPERTZ(topen, tclose, talpha, tomega) 0.05, 
0.3 END.  For example PDF GOMPERTZ(2.1, 2.4, 1.0, 5.0) 0.05, 0.3 END 
returns the probability that a child, enrolled in the study at age one and selected for 
having died by age five, died between the ages of 2.1 and 2.4. 
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MLE 
  TITLE = "Example" 
  DATAFILE("ex7.dat") 
  OUTFILE("ex7.out") 
 
  DATA     
    talpha    FIELD 1  {Left truncation time} 
    topen     FIELD 2  {time last known alive} 
    tclose    FIELD 2  {time first known dead, or oo if censored} 
  END 
 
tomega = 5.0 
 
  MODEL 
    DATA  
       PDF GOMPERTZ(topen, tclose, talpha, tomega) 
         PARAM  a1  LOW=0.00001  HIGH=0.5 START=0.01  END 
         PARAM  b1  LOW=0.01     HIGH=2   START=0.1   END 
       END  {of the PDF} 
    END 
  RUN 
    FULL 
  END  {of the MODEL} 
 
END 

Survival analysis—Accelerated failure time model 

Frequently, one is interested in modeling the effects of covariates on the time to 
failure.  A common model of this type is call the accelerated failure time model 
(AFT), in which covariates shift the time to failure to the right or the left.  mle has a 
general mechanism for modeling the effects of covariates on any parameter that is 
defined, so that accelerated failure time models can be easily constructed. 

In this example, the mean of a normal distribution has two covariates that shift the 
failure time.   

MLE 
  TITLE = "Example" 
  DATAFILE("ex8.dat") 
  OUTFILE("ex8.out") 
 
  DATA     
    topen     FIELD 1  {Last observation time prior to the event} 
    tclose    FIELD 2  {First observation time after the event} 
    weight    FIELD 3  {the first covariate} 
    age       FIELD 4  {the second covariate} 
  END 
 
  MODEL 
    DATA  
       PDF NORMAL(topen, tclose) 
         PARAM  mu  LOW=0.00001  HIGH=100 START=25  FORM=LOGLIN 
            COVAR weight PARAM b_weight LOW=-20 HIGH=20  START=0  END 
            COVAR age    PARAM b_age    LOW=-20 HIGH=20  START=0  END 
         END     {param mu} 
         PARAM  s  LOW=0.01  HIGH=50  START=3  END 
       END  {of the PDF} 
    END 
  RUN 
    FULL 
  END  {of the MODEL} 
 
END 
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From this specification of covariates, the µ intrinsic parameter of the normal 
distribution will be computed for the ith observation as µi = mu×exp(weighti × 
b_weight + agei × b_age). 

Survival analysis—Hazards model 

An alternative to the accelerated failure time model is the hazards model.  Under 
the hazards model, the effects of covariates is to raise or lower the hazard by some 
amount9.  In general, if h(t) is the hazard function, covariates for the ith individual,  
xiβ, are modeled on the hazard as hi(t) = h(t)exp(xiβ).   

Most of the probability density functions in mle provide a mechanism for modeling 
the effects of covariates on the hazard.  You can find out for any particular pdf by 
typing, for example, mle -h lognormal.  A message will tell you whether or not 
covariates can be modeled on the hazard. 

In this example, the same normal distribution used in the previous example has had 
the two covariates moved from affecting µ to affecting the hazard. 

MLE 
  TITLE = "Example" 
  DATAFILE("ex8.dat") 
  OUTFILE("ex8.out") 
 
  DATA     
    topen     FIELD 1  {Last observation time prior to the event} 
    tclose    FIELD 2  {First observation time after the event} 
    weight    FIELD 3  {the first covariate} 
    age       FIELD 4  {the second covariate} 
  END 
 
  MODEL 
    DATA  
       PDF NORMAL(topen, tclose) 
         PARAM  mu  LOW=0.00001  HIGH=100  START=25  END 
         PARAM  s   LOW=0.01     HIGH=50   START=3   END 
         HAZARD COVAR weight PARAM b_weight LOW=-20 HIGH=20  START=0  END 
                COVAR age    PARAM b_age    LOW=-20 HIGH=20  START=0  END 
         END     {hazard} 
       END  {of the PDF} 
    END 
  RUN 
    FULL 
  END  {of the MODEL} 
 
END 

Survival analysis—Immune subgroup 

When observing times to events, there may be an unidentifiable subgroup for 
whom risk of experiencing the event is zero.  These make up a so-called immune 
fraction, a sterile subgroup, or a contaminating fraction.  It is possible to model 

                                                        
9   Except for the exponential and the Weibull distributions, accelerated failure time models are not proportional 

hazards models. 
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some fraction of individuals who are not at risk, so to statistically identify the 
subgroup.     

If complete records are available for all individuals, one could simply remove the 
sterile individuals from the analysis of the non-sterile fraction.  When complete 
records are not available (i.e. we cannot tell a sterile individual from a right-
censored individual) maximum likelihoods methods are easily adapted to include 
estimation of an unknown fraction of individuals who are not susceptible to failure.   

The effect of the sterile subgroup on the survival distribution can be seen in Figure 
5.  Call s the non-susceptible fraction.  Then the proportion of individuals who are 
susceptible at the start of risk is p(0)=1 – s.  Inspection of Figure 5 suggests that the 
fraction of surviving individuals at time t must be made up of two fractions.  One is 
Sf(t) weighted by the fraction not sterile, (1 – s).  The second fraction is constant at 
s: 

 ( ) (1 ) ( )fS t s S t s= − + . 

The overall hazard at time t is simply the hazard of the non-susceptible subgroup 
weighted by the proportion of that group at time t.  The proportion of susceptible 
individuals at time t will decrease as fecund individuals fail, and  must depend on 
survivorship of the non-sterile group to time t and the initial fraction of sterile 
individuals, s.  This fraction at time t is 
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The hazard at time t is 
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and the probability density function is found as  

 

 Time 
 0 

 1 

 Time 
 0 

 1 

 s 

 

Figure 5. The effect of contamination by a sterile subgroup on the survivorship distribution.  The subgroup makes up 
fraction s of the initial population at risk.  The left panel shows survivorship for the uncontaminated group and the 
right panel shows the same distribution contaminated by the sterile subgroup. 



Statistical examples 

 118 

 ( ) ( ) ( ) (1 ) ( ) ( ) (1 ) ( )f f ff t h t S t s S t h t s f t= = − = − . 

These forms for the PDF, SDF, and hazard function provide for reasonably 
straight-forward maximum likelihood estimation of the parameters of the 
distribution for the susceptible observations as well as s. The general form of the 
likelihood when sterility is included, becomes 
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where the δ{x,y} is the Kronecker's delta function, which equals one when x=y, and 
zero when x≠y. 

The following example estimates one such model.  The likelihood begins with the 
MIX() function, which produces an average of the second and third arguments, 
weighted by first argument (which is a probability).  The first PDF is PDF 
STERILE() END, which returns one if tclose is infinity or less than topen.   
Covariates are modeled on both the non-susceptible fraction as well as the hazard 
of the susceptible fraction. 

MLE 
  TITLE = "Example" 
  DATAFILE("ex.dat") 
  OUTFILE("ex.out") 
 
  DATA     
    topen     FIELD 1  {Last observation time prior to the event} 
    tclose    FIELD 2  {First observation time after the event} 
    weight    FIELD 3  {the first covariate} 
    age       FIELD 4  {the second covariate} 
  END 
 
  MODEL 
    DATA 
       MIX( PARAM s LOW=-100  HIGH=100 START=0  FORM=LOGLIN    {define the immune 
fraction} 
               COVAR  weight  PARAM b_s_weight  LOW=-20  HIGH=20  START=0  END 
               COVAR  sex     PARAM b_s_sex     LOW=-20  HIGH=20  START=0  END 
            END  {param s} 
 
            PDF STERILE(topen, tclose) END,     {returns 1 for right censored 
observations} 
 
            PDF LNNORMAL(topen, tclose) 
              PARAM  a  LOW=0.00001  HIGH=100 START=25  END 
              PARAM  b  LOW=0.01     HIGH=50   START=3  END 
              HAZARD COVAR weight PARAM b_weight LOW=-20 HIGH=20  START=0  END 
                     COVAR sex    PARAM b_sex    LOW=-20 HIGH=20  START=0  END 
              END  {hazard} 
            END  {of the PDF} 
       )  {mix function} 
    END 
  RUN 
    FULL 
  END  {of the MODEL} 
 
END 
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Linear regression in the likelihood framework 

This example shows how linear regression is treated within the framework of 
likelihood models.  The linear regression model with n covariates specifies that the 
value of the ith observation is a combination of a y intercept term (α) an additive 
covariate-parameter term (xi1β1 + xi2β2 + ... + xinβn)  plus an error (ei).  Furthermore, 
distribution among all error terms (ε) is normally distributed with a mean of zero 
and a standard deviation of σ.  The formal specification is: 

 yi = α + xi1β1 + xi2β2 + ... + xinβn + ei 

 ε ~ N(0, σ) 

Under the likelihood model, the equivalent specification can be given in a very 
different format.   
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The difference in the two specifications exemplifies the two different philosophies 
in the methods.  Under regression, difference between each observation and the 
line defined by parameters and covariates is treated as "error".  Under the 
likelihood model, the observations are normally distributed, with a mean that is 
determined by a series of covariates.   

The data for this example are fictitious.  The third column contains the values of yi, 
column 1 is xi1 and xi2. 

0.4 53 64 
0.4 23 60 
3.1 19 71 
0.6 34 61 
4.7 24 54 
1.7 65 77 
9.4 44 81 
10.1 31 93 
11.6 29 93 
12.6 58 51 
10.9 37 76 
23.1 46 96 
23.1 50 77 
21.6 44 93 
23.1 56 95 
1.9 36 54 
29.9 51 99 

The following shows the output from a regression analysis 
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     VARIABLE               MEAN      STD. DEVIATION COEF. VARIAT. 
Indept Variable: Y        76.17647059   16.63293154    0.21834736 
Depent Variable:  1       11.07058824    9.74453467    0.88021833 
Depent Variable:  2       41.17647059   13.43612339    0.32630585 
 
 VAR.    COEFFICIENT   STD ERROR    T STATISTIC  
Alpha   66.46540496    
B(1)     1.29019050    0.34276468    3.76407073 
B(2)    -0.11103677    0.24858973   -0.44666675 
 
              SUM OF               MEAN         F 
SOURCE       SQUARES      DF      SQUARE      RATIO 
REGRESS.    2325.1795      2   1162.5897      7.7458 
RESIDUAL    2101.2911     14    150.0922 
TOTAL       4426.4706     16    276.6544 
 
R SQUARE =     0.5253 
STANDARD ERROR OF ESTIMATE =    12.251213 

The following shows the mle code for the equivalent likelihood model.  Notice that 
this program is similar to the accelerated failure time model, except that the form 
for modeling covariates on the mean is additive (FORM = ADD). 

MLE 
  TITLE = "Test regression" 
  DATAFILE("eg.dat") 
  OUTFILE("eg.out") 
 
  DATA 
    y       FIELD 3  
    x1      FIELD 1 
    x2      FIELD 2 
  END 
 
  MODEL 
    DATA 
      PDF NORMAL(y) 
        PARAM  mu   LOW = 7   HIGH = 500   START = 50 FORM = ADD 
          COVAR  x1  PARAM  b1  LOW=-10  HIGH=10  START=0  END 
          COVAR  x2  PARAM  b2  LOW=-10  HIGH=10  START=0  END 
        END   {param} 
        PARAM  sig  LOW=0.1   HIGH=200   START=10  END 
      END   {pdf}  
    END   {data} 
  RUN 
    FULL 
  END 
 
END 

The following output fragment shows the result from this model. 

LogLike= -65.06725 Iterations= 334 Func evals= 25383 Del(LL)=  9.745E-0011 
Converged normally 
 
Results with estimated standard errors.  (27 evals) 
Solution with 4 free parameters 
         Name Form       Estimate         Std Error          t        against 
           mu ADD      66.46589883575   9.596050356992    6.92638078825   0.0 
           b1          1.290194199465   0.453901547297    2.84245384742   0.0 
           b2          -0.11104975496   0.202022074279    -0.5496911927   0.0 
          sig          11.11779472801   2.630810510011    4.22599601366   0.0 

The results are nearly identical to the regression results presented earlier.  All 
parameters of the likelihood model are given with a standard error.   
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For a series of data that are complete, as given in this example, there is little 
advantage to using maximum likelihood for parameter estimation.  Maximum 
likelihood methods are most useful under some simple modificatons of the data or 
model used above.  Suppose, that in addition to the above observations we had 
several observations that were less than the minimum or greater than the maximum 
value of y that could be measured by our instrumentation.  The maximum 
likelihood model could accomodate such observations with ease.  Another 
modification might be to change the underlying distribution to something other 
than a normal.  For example, ε could take on an extreme value distribution or a 
Laplace distribution.  Again, the likelihood framework easily accomodates such 
modifications. 

Case study —Mortality models 

Estimation of age-at-death distributions from skeletal indicators is an important 
task for ecologists and anthropologists alike.  This case study discusses some 
likelihood models to estimate such distributions.  The simplest case arises when 
exact skeletal ages at death are known for a representative sample of N skeletons 
covering the entire life span.  Call f(a|θ) the probability density function that 
represents the age-at-death distribution with parameters θ.  For example, it might 
be the SILER model, if individuals span the entire lifespan, or it might be the 
MAKEHAM (Gompertz-Makeham) model if the entire sample consists of adults. 
Under either model, the likelihood given a series of skeletal ages is  

Table 7.  Ages at death for 608 Dall mountain sheep.  Source: Deevey (1947). 

Minimum age Maximum age Number dying 
in interval 

0 0.5 33 

0.5 1 88 

1 2 7 

2 3 8 

3 4 7 

4 5 18 

5 6 28 

6 7 29 

7 8 42 

8 9 80 

9 10 114 

10 11 95 

11 12 55 

12 13 2 

13 14 2 
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The data of Murie (1944) as reported in Deevey (1947) will serve as our example.  
The raw data consist of 608 Dall mountain sheep skulls collected in the Mt. 
McKinley Park (Table 7).  The ages at death were determined from the annual 
growth rings on the horns.  Causes of death were not determined, but predation by 
wolves was quite common. 

 

The data were fit by maximum likelihood to the mixed-makeham model.  The most 
parsimonious model had all parameters except the α2 parameter.  The following 
parameter estimates (and standard error) were found: p = 0.221 (0.018), α1 = 1.297 
(0.211), α3 = 0.00146 (0.00032), β3 = 0.618 (0.023).  The log-likelihood was -
1461.350. 
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The interpretation of the mixed-makeham model is that there are two subgroups: a 
high-risk (infant-mortality) subgroup and low-risk (normal) subgroup. The results 
suggest that 22% of the deaths were to individuals in the first subgroup.  The 
expected age at death can be found by taking  

(12) 
0

ˆ( ) ( | )E a S a da
∞

= ∫ θ  

where θ̂  denotes that we are using the parameter estimates.  Additionally, the 
expectation can be taken for each of the subgroups by fixing p = 0 or p = 1.  The 
expectation comes to 7.11 years for the full sample, which is very close to the 7.09 
years found by Deevey (1947) using the life table method..  For the first subgroup, 
the expectation of life is 0.77 years, and for the low risk subgroup the expectation 
of life is 8.90 years. 

A plot of the survival distribution for the most parsimonious model is shown in the 
following figure. 
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The following code show the final analysis and other statistics computed for this 
model. 

MLE 
  {Analysis of the data from Murie (1944) as reported in Deevey 
   (1947). The raw data consist of 608 Dall mountain 
   sheep skulls collected in the Mt. McKinley Park.  Ages at death  
   were determined from the annual growth rings on the horns.} 
 
  INPUT_SKIP = 2 
  TITLE = "Murie skull data -- Siler model" 
  EPSILON = 0.0000001 
  DATAFILE("murie.dat") 
  OUTFILE(DEFAULTOUTNAME) 
  PLOTFILE(DEFAULTPLOTNAME) 
  MAXITER = 500 
 
  DATA 
      frequency   FIELD 3  
      last_alive  FIELD 1  
      first_dead  FIELD 2 
  END 
 
  MODEL 
    DATA  
      PDF MIXMAKEHAM(last_alive, first_dead) 
        PARAM p   LOW = 0  HIGH = 1   START = 0.25   END 
        PARAM a1  LOW = 0  HIGH = 2   START = 0.5    END 
        0 
        PARAM a3  LOW = 0  HIGH = 4   START = 0.001  END 
        PARAM b   LOW = 0  HIGH = 3   START = 0.5    END 
      END 
    END 
  RUN  THEN 
         e2  = INTEGRATE z (0, 120)  
                  z * PDF MIXMAKEHAM(z) p, a1, 0, a3, b END  
               END  
         e2a = INTEGRATE z (0, 120)  
                  z * PDF MAKEHAM(z) a1, a3, b END  
               END  
         e2b = INTEGRATE z (0, 120)  
                  z * PDF MAKEHAM(z) 0, a3, b END  
               END  
         PRINTLN("Expectation of life: MixedMakeham model    = ", e2) 
         PRINTLN("Expectation of life: Subgroup 1    = ", e2a) 
         PRINTLN("Expectation of life: Subgroup 2    = ", e2b) 
         plotoptions =   "set ylabel 'Probability of success'; "  
                       + "set xlabel 'Treatment length (days)'; "   
         lo = 0  hi = 12  pts = 50 
         PLOT (plotoptions) 
           CURVE 
             x (lo, hi, pts)  x,  PDF MIXMAKEHAM(x) p a1 0 a3 b END 
           END {curve} 
           CURVE WITH "lines linetype 2" 
             x (lo, hi, pts)  x,  PDF MIXMAKEHAM(x) p a1 0 a3 b END 
                + 1.96*SETRANSFORM(PDF MIXMAKEHAM(x) p a1 0 a3 b END) 
           END {curve upper CI} 
           CURVE WITH "lines linetype 2" 
             x (lo, hi, pts)  x,  PDF MIXMAKEHAM(x) p a1 0 a3 b END 
                - 1.96*SETRANSFORM(PDF MIXMAKEHAM(x) p a1 0 a3 b END) 
           END {curve lower CI} 
         END {plot} 
       END {run} 
    FULL 
  END 
 
END 
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Logistic regression 

Tanner (1996) gives an example of logistic regression using data from Mendenhall 
et al. (1989).  Twenty four patients were given radiotherapy for some number of 
days to treat a tongue carcinoma.  Three years later, the treatment is classified as 
success, by the absence of the tumor after three years, or failure if the disease 
recurs.  The observations are given in the file RADIOT.DAT, and the mle program file 
is RADIOT.MLE. 

MLE 
  INPUT_SKIP = 8   {skip comments} 
  TITLE = "Radiotherapy success" 
  DATAFILE("radiot.dat")     {Input data file name} 
  OUTFILE(DEFAULTOUTNAME)   
  METHOD = CGRADIENT1 
  EPSILON = 1E-10 
 
  DATA     
    days       FIELD 1  {Days of treatment} 
    success    FIELD 2  {Success of treatment at 3 years} 
  END 
 
  ALT_LOGISTIC = TRUE        { use         exp(xb)/[1 + exp(xb)] 
                               instead of        1/[1 + exp(xb)]} 
 
  MODEL  
    DATA 
      PDF BERNOULLITRIAL(success) 
         PARAM b_0 LOW = -500 HIGH = 500 FORM = LOGISTIC 
           COVAR days PARAM b_days LOW = -10 HIGH = 10 START = 0 END 
         END  {param} 
      END {pdf} 
    END  {data} 
  RUN 
    FULL 
  END  {model} 
 
END    {of the MLE program} 

In this model, the variable days is the covariate of interest and the outcome is the 
variable success.  The logistic regression model specifies the probability of 
success as  

(13) 
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where xi is the number of days of treatment and the β coefficients are parameters to 
be estimated.  Note that the variable ALT_LOGISTIC is set to TRUE for this 
particular form of the logistic model.  The likelihood under the logistic model is 
probability pi for each patient for whom therapy is successful, and 1 – pi for each 
patient for whom therapy is unsuccessful.   Hence, each observation is treated as a 
Bernoulli trial for success with parameter p modeled as (13).   The likelihood is 
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The resulting parameter estimates suggest the log odds of recurrence by year 3 with 
zero days of treatment are 3.819.  Paradoxically, the log odds of success decrease 
with each extra day of treatment by about 8.6 percent! 

Convergence at EPSILON =  1.000E-0010 
LogLikelihood: -13.89411 AIC: 31.788220 Del(LL):  1.367E-0014 
Iterations: 8 Function evaluations: 824 Converged normally 
 
Results with estimated standard errors.  (10 evals) 
Solution with 2 free parameters 
         Name Form       Estimate         Std Error          t        against 
          b_0 LOGISTIC 3.819417361125   1.739572481596    2.19560691005   0.0 
       b_days          -0.08648243176   0.041100225123    -2.1041838944   0.0 

The resulting logistic curve can be plotted with a 95% confidence interval by 
replacing the RUN…FULL part of the model statement with the following code: 

  RUN 
    FULL THEN  {Code for plotting the logistic curve with CIs} 
           PLOT ("set ylabel 'Probability of success'; " + 
                 "set xlabel 'Treatment length (days)'; "  + 
                 "set yrange[0:1];") 
             CURVE 
               x = 20 to 60  x,  LOGISTIC(p + x * b_days) 
             END {curve} 
             CURVE WITH "lines linetype 2" 
               x = 20 to 60   x,  LOGISTIC(p + x * b_days) + 
                              1.96*SETRANSFORM(LOGISTIC(p + x * b_days)) 
             END {curve upper CI} 
             CURVE WITH "lines linetype 2" 
               x = 20 to 60   x,  LOGISTIC(p + x * b_days) - 
                              1.96*SETRANSFORM(LOGISTIC(p + x * b_days)) 
             END {curve lower CI} 
           END {plot} 
         END {full then} 

  END  {model} 
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Case study: Extended Poisson for modeling species 
abundance 

This example shows the use of a user-defined function for programming a pdf that 
is not built into mle.  In fact, the Thomas distribution is available in mle, but we will 
ignore the built-in implementation for this example.  This example also shows 
some graphics programming in mle. 

Thomas (1949) discusses the problem of clustering among a given species of plants 
in ecological surveys.  Ecologists were using the Poisson distribution to describe 
the number of plants found in randomly selected square quadrats.  The Thomas 
distribution (Thomas 1949; Christensen 1984) models the count of k plants in a 
quadrat as resulting from one or more clusters of plants, and is given by  

(14) 
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Data are counts of Armeria maritima plants surveyed in 100 quadrats on Blakeney 
Marsh: 57 quadrats with 0 plants; 6 with 1 plant; 12 with 2; 5 quadrats each with 3, 
4, and 5 plants; 7 quadrats with 6 plants; and 1 quadrat each with 7, 9 and 10 
plants.   

The following mle program fits these data to the Thomas distribution as well as the 
Poisson distribution and graphs the distributions of observed versus expected 
number of plants.   
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MLE 
  {Distribution of Ameria maritima in Blakeney Marsh  using the Thomas distribution 
   or Double Poisson distribution. Data are given by M Thomas (1949) A generalization 
   of Poisson's Binomial Limit for use in Ecology, Biometrika 36:18-25.} 
    
  FUNCTION thomas(k:INTEGER, a:REAL, b:REAL):REAL 
    { -- returns the pdf for the thomas dist count k and parameters a and b} 
 
    RETURN = EXP(-a)*SUMMATION j (0, k) 
                       ((a^j)/FACT(j))*EXP(-j*b)* 
                       (((j*b)^(k - j))/FACT(k - j)) 
                     END  {summation} 
  END  {function thomas} 
 
  DATAFILE("armeria.dat") 
  OUTFILE(DEFAULTOUTNAME) 
  PLOTFILE(DEFAULTPLOTNAME) 
  INPUT_SKIP = 3 
 
  DATA 
    numb_plants    FIELD 1 
    numb_quadrants FIELD 2 
    FREQUENCY     = numb_quadrants 
  END 
 
  TITLE = 'Thomas distribution' 
  MODEL 
    PREASSIGN 
      BEGIN 
         a = PARAM aa LOW=0.0001 HIGH=20 START=2.0 END 
         b = PARAM bb LOW=0.0001 HIGH=40 START=0.5 END 
      END 
      DATA thomas(ROUND(numb_plants), a, b) END 
    END  {preassign} 
  RUN 
    FULL 
  END 
 
  {Plot obs & exp # of quadrants with k plants under the Thomas distribution} 
 
  PLOT ("set title 'Thomas distribution'","set xrange [-0.5:10.5]; set key top right") 
    CURVE KEY "Expected" WITH "boxes"  
      i = 0 TO 10   i, 100*thomas(i, aa.1.1, bb.1.1)    
    END 
    CURVE KEY "Observed" WITH "impulses"  
      d_idx = 1 TO 11   numb_plants, numb_quadrants    
    END 
  END  {plot} 
 
  TITLE = 'Poisson distribution' 
  MODEL 
    DATA 
      PDF POISSON(numb_plants) 
        PARAM m LOW = 0.001  HIGH = 100  START = 1.5 END 
      END 
    END 
  RUN 
    FULL 
  END 
 
  {Plot the obs & exp # of quadrants with k plants under the Poisson distribution} 
 
  WRITEPLOTLN("pause -1") 
  PLOT ("set title 'Poisson distribution'", 
        "set xrange [-0.5:10.5]; set key top right") 
    CURVE KEY "Expected" WITH "boxes"  
      i = 0 TO 10   i, 100*PDF POISSON(i) m.2.1 END    
    END 
    CURVE KEY "Observed" WITH "impulses"  
      d_idx = 1 TO 11   numb_plants, numb_quadrants    
    END 
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  END  {plot} 
 
END 

The resulting parameter output are given in annotated form below.  The difference 
in AIC between the two modesl suggests that the Thomas distribution fits the data 
much better than the Poisson.  The plots in Figure 6 show how much better the 
Thomas distribution fits compared to the Poisson. 

11 lines read from file armeria.dat 
11 Observations kept and 0 observations dropped. 
 
NAME   numb_plant  numb_quadr   FREQUENCY 
MEAN   5.00000000  9.09090909  9.09090909 
VAR    11.0000000  264.690909  264.690909 
STDEV  3.31662479  16.2693242  16.2693242 
MIN    0.00000000  0.00000000  0.00000000 
MAX    10.0000000  57.0000000  57.0000000 
 
Model 1 Run 1 : Thomas distribution 
 
LogLikelihood: -158.0639 AIC: 320.12784 Del(LL): 0.0000016017 
Iterations: 6 Function evaluations: 158 Converged normally 
 
Results with estimated standard errors.  (6 evals) 
Solution with 2 free parameters 
         Name Form       Estimate         Std Error          t        against 
           aa          0.581452489433   0.088149263241    6.59622631041   0.0 
           bb          1.717416986359   0.258883747023    6.63393127652   0.0 
 
Model 2 Run 1 : Poisson distribution 
 
LogLikelihood: -225.3173 AIC: 452.63465 Del(LL): 0.0000000000 
Iterations: 2 Function evaluations: 26 Converged normally 
 
Results with estimated standard errors.  (3 evals) 
Solution with 1 free parameter 
         Name Form       Estimate         Std Error          t        against 
            m          1.579996571411   0.069292424625    22.8018658598   0.0 

 

Figure 6.  Plots of observed and expected numbers of plant counts under two different distributions. 
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Chapter 7 

Programming tutorial 

The mle programming language is a general purpose algebraic programming 
language. This chapter provides a tutorial and examples of some of the language 
tools that can be used for many types of programming.    

Introduction to programming in mle 

People get passionate about programming languages the way they get passionate 
about religion.10  There are thousands of programming languages that have been 
written.  Why should you use mle?  Why indeed.  With so many good general 
purpose programming languages available in the world, I will not try to make 
strong arguments that mle is the best general purpose programming language, and 
I will not even claim that it is the single best language for any specific purpose.  
Rather, I will argue that there some pretty good reasons to use mle.  But, if you 
are already a crack Ada, Basic, COBOL, Fortran, Python, SAS, SNOBOL, Java, 
perl, or COBOL programmer, by all means use that language you know best.   

If you are an experienced programmer in any conventional programming 
language, the learning   mle will be simple—the syntax is straightforward, and 
punctuation is minimal.  If you are learning a programming language for the first 
time, mle is a good language beginner’s language.   

If not, here are some reasons to learn and use mle.   

• It will make it easier to develop and estimate statistical models in mle.  This 
is perhaps the biggest reason to learn mle instead of another language.  
Learning general-purpose computer programming in mle will simultaneously 
provide tools for scientific computing, model development and statistical 
estimation. 

                                                        
10 Okay, this is an exaggeration.  After all, hundreds, if not thousands, of wars have been fought over religion.  

Fortunately, programming language bigotry does not quite rise to that level of fanaticism!  
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• It is free for non-commercial use. 

• It is a simple language.  It is almost as simple as early versions of Basic, but 
with some nice programming features like those found in Pascal.  So many 
newer languages are badly bogged down with widget libraries, object 
oriented constructs, and other complexities; it makes it difficult to do simple 
data manipulation or calculation. 

• It recognizes many different number formats.  This can be helpful when you 
need to read in, say, Roman numerals, time formats, dates, etc. 

• It comes with many useful numerical and mathematical functions. 

• It comes with many useful statistical functions and predefined probability 
density functions. 

• It can work with complex numbers. 

• It has built-in help. 

• Learning how to program in mle will make it easy to move to another 
programming language. 

There is no single language that is good at handling all programming problems.  
All languages have strengths and weaknesses for particular programming tasks.  
mle is good for doing straightforward manipulation of data and scientific 
computation, and developing simple simulations.  The extensive library of pre-
defined functions is what makes mle useful for these tasks.   The language is not 
suited for building complex interfaces (using the mouse, graphics, menus, etc.), 
and is not good for low-level development (like for writing an operating system).  
Additionally, mle is an interpreted language.  Hence, if speed is an important 
criterion, then conventionally-compiled languages like C or Pascal should be 
used instead of mle.   

Elements of mle programming 

The first program 

The outline of an mle program looks like this: 

MLE 
  <statement 1> 
  <statement 2> 
  <statement 3> 
  . 
  . 
  . 
END {mle} 
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Between the keywords MLE and END comes a series of statements.  When the 
program is run, each statement is executed in turn.  Let’s put a statement in.  
Type the following text into an editor, save it, and run it. 

MLE 
  WRITELN('Hello Universe!') 
END 

This program consists of a single WRITELN() procedure. WRITELN() takes a list of 
zero or more arguments, writes them to the screen (or to a file in some 
circumstances), and puts the cursor at the start of the next line on the screen.  The 
single argument is the string 'Hello Universe!'.  The term string refers to a 
sequence of text characters.  The single quote marks on each side serve to define 
the extent of the string.  As it happens, you can also use double quote marks, so 
that "Hello Universe!" does the same thing.  You cannot mix the two types of 
marks for a string.   

If all went well when you ran the program, the message Hello Universe! was sent 
to the screen, and you have successfully written your first mle program.  If not, 
you have probably gotten an error message.  For example, if you left off the 
second quote mark, the message is returned: 

Unclosed ' at end of a line or file 
 Error found while parsing "(" 
 line 2 column 10 in file eg1.mle 

mle, like all programming languages, requires you to follow some very strict 
rules.  Here are a few to get you started. 

• Arguments to simple functions and procedures are enclosed in a set of 
parentheses (not square brackets or curly braces). 

•  Keywords and variables cannot have spaces and most punctuation within 
them.  mle is a free-fromat language. Indentation, spacing and formatting are 
ignored, with some exceptions.  The previous program could be written on a 
single line as:  

MLE   WRITELN ( "Hello Universe!" )   END 

• A space or valid punctuation mark must separate keywords.  The program  
MLEWRITELN("Hello Universe!")END is not valid because MLE and 
WRITELN are run together.  The program MLE WRITELN("Hello 
Universe!")END is a valid program.  Notice that the )END does not require 
an additional space, because ‘)’ is punctuation. 

Identifiers, assignment statement, and functions 

Let’s expand on the first program a bit.  The second program introduces 
assignment statements, identifiers, function calls, and comments. 
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MLE 
  { -- Writes a greeting card to the universe. 
       Written 29 Mar 2003   
  } 
  population = 6.3     {update from http://www.ibiblio.org/lunarbin/worldpop} 
 
  greeting = 'Hello Universe!' 
   
  { -- now create a signature that includes everyone} 
  signature = ' -- from ' + REAL2STR(population, 3, 1) + '+ billion of us on earth.' 
 
  { -- write the message here} 
  WRITELN(greeting) 
  WRITELN(signature) 
END 

The first thing to notice about this program is that it contains comments.  The 
comments are contained within curly brackets, {}.  Comments are ignored and 
are there to help programmers makes sense of the program months or years later.  
As a programmer, you should develop the discipline to document your program 
with comments.  Try to develop a consistent and descriptive style for formatting 
your programs, including informative comments sprinkled throughout.   

In this program, we have created some variables.  Variables are named “objects” 
that take on a value.  In a spreadsheet program, there are “cells” available that 
can take on values.  Variables are like the cells in a spreadsheet program, except 
that they are not laid out in a visual grid.   

The first variable created above is called population.  The value 6.3 is assigned 
to this variable.  Since 6.3 is a real number rather than an integer or a string of 
characters, the variable will be created to be a real number and initially assigned 
the value 6.3.   

The variable greeting is assigned to a string of characters: ‘Hello Universe!’.  
Consequently, the greeting is created as a STRING variable.  The single-
quotation marks are not actually part of the string.  Rather, they serve to delimit 
where the string starts and where it ends.  The quote marks can be single quote 
marks (') or double quote marks ("), but they must match.  'Hello"  is not  a 
valid way to specify a string.  However, you can specify the string People’s 
world as "People’s world". 

What goes into a variable name?  There are several rules that must be followed.   

• First, a variable name must begin with a letter.  The letter can be upper-case 
or lower-case, it does not matter—mle treats uppercase and lowercase as 
identical for identifier names and keywords. 

• After at least one letter, other letters, numbers, a period or an underscore 
may be used. 

• You should avoid using predefined keywords, function names, and 
procedure names.  Sometimes you will get an error (i.e. using a keyword) 
and other times, you will simply add confusion and disable the original 
purpose of the keyword (e.g. using a predefined function). 
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• An additional point of good programming practice is to create variable 
names that are meaningful.  Choose subject_birthdate over something 
less descriptive like sbd.  Doing so will pay off in the extra time many times 
over.  The payoff comes when you look at your program weeks, months or 
years later, and are able to quickly understand what the program does.  On 
the other hand, some abbreviation is warranted, particularly if you do so 
consistently for all variables.  If you always use subj in place of subject, 
the variable name subj_birthdate might work just as well. 

The variable signature is also assigned a string value.  In this case, the string 
value is computed as the concatenation of three separate elements: first a string 
constant, secondly a string value returned by the REAL2STR() function, and third 
a string constant.    

Assignment statements serve two purposes. First, they create new variables.  The 
variables population, greeting, and signature did not exist until they were 
defined in the assignment statement.   When each variable is first used in an 
assignment statement, its type is determined by the type returned from the 
expression on the right-hand side of the assignment statement.  The other purpose 
of assignment statements is to assign values to variables, as is done here.  Once a 
variable is created, it can be assigned other values of the same type (or values 
that can be converted into the same type, an integer into a real, for example). 

Types 
Variables (and expressions, for that matter) in mle can take on one of the 
following types: REAL, INTEGER, COMPLEX, BOOLEAN, STRING, CHAR (character), 
and FILE.  A detailed discussion of these types is given in the reference manual.  
A summery is given here. 

A variable's type refers to the domain of values that the variable can take on.  For 
example, INTEGER variables can take on a limited range of integer values, 
BOOLEAN variables can only take on the values TRUE and FALSE.  Variables can be 
defined for each of the seven types and expressions always take on one of these 
types.  Here is an explanation of each:  

• Real variables represent the continuous real number line.  For example, 3.5, 
1E-23, 7.0, and -19.999 are all real numbers.   

• Integer variables take on whole number values over a machine-dependent 
range of numbers.  For most versions of mle this range is [-2,147,483,648 to 
2,147,483,647].   

• Complex variables include a real number part and an imaginary part.  
Complex numbers are specified by expressions such as 1.2 + 0.4i, or 0+ 
1i.   

• Boolean variables take on one of two states: TRUE or FALSE.  No other value 
is allowed or recognized.  Boolean expressions are frequently used to test 
conditions in the IF...THEN...ELSE...END function or statement. 
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• String variables hold a sequence of character constants.   A string written as 
a constant is a sequence of characters, enclosed within quotes (").  The 
single quote character (') can be used as well for strings greater than one 
character.  String variables are typically used to assign file names, titles, etc.   

• Character variables take on the value of a single character.  When written as 
a constant in a program, character constants consist of a single character 
enclosed within single quotes (').  Character constants are not typically used 
within a user's program, but are available if needed.  Usually, character 
constants and variables can be used anywhere string variables are allowed. 

• File variables are used to reference files.  Most of the time, file variables are 
transparent, and you need not explicitly define or manipulate file variables.  
This is because mle defines and does the bookkeeping for the data file, the 
output file, the plot file, and the screen (or standard output) file.  File 
variables can be created should you wish to create and manipulate other 
files.  

Here are some examples, largely self explanatory, of typical assignment 
statements: 

large_data = N_OBS > 5000               {large_data is declared as type BOOLEAN} 
subtitle   = "Analysis of " + INFILE    {subtitle is declared as type STRING} 
nine       = 3 * 3.0                    {nine is type REAL} 
five       = 2 + 3                      {five is type INTEGER} 
one        = SIN(23)^2 + COS(23)^2      {one is type real} 
onealso    = SIN(23+0i)^2 + COS(23)^2   {onealso is type COMPLEX} 

You can explicitly define a variable's type when the variable is first referenced in 
an assignment statement.  Here are some examples: 

c:STRING  = 'x'           {c would otherwise be CHAR} 
nine:REAL = 3 * 3         {nine would otherwise be INTEGER} 
t:BOOLEAN = TRUE          {t is explicitly declared BOOLEAN, it is the default} 
ang:REAL = SIN(2*pi)      {ang is explicitly declared REAL, it is the default} 
ang2:COMPLEX = GAMMA(1.5) {force ang2 to COMPLEX} 
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Statements with numeric, boolean, and logical expressions 
Algebraic expressions are expressions are created using a series of special 
operators and calls to functions.  Operators include algebraic symbols like +, –, *, 
/, ^, and a series of algebraic keywords for integer operations, DIV, MOD, SHL, SHR 
(See Table 8).  The right hand side of an assignment statement is an expression.  
Examples of valid assignment statements with expressions on the right-hand side 
are: 

n = 2*3 
n = (HOURS/60)^2 
n = 12.5*first - 10*second 
n = SIN(2*PI) 
i = mask SHL 4 
i = 23 DIV 4 

Boolean expressions evaluate to either TRUE or FALSE.  The operators for creating 
boolean expressions are >, <, >=, <=, ==, <>, and boolean keywords, AND, OR, XOR, 
and NOT and some simple functions.  These operators are used in the same way as 
they are in many other programming languages. 

b = a <> 42^2 
b = (a <> 12) AND (a >= 0) 

Table 8.  Algebraic, boolean, and logical operators. 

Operator Function Example Equivalent function 
- uniary negation -x NEGATE(x) 
+ uniary positive +x  
^ power function x^y POWER(x, y) 
* multiply function x*y MULTIPLY(x, y) 
/ divide function x/y DIVIDE(x, y) 
DIV integer divide function x DIV y IDIV(x, y) 
MOD integer modulo function x MOD y MODF(x, y) 
AND boolean and logical and function x AND y ANDF(x, y) 
SHL logical shift left function x SHL y SHIFTLEFT(x, y) 
SHR logical shift right function x SHR y SHIFTRIGHT(x, y) 
+ addition x + y ADD(x, y) 
- subtraction x - y SUBTRACT(x, y) 
OR boolean and logical or function x OR y ORF(x, y) 
XOR boolean and logical xor function x XOR y XORF(x, y) 
== or = boolean “is equal” function x == y ISEQ(x, y) 
<> boolean “not equal” function x <> y ISNE(x, y) 
< boolean “less than” function x < y ISLT(x, y) 
> boolean “greater than” function x > y ISGT(x, y) 
<= boolean “less than or equal to” function x <= y ISLE(x, y) 
>= boolean “greater than or equal to” 

function 
x >= y ISGE(x, y) 
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The difference between boolean and logical expressions is that boolean 
expressions work with the values TRUE and FALSE only, whereas logical 
expressions work with bits on integers.  For example, NOT TRUE is equal to 
FALSE; but NOT 767 is equal to -768.  How does this work?  The number 767 is 
represented by the computer as the binary sequence 
00000000000000000000001011111111.  The logical NOT operator flips all 1s to 
0s and 0s to 1s, so that the number becomes 
11111111111111111111110100000000.  The first (left most) bit denotes a 
negative value, so the value is –768.  The logical AND, OR, and XOR functions act 
bit by bit, as well.  Thus the binary values 2X101101 AND 2X111000 (which is the 
same as 45 AND 56) evaluates to 40 (or 2X101000).11  The SHL and SHR operators 
shift bits to the left and right.  So, 2X000111 SHL 3 (i.e. 7 SHL 3) evaluates to 
56 (or 2X111000).  See Table 9 defines the logical operators. 

You might be wondering how mle decides whether an operator is boolean or 
logical.  The answer is simple: if both operands are boolean types, the operator 
will be boolean.  If both operands are integers, the operator will be logical.  If 
one operator is boolean and one is logical, an error results.  For the expression (x 
>= 4) OR (y <= 2), each of the expressions in parenthesis will evaluate to TRUE 
or FALSE, so that the OR will be a boolean operator.  

Operator precedence 
Mathematicians have developed a series of conventions on operator precedence. 
When you see the expression 4x2 + 2x + 3, you know, by convention, that the 
exponentiation occurs first, the multiplications take place second, and the 
addition is third.  The built in operators in mle follow a more or less standard 
precedence.  That is, an expression like 4+2*3 will evaluate 2*3 first and then 

                                                        
11 The 2X… notation is how numbers are specified in other bases (base 2 or binary in this case).   For base 2 numbers, 

only the digits 0 and 1 are permitted on the right-hand side of the X.   Octal (base 8) numbers can be specified as 
8X…, where digits from 0 to 7 are permitted on the right hand side of X. 

Table 9. Definition of  logical operators.  

Operator Descritpion Example Result 

NOT Flips all 0s to 1s and 1s to 0s NOT  142 -143 

AND Returns 1 if both bits are 1.   1 
AND 1 à 1, 0 AND 1 à 0, 0 AND 0 à 
0 

2x1010 AND 
2x1100 

8  [2x1000] 

OR Returns 1 if either bit is a 1.  1 
OR 1 à 1, 0 OR 1 à 1, 1 OR 0 à 1, 
0 OR 0 à 0 

2x1010 OR 2x1110 14 [2x1110] 

XOR Exclusive OR function.  Returns a 1 
if one of the bits is 1 and the 
other is 0. 1 XOR 1 à 0, 0 XOR 1 à 
1, 1 XOR 0 à 1, 0 XOR 0 à 0 

2x1010 OR 2x1110 6 [2x0110] 



Programming tutorial 

 139 

add 4.  The precedence of operators are defined in Table 10.  Higher precedence 

operators will always be evaluated before lower precedence operators 

More on strings 
String constants are values that are enclosed within quotes.  Here are a few rules 
for string constants: 

• when you specify a string constant, you can use either the " or the ' 
characters. 

• If you open a string constant with ", you must close it with ".  If  you open 
the string with ' you must close with '. 

Hence, the statements: 

foo = "My name is " 
bar = 'Kilroy' 
WRITELN(foo bar) 

are legal and produce the output: My name is Kilroy.  The statements 

foo = "My name is ' 
bar = 'Kilroy" 

are invalid because the quote types do not match.  Some languages do not allow 
this flexibility.  In BASIC, for example, all string constants must be enclosed in 
the " character.   In Pascal, all string constants must be enclosed in the ' 
character.  mle allows either. 

Commas in lists of arguments 
Commas are always optional in mle.  Hence, both 

WRITELN(foo, bar) 
WRITELN(foo bar) 

are valid. and they work exactly the same.  There are several good reasons to use 
commas, however.  First, they make it easier to read.  Secondly, they are helpful 
when working with negative numbers.  Consider the following: 

Table 10.  Operator precedence. 

Operator(s) Precedence Category 

- + not high Uniary operators 

^  Exponent operator 

* / div mod and shl shr  Multiplying operators 

+ - or xor  Adding operators 

= (or ==)  <> < > <= >= low Relational operators 
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WRITELN(3, -1) 

This statement produces the output: 3-1 (There is no space between the 3 and the 
-1 because it is not asked for).  Now, what if you leave the comma out? 

WRITELN( 3  -1 ) 

This program produces the output: 2.  This is because 3 -1 was taken as a 
mathematical expression!  The expression evaluated to the number 2.  So the 
comma was useful in this context.  You could, however, still avoid using the 
comma.  Here are some ways of getting the same result: 

WRITELN( 3 (-1) )       {put the -1 inside parentheses} 
WRITELN( 3 NEGATE(1) )  {creates -1 with the negate function} 

Now, once you understand all that, you can make sense of statements like: 

WRITELN("My name is ", first, ' ' middle ' ', last) 

The "call" to procedure WRITELN has 6 arguments (some separated by commas, 
others not).  Can you identify each of the six arguments?  They are: 

"My name is "   # This is a string constant. 
first    # This is a variable (defined earlier in the program) 
' '     # This is a one character string constant 
middle    # This is another variable 
' '    # Another one character string constant 
last    # This is a third variable 

Suppose earlier in the program there was the statements: 

first = 'Thomas' 
middle = 'A.' 
last = 'Edison' 

Then the WRITELN statement above will write 6 different things to the screen.  
Here is a murkier statement: 

WRITELN("'", " " ',', ' ',"'") 

If you look carefully, you can deduce that the output is the 5-character sequence: 
' , '  

The same as if you had typed WRITELN("' , '").  A programmer with a more 
developed sense of aesthetics would do neither of the above two statements.  
Rather, s/he would recognize that it is very confusing and write the program this 
way: 

singlequote = "'" 
space = ' ' 
comma = ',' 
WRITELN(singlequote, space, comma, space, singlequote) 

As an aside, you can use the + operator to concatenate strings.  So another way of 
writing the program is  
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singlequote = "'" 
space = ' ' 
comma = ',' 
WRITELN(singlequote + space + comma + space + singlequote) 

Better yet, it could be written 

singlequote = "'" 
space = ' ' 
comma = ',' 
confusingstring = singlequote + space + comma + space + singlequote 
WRITELN(confusingstring) 

With so many ways of doing the same thing, you might well ask, "what is the 
best way?"  The answer is that the best way is to write it in the way that is 
clearest to you, so that you can read the program a year later and be able to make 
sense of what you were doing. 

Reading from the keyboard 
Reading from the keyboard is sometimes very useful.  Here is a program that 
prompts a user for information from the keyboard.  It asks for sample sizes, 
means and standard deviations from two studies, computes a pooled standard 
deviation, and computes a paired t-test. 

MLE 
  { -- This program computes a paired t test} 
  { -- Define the variables to read} 
  n1  : INTEGER 
  n2  : INTEGER 
  u1  : REAL 
  u2  : REAL 
  s1  : REAL 
  s2  : REAL 
   
  { -- Read in the sample sizes, means, and standard deviations} 
  WRITELN("Paired t test") 
  WRITE("Sample size 1: ") 
  READLN(n1) 
  WRITE("Sample size 2: ") 
  READLN(n2) 
 
  WRITE("Mean 1: ") 
  READLN(u1) 
  WRITE("Mean 2: ") 
  READLN(u2) 
 
  WRITE("Stdev 1: ") 
  READLN(s1) 
  WRITE("Stdev 2: ") 
  READLN(s2) 
 
  { -- Compute the values of interest} 
  df1 = n1 - 1 
  df2 = n2 - 1 
  dfp = df1 + df2 
  s_pooled = SQR((df1*s1^2 + df2*s2^2)/dfp) 
  t = (u1 - u2)/(s_pooled*SQR(1/n1 + 1/n2)) 
  p = STUDENTT(t, dfp) 
 
  { -- Now write the results to the screen}   
  WRITELN("Pooled: t = ", t, " df = ", dfp, "  One-tailed p = ", p) 
END 
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The prompts for information are written using the WRITE procedure.  This means 
that the cursor does not go to the next line when waiting for input from the 
keyboard.  The READLN statements each read a value from the keyboard, and it 
expects the line to be terminated by the <Enter> key.  In fact, the READLN 
statement (like WRITELN) can read multiple arguments in one statement.  Write a 
program to see what the behavior is when multiple arguments are given to a 
READLN statement. 

Mathematical computation 

mle contains many common and some uncommon functions for doing 
mathematical computation.   

Summation 
Summation over a series of number is a commonly needed function in scientific 
programming.  For example, the value n2 can be computed from the series 

1

(2 1)
n

i

i
=

−∑ .  Here is a program that reads an integer from the keyboard and 

computes the series in this way. 

MLE 
  { -- computes the square of an integer using a series } 
  n : INTEGER 
  WRITE("Integer to square: ") 
  READLN(n) 
  n2 = SUMMATION i (1, ABS(n)) 2*i - 1 END 
  WRITELN(n, '^2 is ', n2) 
END 

The SUMMATION function takes four arguments.  The first argument is an integer 
variable that is the variable of summation.  In this program, i is used as the 
variable of summation.  It is not previously defined, so it will be implicitly 
defined by the SUMMATION function.  The next two arguments are in parentheses.  
They define the upper and lower limits of the summation.   The fourth argument 
is the expression of summation.  Notice that i appears within the function.  Its 
value will be updated with each iteration of the function. 

Products 
Like summation, taking a product over a series of number is a commonly needed 
function in scientific programming.  For example, the factorial function n! = 1 × 

2 × … × (n – 1) × n can be computed as 
1

n

i

i
=

∏ .  Here is a program that reads an 

integer from the keyboard and computes the series in this way. 

MLE 
  { -- computes factorial function } 
  n : INTEGER 
  WRITE("Find factorial of what integer: ") 
  READLN(n) 
  factn = PRODUCT i (1, n) i END 
  WRITELN(n, '! is ', factn) 
END 
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Like the SUMMATION function, PRODUCT function takes four arguments. 

Integration 

Suppose you want to compute the integral 2sin( 2 )x x dx
π

− π
+∫ .  Here is an 

example of how that can be coded: myvalue = INTEGRATE x (-SQRT(PI), 
SQRT(PI)) SIN(x^2 + 2*x) END.  (The expression assigns the result, about -
1.525, to myvalue). Here is a description of the meaning of each part of the 
expression: 

MLE 
  myvalue = INTEGRATE x  (      {x is the variable of integration} 
              -SQRT(PI),        {This is the lower limit of integration} 
               SQRT(PI)         {This is the upper limit of integration} 
                         )      {Close of the argument list} 
                SIN(x^2 + 2*x)  {The function to be integrated} 
            END                 {Integrate}   
  writeln(myvalue) 
END                 {End of the integrate function} 

Like the SUMMATION and PRODUCT functions, there are four arguments to the 
INTEGRATE function (actually there can be more, see the reference manual).  The 
first is x, the variable of integration, within parenthesis come the lower and upper 
limits of integration, followed by the integrand. 

Probabilities 
One of the strengths of mle is that it contains a large number of predefined 
probability density functions and functions derived from the PDF.  Any of the 
predefined probability density functions can be used as part of an expression.  
For example, the following program will give the area between user-specified 
limits for a normal distribution with user-specified parameters. 

MLE 
  a  : REAL 
  b  : REAL 
  mu : REAL 
  sig: REAL 
 
  WRITELN("Returns the area under a Normal distribution") 
  WRITE("Lower and upper limits of the area: ") 
  READLN(a, b) 
  WRITE("Mean and Standard deviation: ") 
  READLN(mu, sig) 
  WRITELN(PDF NORMAL(a, b) mu, sig END) 
END 

Notice that the PDF function is called within the WRITELN function.  This is 
perfectly valid.  The arguments to WRITELN can be any expression no matter how 
complicated.  Here is an example of what happens when this program is run. 

Returns the area under a Normal distribution 
Lower and upper limits of the area: 3, 4 
Mean and Standard deviation: 10, 3 
0.0129347552 



Programming tutorial 

 144 

Random numbers 
Simulation programming often times requires drawing numbers from particular 
probability densities.  Random numbers can be generated for nearly all of the 
densities supported by mle.  The QUANTILE function facilitates this.  Essentially, 
the QUANTILE will accept a value drawn from a uniform distribution and return a 
value that is randomly drawn from the base density. 

A uniform variate from zero to one is generated by the RAND function.  Before the 
RAND function can be called, the random number generator must be seeded.  This 
is done by a call to procedure SEED() with a positive integer argument.  If you 
prefer not to choose an initial seed value, the function CLOCKSEED will generate 
one using the computer’s date and time. 

Here is an example of a program that prints out a number randomly drawn from a 
Weibull density with user-specified parameters. 

MLE 
  a  : REAL 
  b  : REAL 
 
  SEED(CLOCKSEED) 
  WRITELN("Returns a value drawn from a WEIBULL distribution") 
  WRITE("a and b parameters of the WEIBULL distribution: ") 
  READLN(a, b) 
  WRITELN(QUANTILE WEIBULL(RAND) a, b END) 
END 

Flow control 

Normally, statements are executed, one at a time, in the order in which they 
appear.  Frequently it is necessary to loop, branch, and otherwise modify the flow 
of programs.  This section introduces statements and techniques that allow you to 
modify the flow of program statements.  First the IF statement is introduced, 
followed by several looping statements. 

A loop is a programming concept that allows segments of code to be repeatedly 
executed.  This allows the computer to do what computers do best: perform 
repetitive tasks.  Almost all programs of any significance contains some type of 
looping (or iteration).  mle has the FOR statement, the REPEAT statement and the 
WHILE statement for this purpose. 

IF statement 
The IF statement provides the means to conditionally executing statements.   
Here is a simple example 
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MLE  
  age : REAL 
  WRITE("How old are you? ") 
  READLN(age) 
  IF age < 0 THEN  
    WRITELN("That’s not possible!") 
  ELSEIF age < 4 THEN 
    WRITELN("Perhaps you were you giving your age in decades.") 
  ELSEIF age >= 115 THEN  
    WRITELN("Perhaps you are giving your age in months.") 
  ELSE 
    WRITELN("Live long and prosper.") 
  END {if} 
END  

The IF statement will execute only one of the WRITELN statements, depending on 
the range of values entered.   The statement works this way.  First, it evaluates 
the expression after the IF.  If the expression is true the first WRITELN will be 
executed and then flow will jump to the end of the IF statement.  That is, all the 
other parts of the IF statement will be skipped.   If the expression after IF is 
FALSE, the first ELSEIF expression will be evaluated.  Again, if it evaluates to 
true the statement(s) that follows will be executed and control will jump to the 
end of the IF statement.   As a last resort, when all IF and ELSEIF expressions 
evaluate to FALSE, the statement between ELSE and END will be executed. 

Generically, this is what the statement looks like. 

IF <bexpr> THEN 
  <statements> 
ELSEIF <bexpr> THEN 
  <statements> 
ELSEIF <bexpr> THEN 
  <statements> 
ELSE 
  <statements> 
END 

Notice that any number of statements can come within each section of the IF 
statement.  The ELSEIF and ELSE clauses are always optional.  When there is no 
ELSE clause, the IF statement doesn’t necessarily end up executing any of the 
statements.  That is, if all IF and ELSE expressions evaluate to FALSE, the IF 
statement will skip to the end of the statement.  Here is another example of using 
the IF statement: 

IF SYSTEM = "MS-DOS" THEN  
  PRINTLN("Run from an MS-DOS system") 
  SEP = '\' 
  DATAFILE("C:" + SEP + DIR + SEP + NAME) 
ELSE 
  PRINTLN("Run on a unix system") 
  SEP = '/' 
  DATAFILE(DIR + SEP + NAME) 
END  

FOR statement 
The FOR statement provides a means of looping through statements for some 
fixed number of iterations.  mle contains several different types of FOR statements.  
Three of them are introduced here.  The rest are introduced in the section on 
arrays. 
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Here is an example program that creates a table of sine and cosine values: 

MLE 
  FOR x = 0 TO 359 DO 
    r = DTOR(x) 
    WRITELN(x " degrees (" r " radians): SIN()=" SIN(r) ", COS()=" COS(r)) 
  END  {for} 
END  {mle} 

The variable x is called the index variable.  Its value will change with each pass 
through a loop.  In this example, x is initially set to zero, and the statements 
sandwiched between the DO and the END are executed.  The value of x is 
incremented by one and the statements are executed again, and so on until x is 
359.  After the last pass through the loop, execution continues after the END. 

Generically, the simplest form of the FOR statement looks like this 

FOR <v> = <expr> TO <expr> DO  
  <statements>  
END 

The variable <v> must either not be previously defined or, if it already exists, it 
must be an INTEGER or a REAL variable.  Its value will change as the FOR 
statement is executed.  The first <expr> will be executed once at the beginning of 
the loop, and will define the starting value of v.  The second <expr> will also be 
executed once and will define the last value of v. 

Here is another example.  This program reads an integer and prints it out backwards.   

MLE 
  { -- read an integer and print it out backwards} 
  i : INTEGER 
  WRITE('Type an integer: ') 
  READLN(i) 
 
  FOR x = 1 TO LOG10(i) + 1 DO 
    tmp = i           {temporarily save i} 
    i = i DIV 10      {get rid of last digit} 
    WRITE(tmp - i*10) {compute and print the least significant digit} 
  END {for} 
  WRITELN             {with no argument, writeln goes to the next line} 
END {mle} 

FOR…STEP  statement 
There are several variations on the FOR.  The first, the STEP clause, allows the 
index variable to be incremented by something other than one.   Here is an 
example that prints the sequence 9, 18, 27…. 

MLE 
  FOR x = 9 TO 99 STEP 9 DO 
    WRITELN(x) 
  END {for} 
END {mle} 

The initial value of the index variable (here, x) is set to the first value (9 in this 
case), and x is incremented by the STEP value each iteration so long as x is less 
than or equal to the final value (99 here).  The STEP value can be negative, 
providing a countdown statement.   
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FOR…STEPS  statement 
Another variation on the FOR statement includes the STEPS clause.  This allows 
for a fixed number of steps between the first and last values of the loop.  For 
example here is a program that prints the cumulative area under a standard 
normal PDF from -1 to 1 in 10 steps: 

MLE 
  FOR x = -1 TO 1 STEPS 10 DO 
    WRITELN(x, ' ', NORMALCDF(x)) 
  END {for} 
END {mle} 

Here is the resulting output: 

-1.000000000 0.1586552595 
-0.777777778 0.2183499460 
-0.555555556 0.2892573259 
-0.333333333 0.3694414036 
-0.111111111 0.4557640673 
0.1111111111 0.5442359327 
0.3333333333 0.6305585964 
0.5555555556 0.7107426741 
0.7777777778 0.7816500540 
1.0000000000 0.8413447405 

The index variable of a FOR…STEPS statement is always type REAL.   

REPEAT statement 
The REPEAT statement provides a means of looping through statements until some 
condition is met.  The REPEAT statement differs from the FOR statement in that 
there is no index variable and no start variable.  Generically, the statement looks 
like this: 

REPEAT  
  <statements>  
UNTIL <bexpr> 

The <statements> are executed and then the boolean expression<bexpr> is 
evaluated.  If the result is FALSE, the loop repeats and <statements> are executed 
again.  When <bexpr> evaluates to TRUE, the loop terminates.  A REPEAT 
statement always executes <statements> at least once. 

The next example is a program that converts polar to rectangular coordinates.  
The REPEAT statement is used to verify that the angle falls in the proper range. 
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MLE 
  { -- Program to convert polar coordinates to rectangular coordinates} 
  angle  : REAL 
  radius : REAL 
  twopi = 2*PI 
 
  REPEAT 
    WRITE('Angle in radians? ') 
    READLN(angle) 
    good = (angle >= 0) AND (angle <= twopi) 
    IF not good THEN 
      WRITELN('Angle must be >= 0 and <= ', twopi) 
    END 
  UNTIL good 
 
  WRITE('Radius? ') 
  READLN(radius) 
 
  x = POLARTORECTX(angle, radius) 
  y = POLARTORECTY(angle, radius) 
  WRITELN("Rectangular coordinates are ", x, ", ", y) 
END {mle} 

WHILE statement 
The WHILE statement provides a means of looping through statements while some 
condition is met.  The format is 

WHILE <bexpr> DO  
  <statements>  
END 

The boolean expression <bexpr> is executed first.  If the value is TRUE, the 
<statements> are executed once and <bexpr> is evaluated again.  The sequence 
continues until <bexpr> evaluates to FALSE.  That is, when <bexpr> is FALSE, 
the loop terminates. 

The chief difference between a WHILE loop and a REPEAT loop is that the REPEAT 
loop is always executed at least once.  The WHILE loop may be skipped the first 
time.  Here is an example of a small program using a while loop: 

{Compute factorial} 
n : INTEGER 
WRITE("Enter an integer: ") 
READLN(n) 
tmp : REAL = 1 
WHILE n > 1 DO  
  tmp = tmp*n 
  n = n - 1 
END 
WRITELN(tmp) 

The Break Statement 
The BREAK statement is a special statement that works with FOR, WHILE, and 
REPEAT statements.  When a BREAK statement is encountered, the loop is 
immediately exited.  The behavior of a BREAK statement outside of a loop causes 
the current "scope" to be exited.  This means that within the main program 
(outside of a user-defined procedure or function) a BREAK acts like a HALT and 
causes the program to terminate. Within a user-defined procedure or function, the 
procedure or function is exited back to the place from where it was called. 
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Here is an example of how the BREAK statement can be used to shorten the section 
of code given in an earlier example. 

  REPEAT 
    WRITE('Angle in radians? ') 
    READLN(angle) 
    IF (angle >= 0) AND (angle <= twopi) THEN 
      BREAK  {exit the REPEAT loop} 
    END 
    WRITELN('Angle must be >= 0 and <= ', twopi) 
  UNTIL 1=0   {that is, loop forever} 

The Continue Statement 
Like the BREAK statement, the CONTINUE statement works within loops (WHILE, 
REPEAT, and FOR).  When a CONTINUE statement is encountered, all further 
statements are skipped until the end of the current loop.  The CONTINUE statement 
is a convenient way to skip over sections of code and force another iteration of 
the loop. 

Arrays 

An “array” is a series of contiguous memory locations referenced by a single 
variable name.  Arrays have many important uses in computer programming.  
They are almost always used with FOR loops or other looping structures.  The 
important idea behind arrays is that an integer value serves as an offset (or index) 
to the array elements.   

For example, consider an array called myarray that is defined to be 20 REAL 
elements long.  Each element of the array can be indexed by placing an integer 
expression within square brackets; e.g., myarray[3] = 3^2.  Suppose we wish to 
create a table of squared values, and later in the program print the values out.  
The following code will accomplish this: 

MLE 
  myarray:REAL[1 TO 20] 
  FOR i = 1 TO 20 DO 
    myarray[i] = i^2 
  END {for} 
  {...} 
  FOR i = 1 TO 20 DO 
    WRITELN(i "^2 = " myarray[i]) 
  END {for} 
END 

In this last example, a one-dimensional array was defined as a REAL and indexed 
over the range from 1 to 20.  Arrays must always be explicitly declared in mle.  
They must be defined the first time the variable is mentioned in the program.  A 
lower and upper index must be specified as integer constants.   

Multidimensional arrays of all types are supported by mle, as well.  The format is 
var : type[min1 TO max1, min2 TO max2, . . . ].  Some examples of 
declarations are:  

s : STRING[1 TO 5]                      {Defines a one-dimensional array of strings} 
r : REAL[1 TO 10, 1 TO 10]              {Defines a 10 x 10 matrix} 
b : BOOLEAN[0 TO 1, 0 TO 1, 0 TO 1]     {Defines a 3 dimensional array} 
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An entire array can be initialized to a single value in an assignment statement.  
Examples are: 

s : STRING[1 TO 5] = ''        {Defines s and initializes all values to ''} 
r : REAL[1 TO 10, 1 TO 10] = 0 {Defines a 10 x 10 matrix and initializes to 0} 

Arrayed variables are accessed by using brackets for subscripting: 

r : REAL[0 TO 359] 
FOR i = 0 TO 359 DO 
  r[i] = DTOR(i) 
  writeln("Sin(" i ") = " SIN(r[i]) ) 
END 

Files 

Text files are widely used in computer programming, for statistical analysis, and 
for data files.  mle provides tools for creating, reading, writing and appending to 
text files. 

There are four steps to working with files: 

• First step, a variable must be declared as type FILE.  The variable will be 
used to refer to a file; it acts as a, so-called, “file handle.” 

• Next, a file must be “opened.”  You must call one of the procedures: 
OPENREAD(), OPENWRITE(), OPENAPPEND().  Each of these procedures take 
two arguments.  The first is the file variable, and the second is a string 
expression that is the name of the file. 

• Now the file can be read from or written to (depending on how it was 
opened).  The READ() and READLN() procedures can be used to read from a 
file.  The first argument to the procedures must be the file variable.  
Likewise, WRITE() and WRITELN() procedures can be used to write (or 
append) to files.  Again, the file variable must be the first argument. 

• After operations on a file have been completed, the CLOSE() procedure 
ensures the file is properly closed.  The close procedure forces the operating 
system to flush any buffers and update the directory information for a file. 

Here is a simple program that reads in a file and reverses the characters in each 
line.  Notice the use of the EOF() function to check for the end of the file, and the 
EXISTS() function for checking to see if a file exists. 
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MLE 
  { -- reads text from a file and reverses the text} 
  filename : STRING 
  f        : FILE 
  textline : STRING 
 
  READDELIMITERS = ''        {read the whole line including spaces} 
  REPEAT 
    WRITE('File name: ') 
    READLN(filename) 
    ok = EXISTS(filename) 
    IF NOT ok THEN 
      WRITELN("Couldn’t find ", filename) 
    END {if} 
  UNTIL ok 
 
  OPENREAD(f, filename) 
  WHILE NOT EOF(f) DO 
    READLN(f, textline) 
    FOR x = STRINGLEN(textline) TO 1 STEP -1 DO 
      WRITE(SUBSTRING(textline, x, 1)) 
    END {for} 
    WRITELN 
  END  {while} 
END  {mle} 

User-defined procedures 

mle allows users to define their own procedures and functions.  This section 
discusses procedure writing and variable passing.  The next section discusses the 
related concept of user-defined functions. 

User-defined procedures serve a number of purposes.   

• Procedures can be used to extend the languages.  Essentially, you can write 
your own “statements” that take a list of zero or more arguments.   

• Procedures provide a way to collect commonly defined operations into a 
single place.  This addresses the frequent need to have the same set of 
operations performed on different variables or in different parts of a 
program. 

• Procedures provide a way to modularize programs.  That is, programs can 
be composed of a small set of general operations, each that is a separate 
procedure.  Each of those, in turn, can call a set of other procedures.  This 
programming style (called top-down programming) can lead to more robust 
and readable code. 

Procedures must be completely defined prior to their first reference in a program.  
For example, suppose you want to write a procedure that returns the roots of a 
quadratic equation.  You would first define the procedure quadratic (say) that 
takes 5 arguments: three real coefficients as inputs, and two complex numbers 
that are the roots as the outputs.  Your program could then call that procedure 
repeatedly in your program with different inputs. 

Here is how the procedure could be written: 
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MLE 
  PROCEDURE quadratic( a:REAL, b:REAL, c:REAL,  
                      VAR root1:COMPLEX, VAR root2:COMPLEX 
                      ) 
    tmpc : COMPLEX 
    { -- This procedure takes coefficients a, b, and c, and returns the roots 
         as complex roots root1 and root2 
    } 
    tmpc = SQRT(b^2 – 4*a*c)     {compute an intermediate result} 
    root1 = (-b + tmpc)/(2*a) 
    root2 = (-b - tmpc)/(2*a) 
  END 
  . . .  
END 

Defining the procedure 
The procedure definition begins with the word PROCEDURE and ends with a 
corresponding END.  The word following PROCEDURE is the name of the procedure, 
in this case quadratic.  The name is followed by a list, enclosed in parenthesis, 
of formal arguments—five in this case.  The argument name and type must be 
specified for each of the argument.  In this example, three arguments (a, b, and c) 
are defined to be type REAL, and two are defined as type COMPLEX.   

The argument names and, for that matter, all of the variables defined within the 
procedure (like tmpc) are "private" to the procedure.  Names of preexisting 
variables outside of the procedure are not affected by and do not affect 
declarations of variables using the same name inside the procedure.  Thus, the 
following bit of code causes no problems.  Outside of the procedure a, b, and c 
refer to one set of variables, but the names have different meanings within the 
procedure. 

MLE 
  a : STRING 
  b : BOOLEAN 
  c : CHAR 
  tmpc : CHAR 
 
  PROCEDURE quadratic( a:REAL, b:REAL, c:REAL,  
                      VAR root1:COMPLEX, VAR root2:COMPLEX 
                      ) 
    tmpc : COMPLEX 
    . . . 
  END 

Any reference to the variables a, b, and c inside the procedure, refers to the local 
variable within the procedure, not the global variables defined at the top.   

The keyword VAR has a very important effect on the arguments root1 and root2.  
These arguments, once they are modified in the body of the procedure, will pass 
the modifications back to the original calling argument.  Without the  VAR 
keyword, changing the value of an argument has no effect on the calling 
arguments.  In other words, VAR makes the argument variable—or changeable.   

Calling the procedure 
To call the procedure, the code might include something like this: 
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MLE 
    
  a  : REAL 
  a2 : REAL 
  a3 : REAL 
  r1 : COMPLEX 
  r2 : COMPLEX 
  PROCEDURE quadratic( a:REAL, b:REAL, c:REAL,  
                      VAR root1:COMPLEX, VAR root2:COMPLEX 
                      ) 
    tmpc : COMPLEX 
    ... 
  END 
 
  { -- The main body of the program starts here -- } 
  quadratic(2, 3, -4, r1, r2) 
  ... 
  a=-4    
  a2=1.5 
  a3=-1 
  quadratic(a, a2, a3, r1, r2) 
END 

The statements within the procedure are executed, the values of root1 and root2 
are updated, and control is passed back to the main program.   In the main 
program, the variables r1 and r2 have been updated with the results from root1 
and root2.  

Nested procedures 
New procedure and function definitions can be defined within existing 
procedures.  In the same way that variables defined inside a procedure are 
“visible” from within a  procedure, procedures defined within procedures are 
only visible from within that procedure.  Here is an example of nested 
procedures: 

MLE 
  PROCEDURE printthings(s1:STRING s2:STRING) 
 
    PROCEDURE indent(VAR s:STRING  n:INTEGER) 
      {Indents a string by n spaces} 
      FOR i = 1 TO n DO 
        s = ' ' + s 
      END {for} 
    END  {proc indent} 
      
    indent(s1, 6) 
    indent(s2, 12) 
    WRITELN(s1) 
    WRITELN(s2) 
  END  {proc printthings} 
  ... 
END  

EXIT statement 
The EXIT statement causes the immediate exit of the current procedure or 
function.   If EXIT is called from the main program, it has the same effect as a 
HALT statement—the program is exited. 
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User-defined functions 

mle allows users to define their own functions.  User-defined functions serve a 
number of very important purposes.   

• Functions are used to extend the types of expressions that can be created.  

• Functions provide a way to collect commonly computed operations into a 
single place.  This addresses the frequent need to have the result computed 
on different variables or in different parts of a program. 

• Functions also help modularize programs into smaller, more maintainable 
components.  

Functions must be completely defined prior to their first reference in a program 
(just like procedures).  For example, suppose you want to write a function that 
returns the average of two integers.  You would first define a function that takes 
two integer arguments.  The return type of the function must also be defined.  
The body of the function does the computation and then returns the results 
through the predefined variable RETURN.   

Here is how the function could be written: 

MLE 
  FUNCTION average( v1:INTEGER, v2:INTEGER ): REAL 
    { -- This function returns the average of two integers} 
    RETURN = (v1 + v2)/2 
  END 
  . . .  
END 

Defining the function 
The function definition begins with the word FUNCTION and ends with a 
corresponding END.  The word following FUNCTION is the name of the function, in 
this case average.  The name is followed by a list, enclosed in parenthesis, of 
formal arguments—two in this case.  The argument name and type must be 
specified for each of the argument.  In this example, both are defined to be type 
INTEGER.   

The argument names and, for that matter, any variables that might be defined 
within the function are "private" to the function (the same is true for procedures).  
Names of preexisting variables outside of the procedure are not affected by and 
do not affect declarations of variables using the same name inside the function. 

As with procedures, arguments can be preceded by the VAR keyword.  This would 
have the side-effect of allowing the function to modify the argument.  Without VAR 
keywords, changing the value of an argument within a function has no effect on the 
calling arguments.  On general principles, it is considered bad programming 
practice to allow functions to modify arguments.   

Calling the function 
To call the function, the main program might include something like this: 



Programming tutorial 

 155 

MLE 
    
  FUNCTION myfunc( a:REAL, b:REAL):REAL 
    ... 
    RETURN = ... 
  END 
 
  { -- The main body of the program starts here -- } 
  FOR x = 1 TO 20 DO 
    a = myfunc(x, -x^2) 
    WRITELN(a) 
  END 
END 

The statements within the procedure are executed, the values of root1 and root2 
are updated, and control is passed back to the main program.   In the main 
program, the variables r1 and r2 have been updated with the results from root1 
and root2.  

Nested procedures 
New procedure definitions can be defined within existing procedures.  In the 
same way that variables defined inside a procedure are “visible” from within a  
procedure, procedures defined within procedures are only visible from within 
that procedure.  Here is an example of nested procedures: 

MLE 
  PROCEDURE printthings(s1:STRING s2:STRING) 
 
    PROCEDURE indent(VAR s:STRING  n:INTEGER) 
      {Indents a string by n spaces} 
      FOR i = 1 TO n DO 
        s = ' ' + s 
      END {for} 
    END  {proc indent} 
      
    indent(s1, 6) 
    indent(s2, 12) 
    WRITELN(s1) 
    WRITELN(s2) 
  END  {proc printthings} 
  ... 

Example programs 

This section contains a few examples of programs written in mle.   
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A simple simulation program 

MLE 
  { This program simulates a simple data set. 
    The output is an id and an age at which some developmental 
    landmark is attained, drawn from a normal pdf.} 
 
  nkids = 1000   {number of kids to simulate} 
  mu = 6         {mean age of reaching the landmark} 
  sig = 1        {stddev in reaching the landmark} 
 
  fout : FILE 
  SEED(CLOCKSEED) 
 
  OPENWRITE(fout, "kids.dat") 
 
  FOR cid = 1 TO nkids DO 
    age = QUANTILE NORMAL(RAND)  mu  sig  END 
    WRITELN(FOUT, cid, ' ', age)  
  END 
  CLOSE(fout) 
END 

A less simple simulation program 

Rather than just simulating a data set, this program creates multiple data sets and 
also does analyses of each data set.  This simulation program deals with aspects 
of study design (study length, censoring, and duration between prospective 
follow-ups) as well as the underlying parametric model.  The last segment of the 
program computes some summary statistics for the repeated estimates of the 
model parameters.    
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MLE 
  { -- This program does 4 things: 
 
       1. It creates data sets, each with a single 
       variable age, and observations of age.  The 
       observations are drawn from a normal distribution. 
 
       2. It fits a model (Normal) to each data set.   
 
       3. It simulates aspects of the study observation: 
          a. children are initially recruited from ages minrage 
             to maxrage months of age--uniformly distributed. 
          b. Children are visited every obswidth months for 
             studylength months    
          c. censorprob % of children drop out between mincensor  
             and maxcensor months 
       4. It computes the mean and standard deviation  
          of the repeated parameter estimates 
  } 
            
  OUTFILE(DEFAULTOUTNAME) 
 
  { -- seed the random number generator} 
  s = CLOCKSEED 
  SEED(s)                   
  PRINTLN('Clock seeded with ', s) 
 
  { -- SEs must be computed with the alternative method 
    because we are not using a DATA statement} 
 
  info_method1 = FALSE 
  info_method2 = TRUE 
 
  minrage = 0        {minimum age of recruitment} 
  maxrage = 0        {maximum age of recruitment} 
  censorprob = 0.20  {probability of dropping out} 
  obswidth = 4.0     {width of the observation interval} 
  studylength = 10   {max # of months to observe over} 
  mincensor = 1      {min number of months to censor at} 
  maxcensor = 9      {max number of months to censor at} 
  sitmean = 6        {mean age at sitting} 
  sitsd = 1          {sd of age at sitting} 
  { -- array for "observations"} 
  ageo : REAL[1 TO 500]  {last interval before sitting} 
  agec : REAL[1 TO 500]  {first observation after sitting} 
  numbobs = 500 
 
  { -- save the estimates of mu and sig, one for each simulation} 
  savemu : REAL[1 TO 200] 
  savesig: REAL[1 TO 200] 
  numbsims = 200 
 
  { -- Loop through data sets} 
  FOR sim = 1 TO numbsims DO      
 
    { -- create a new data set} 
    FOR cid = 1 TO numbobs DO 
      s_age = QUANTILE NORMAL(RAND) sitmean sitsd END  {get age at sitting} 
      r_age = RRAND(minrage, maxrage)                  {age at recruitment} 
 
      { -- now determine how long to observe children} 
      o_len = IF RAND < censorprob THEN  
                RRAND(mincensor, maxcensor)  
              ELSE  
                studylength  
              END {if function} 
 
      { -- Now figure out open and closing interval } 
      IF s_age < r_age THEN                  {cross-section responder} 
        ageo[cid] = 0 
        agec[cid] = r_age 
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      ELSEIF s_age > (r_age + o_len) THEN   {right censored} 
        ageo[cid] = r_age + o_len 
        agec[cid] = -1 
      ELSE 
        FOR x = r_age TO o_len STEP obswidth DO 
          IF (s_age >= x) AND (s_age < (x + obswidth)) THEN 
            ageo[cid] = x 
            agec[cid] = x + obswidth 
            BREAK 
          END  {if} 
        END  {for} 
      END { if } 
 
    end {for cid} 
 
    { -- now estimate params from the current simulated data} 
    MODEL  
      SUMMATION j (1, numbobs) 
        LN(PDF NORMAL(ageo[j], agec[j])  
             PARAM mu LOW=1 HIGH=10  START=3 END 
             PARAM sig LOW=0.01 HIGH=5 START=2 END 
           END 
        ) 
      END {summation} 
    RUN 
      FULL THEN 
             { -- save parameter estimates} 
             savemu[sim] = mu 
             savesig[sim] = sig  
           END {then} 
    END {model} 
 
  END {for sim} 
  { -- Now do two models: one to tally the mu's and one sig's } 
  PRINTLN('Finding mean and stdev for mu parameters') 
  MODEL 
    SUMMATION j (1, numbsims) 
      LN(PDF NORMAL(savemu[j]) 
           PARAM mu_mean LOW=1 HIGH=10  START=3 TEST=6.0 END 
           PARAM mu_sd LOW=0.0001 HIGH=5  START=2 END 
         END {pdf} 
      ) {ln} 
    END {summation} 
  RUN 
    FULL 
        THEN { print out simulation stats} 
           PRINTLN('mu mean = ' , mu_mean,  
                   ', mu SD = ', mu_sd,  
                   ', true = ', sitmean) 
           PRINTLN('Absolute bias = ', sitmean - mu_mean,  
                   ', % bias = ', 100*mu_mean/sitmean) 
           PRINTLN('t test: (param<>0)  t = ', mu_mean/mu_sd) 
           PRINTLN('t test: (param=' sitmean, ')  t = ',  
                  (mu_mean-sitmean)/mu_sd) 
         END {then} 
  end {model} 
 
  { -- Now, collect info for the estimates of sig} 
  PRINTLN('Finding mean and stdev for sig parameters') 
  MODEL 
    SUMMATION j (1, numbsims) 
      LN(PDF NORMAL(savesig[j]) 
           PARAM sig_mean LOW=0.00001 HIGH=6  START=3 TEST=1.0 END 
           PARAM sig_sd LOW = 0.000001 HIGH = 2 START = 0.5 END 
         END {pdf} 
      ) {ln} 
    END {summation} 
  RUN 
    FULL 
        THEN { print out simulation stats} 
           PRINTLN('sig mean = ' , sig_mean,  
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                   ', sig SD = ', sig_sd,  
                   ', true = ', sitsd) 
           PRINTLN('Absolute bias = ', sitsd - sig_mean,  
                   ', % bias = ', 100*sig_mean/sitsd) 
           PRINTLN('t test: (param<>0)  t  = ', sig_mean/sig_sd) 
           PRINTLN('t test: (param=', sitsd, ') t = ',  
                     (sig_mean - sitsd)/sig_sd) 
         END {then} 
  END {model} 
 
END 

An even more complicated simulation program 

This program simulates repeated datasets, each containing observations of a 
bilateral morphological trait.  The simulation includes the ability to add, for 
example, a directional size bias.  “Noise” of development is superimposed on the 
underlying trait, and different variances in the noise can be specified for each 
side. 
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MLE 
  { This program simulates Fluctuating Asymmetry data.  It 
    creates 200 simulations with 150 subjects each } 
 
  SEED(CLOCKSEED)          { pick a random seed }   
  outdir = 'sim\'          { directory where output goes } 
  outfilebase = 'sim'      { base name for output file } 
  nsims = 200              { Number of simulations to do } 
  nsubjects = 150          { Number of subject in each simulation } 
  trait_a = 2.688          { Trait mean parameter } 
  trait_b = 0.1979         { Trait dispersion parameter } 
  da = 0.0                 { this param controls da (AS if prob_AS <> 0) } 
  sd_left = 1              { asymmetrical dispersion param } 
  sd_right = 1             { asymmetrical diserpsion param } 
  prob_AS = 0.0            { da = 0.0; antisymmetry = 0.5 } 
  fout:FILE                { the output file } 
 
  FUNCTION drawtrait(dist:INTEGER a:REAL b:REAL):REAL 
    { -- draws a random value from the trait distribution  
         dist selects the distribution to use } 
    IF dist = 1 THEN 
      RETURN = QUANTILE NORMAL(RAND) a b END 
    ELSEIF dist = 2 THEN 
      RETURN = QUANTILE LOGNORMAL(RAND) a b END 
    ELSEIF DIST = 3 THEN 
      RETURN = QUANTILE EXPONENTIAL(RAND) a END 
    ELSE 
      WRITELN('Error: dist is invalid') 
      HALT 
    END {if} 
  END  {drawtrait} 
 
  FUNCTION DRAWNOISE(mu:REAL sigma:REAL):REAL 
    { -- draws a random developmental noise value } 
    RETURN = QUANTILE NORMAL(RAND) mu sigma END 
  END {drawnoise} 
 
  PROCEDURE openoutfile(i:INTEGER) 
    dig:STRING 
    IF NOT DIREXISTS(outdir) THEN 
      MKDIR(outdir) 
    END  {if} 
    IF i < 10 THEN 
      dig = '00' + INT2STR(i) 
    ELSEIF i < 100 THEN 
      dig = '0' + INT2STR(i) 
    ELSE 
      dig = INT2STR(i) 
    END  
    OPENWRITE(fout, outdir + outfilebase + '.' + dig)  
  END {openoutfile} 
 
  FOR s = 1 TO nsims DO    {create nsims files}    
    openoutfile(s) 
    FOR j = 1 TO nsubjects DO 
      { -- pick the individual's baseline trait} 
      size = drawtrait(2, trait_a, trait_b) 
 
      { -- create right and left measures } 
      IF RAND > prob_AS THEN 
        right = size + drawnoise( da, sd_right) 
        left  = size + drawnoise(-da, sd_left) 
      ELSE 
        left  = size + drawnoise( da, sd_right) 
        right = size + drawnoise(-da, sd_left) 
      END {if} 
 
      { -- write this observation to the file} 
      WRITELN(fout, j, ' ', left, ' ', right)  
    END  {for j}  
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    CLOSE(fout) 
  END {for s} 
END  {mle} 
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